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Membrane computing is an emergent branch of natural 
computing, first introduced by Paun [1]. This unconven-
tional model of computation is a type of distributed parallel 
system, which is inspired by the structure and function of 
living cells. The devices of this model are called P systems. 
Roughly speaking, a P system consists of a cell-like mem-
brane structure, in the compartments of which there are 
multisets of objects that evolve according to given rules in a 
synchronous, non-deterministic maximally parallel manner. 
Many different classes of such computing devices have al-
ready been investigated. Most of them are computationally 
universal, i.e., able to compute whatever a Turing machine 
can do [2–4], and are computationally efficient, i.e., able to 
trade space for time and in this way solve presumably in-
tractable problems in a feasible time (e.g., [5–9]). Mem-
brane computing is very attractive from a computational 
point of view because of its hierarchical structure and in-
trinsic parallelism. 

Evolutionary algorithms are robust optimization and 
search methods inspired by evolutionary processes occur-

ring in natural selection and molecular genetics. They are 
approximation algorithms that seek a trade-off between so-
lution quality and computational costs. The main features of 
evolutionary algorithms are the representation and evalua-
tion of individuals, population dynamics, and evolutionary 
operators, such as selection, crossover, and mutation [10]. 
Evolutionary algorithms exhibit an intrinsic parallelism de-
rived from dealing with multiple individuals, show remark-
able adaptability and flexibility to various applications, and 
provide good search capabilities and robust results [11]. 

Both P systems and evolutionary algorithms are nature- 
inspired models and are used to solve complex problems; 
however, they are different with respect to the objects and 
rules used and in the computational strategies employed. 
While P systems represent a suitable formal framework for 
parallel-distributed computation, evolutionary algorithms 
are very effective for implementing different algorithms to 
solve numerous problems [11]. Thus, the possible interac-
tion between P systems and evolutionary algorithms repre-
sents a fertile research field, as suggested by the list of 26 
open problems in membrane computing [12]. The first at-
tempt in this direction was by Nishida [13,14], who devel-
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oped membrane (evolutionary) algorithms to solve the trav-
eling salesman problem. In those membrane algorithms, 
membrane structure was used together with ideas from ge-
netic algorithms (cross-over and mutation operators), and 
the traveling salesman problem was solved. A membrane 
algorithm was also employed to solve the minimum storage 
problem [15]. The quantum-inspired evolutionary algorithm 
based on P systems was also developed to solve the knap-
sack problem and the radar emitter signals problem [16,17]. 
The similarities between distributed evolutionary algorithms 
and P systems have been analyzed and new variants of dis-
tributed evolutionary algorithms were suggested and applied 
for some continuous optimization problems [18]. In this 
paper, a membrane evolutionary algorithm is proposed to 
solve the DNA sequence design problem. 

1  The DNA sequence design problem 

DNA computing is a new paradigm of computation. DNA 
computing is attractive both theoretically and technically 
because of its intrinsic parallelism. DNA computing has 
been used to solve various computationally complex prob-
lems, such as the Hamiltonian problem [19], the SAT prob-
lem [20,21], the Steiner tree problem [22], the maximal 
clique problem [23], and the maximum independent set 
problem [24]. Because the problems solved by DNA com-
puting are encoded by a DNA sequence, the design of DNA 
sequences is crucial for successful DNA computation. To 
make a set of DNA sequences effective in DNA computing, 
they must fulfill a number of combinatorial and thermody-
namic constraints. Such a task is not easy to achieve, and it 
has been shown that designing a set of good DNA sequenc-
es is an NP-hard (non-deterministic polynomial-time hard) 
problem [25,26]. 

Various algorithms and methods have been proposed for 
reliable DNA sequence design. Marathe et al. [27] proposed 
a dynamic programming approach. Frutos et al. [28] devel-
oped a template strategy to select a great number of dissim-
ilar sequences. Arita et al. [29] introduced a genetic algo-
rithm into the DNA sequence design system and proposed a 
random generate-and-test algorithm. Tanaka et al. [30] ap-
plied simulated annealing to optimize the set of DNA se-
quences. Cui et al. [31] proposed DNA sequence design 
algorithm based on the PSO optimization. Wang et al. [32] 
developed the GA/SA algorithm for DNA sequence design. 
Qiu et al. [33] designed a hardware microprocessor to dis-
cover the DNA code under thermodynamic constraints. 
Dyachkov et al. [34] introduced the concept of a stem simi-
larity function and discussed DNA codes based on stem 
similarity. Kawashimo et al. [35] presented a local search 
based algorithm for designing DNA short sequence sets 
satisfying thermodynamic constraints with minimum free 
energy criteria. Zhang et al. [36] proposed an invasive weed 
optimization algorithm to optimize encoding sequences. 

Successful DNA computing relies heavily on designing 
or selecting proper DNA sequence to realize desired chem-
ical reactions and solution extractions. To ensure that 
chemical reactions are controllable, some thermodynamic 
and combinatorial constraints must be satisfied in the design 
of DNA sequences. 

1.1  Sequence design constraints 

In the following context, (1 )ix i m   and (1 )jx j m   

are used to denote DNA sequences with length n, and m is 
the cardinality of a set of DNA sequences. For convenience, 
DNA sequence x is oriented from the 5′ to 3′ end, and the 
reverse orientation is the 3′ to 5′ end. The Watson-Crick 
complement of a sequence x is denoted by x , while the 
reverse sequence of sequence x is denoted by xR. 

(1) Thermodynamic constraint.  T1 (melting tempera-
ture): Melting temperature is an important factor in the effi-
ciency of a DNA reaction, and can be used to select DNA 
sequences with uniform melting temperatures. The nearest 
neighbor mode [37] was used to calculate melting tempera-
ture, and the evaluation function ( )TmF   of the melting 

temperature is defined as follows: 
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where Tmtar is the target melting temperature, Tmgen(xi) is 
the melting temperature of the generated sequence xi, R is 
the gas constant (1.987 cal mol−1 K−1), H° and S° are the 
enthalpy and the entropy, respectively, and CT is the salt 
concentration. 

(2) Combinatorial constraints.  C1 (similarity measure 
constraint): The similarity measure [38] is used to describe 
the degree of similarity of two DNA sequences, and ensures 
that each sequence is as unique as possible. The evaluation 
function Similarity ( )F  of the similarity measure constraint is 

defined by eqs. (4) and (5). 
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where (−)g denotes g gabs, ( )k
jx  denotes the k position 

right shift for DNA sequence xj, S(*,*) is the number of 
corresponding places where two characters are the same. 
For more information, refer to [38]. 

C2 (H-measure constraint): The H-measure is akin to the 
similarity measure. The difference is that the H-measure 
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compares two given sequences from opposite directions, 
while the similarity measure works in the same direction. 
The H-measure computes how many nucleotides are com-
plementary between the given sequences to prevent cross 
hybridization of two DNA sequences. Like the similarity 
measure, the H-measure also uses the shift sequences. The 
evaluation function of the H-measure measure constraint is 
defined as follows: 

 H_measure H_measure
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where ( ( ) , ( ))g k R
i i jC x x x  is the number of correspond-

ing places where two nucleotides are the same. For more 
information, refer to [38]. 

C3 (hairpin structure constraint): Hairpin structure con-
sists of a ring part and a stem part, which can hybridize it-
self by forming a loop. The measure of hairpin structure 
constraint calculates the probability to form a secondary 
structure. Generally, the hairpin structure is not desirable for 
DNA encoding. The equations are defined as follows [38]: 
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where r is the minimum length to form a hairpin, pinlen 
denotes the minimum length of the stem. A hairpin structure 
is formed at position c for sequence xi, if more than half of 
the bases in the subsequence , ,c pinlen cx x   hybridize to 

the subsequence , ,c r c r pinlenx x   . Hairpin ( , )ix c  is 1; if 

DNA sequence xi can form a hairpin structure, the value of 
Hairpin ( , )ix c  is 0. 

C4 (GC content constraint): The GC content is the per-
centage of G and C in a DNA sequence. It is important to 
arrange the GC content such that the chemical character is 
uniform. Thus, the evaluation function ( )GCf   of the GC 

content constraint is described as follows: 
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where tarGC ( )ix  is the target value of GC content of DNA 

sequence xi, and genGC ( )ix  is the GC content of the gener-

ated sequence. 
C5 (continuity constraint): Continuity is often used to 

describe the degree of successive occurrence of the same 

base in a sequence. In a DNA sequence, if the same base 
occurs continuously, the reaction is not well controllable 
because they may cause an unexpected biological structure. 
The formulations are defined as follows [38]: 
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where ( , )C x i  is the number of the i-th base  occurring 

continuously in DNA sequence x, and t is the target. 

1.2  Evaluation function 

In DNA sequence optimization, the content can be naturally 
regarded as a constraint, not an objective function. So, more 
precise formulation of DNA sequence optimization is a 
constrained multi-objective optimization problem.  

Using the weight-sum method, the multi-objective opti-
mization for DNA encoding can be transformed into a sin-
gle objective optimization problem. The fitness function can 
be described as follows: 

 
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i i
i
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w F
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For simplicity, we set each weight iw  to unity. In this 

paper, the constraint handling technology [39] is applied. 
For more details, refer to [30]. 

2  A membrane evolutionary algorithm for 
DNA sequence design 

Before the membrane evolutionary algorithm is described in 
detail, some concepts related to string object P systems are 
briefly introduced. 

2.1  A string object P systems 

In this paper, several basic notions of membrane computing 
are introduced. For more information, refer to [1]. 
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The membrane structure of a P system, shown in Figure 
1, consists of several membranes arranged in a hierarchical 
structure inside a main membrane, called the skin. A mem-
brane without any other membranes inside is said to be el-
ementary. A space delimited by one membrane and its im-
mediately lower membranes is called a region, and the re-
gion of an elementary membrane is the space delimited by it. 
Each region can contain a multiset of objects and a set of 
evolutionary rules, by which objects can evolve, and com-
munication rules, by which objects can be moved between 
regions. 

In string object P systems, the membranes can be marked 
with + or −, and this is interpreted as an “electrical charge”, 
or with 0, and this means “neutral charge”. We will denote 
the three cases by [ ]i i

 , [ ]i i
  and 0[ ]i i . 

A string object P system with active membranes and pri-
ority relations among the rules from each region is defined 
as follows: 

1 1 1 0( , , , , , ( , ), , ( , ), )n n nO u L L R R i     , 

where: 
(i) O is an alphabet of objects; its elements are called  

objects; 
(ii)  is a membrane structure consisting of n membranes 

(and hence the regions) injectively labeled with 
1, 2, , , 1n n  ; n is called the degree of the system  ; 

(iii) (1 )iL i n  , are strings that represent multisets 

over O, Li is initially placed in region i; 
(iv) i  is a partial order relation on iR , 1 i n  . Of-

ten, instead of 1 2( , ) ir r   we will write 1 2r r . This 

symbol has the following meaning: a rule 1 1 1:r u v  from 

a set iR  is used in a transition step with respect to   

only if there is no rule 2 2 2:r u v in iR  which can be 

applied at the same step and 2 1r r ; 

(v) 0 {1, 2, , }i n   is the label of the output membrane; 

(vi) (1 )iR i n  , are finite sets of evolution rules over 
*O , iR  is associated with region i  of  , and it is of the 

following forms: 

(a)  1 1 2[ || || ] , 1, , ,0 , , , ,i k i ks s s k s s s O         . 

 

 

Figure 1  A membrane structure. 

Mutation rule M(s): This is similar to the uniform muta-
tion operator of a genetic algorithm, which is a simple re-
placement with a randomly selected character within a giv-
en alphabet set of objects. It is described in detail as follows. 
Assign every bit as a mutation point in turn. For each muta-
tion point, we select a random value between 0 and 1 and 
compare this with the mutation probability pm. If the ran-
dom value is less than pm, a random character is substituted 
for the original character. 

Mutation rules with replication work on string objects, 
are associated with membranes and depend on the label and 
the charge of membranes, but do not directly involve the 
membranes, in the sense that the membranes are neither 
taking part in the application of these rules nor are they 
modified by them. Moreover, one string can evolve to more 
than one string in that membrane using a rule of this type. 

(b)  1 2 3 4 1 2 3 4[ ( , ) ( , )] , , ,0 , , , ,i is s s s s s s s O       . 

Crossover rule 1 2( , )C s s : A rule of this type works on a 

couple of string objects and can possibly be used only if the 
polarization of the membrane is .  

Similar to the binary genetic algorithm, we adopted a 
simple crossover. Let n be the dimension of the string and pc 
be the crossover rate, now choose a pair of strings: 

1 1 1 2

2 1 1 2

( , , , , , , ),

( , , , , , , ),

pos pos n

pos pos n

s x x x x

s y y y y





  

  
 

and randomly generate a decimal r. If r < pc, apply a simple 
two-point crossover to them as follows. Generate two ran-
dom integers pos1 and pos2 in the interval [1, n]. The com-
ponents of two individuals between the numbers pos1 and 
pos2 will be exchanged. Then the new strings are generated 
as follows:  

3 1 1 2

4 1 1 2

( , , , , , , ),

( , , , , , , ).

pos pos n

pos pos n

s x y y x

s y x x y





  

  
 

By crossing a string with another string, two new strings 
are created in region i  and also the polarization of the 
membrane is not modified. 

(c)  1 2
1 2 1 2 1 2[ ] [ ] , , , ,0 , ,i i i is s s s O         . 

Communication rule: An object is introduced in the 
membrane, possibly modified during this process; the po-
larization of the membrane can be modified, but not its la-
bel. 

(d)  1 2
1 2 1 2 1 2[ ] [ ] , , , ,0 , ,i i i is s s s O         . 

Communication rule: An object is sent out of the mem-
brane, which is possibly modified during this process; the 
polarization of the membrane can also be modified, but not 
its label. 

In P systems, the computation is a sequence of transitions 
between the configurations starting from the initial config-
uration by applying the rules associated with regions in a 
non-deterministic maximally parallel manner. The compu-
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tation will halt in each region of the system when no rule 
can be applied. The result of the computation is collected in 
membrane i0 when the system arrives at the final configura-
tion. For more details about P systems information, refer to 
[2]. 

2.2  Membrane evolutionary algorithm for DNA  
sequence design 

For convenience, we first provide some definitions and no-
tations before constructing the P systems for DNA sequence 
design.  ,   and   are defined as DNA sequences 
with the same length over{ , , , }A C G T , { , , , }A C G T     and 

{ , , , }A C G T    , respectively. 

Formally, the new system with active membranes and 
priority relation is constructed as follows: 

0 1 1 1 1( , , , , , , , , , , , , , )n n n nO u L L L L L R R R R n        

where: 
{ , , , , , , , , , , , } { | 0 5}

{ | 0 } { | 0 5},
i

i i

O A C G T A C G T A C G T U p i

U d i m U t i

         

   
 

0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 2 2 2 2 1 0[ [ [ ] [ [ ] [ [ ] ] ] ] ] ,n n n nu          

0L  , 1 2 0{ , , }i i
i i iL s s p , 1 1i n   , 

1 2 0{ , , }i i
i i iL s s p , 

0{ }iL t  , 1 i n  , 

The set 0R    and the sets iR (1 i n  ), contain the 

following rules: 
(1) 0[ || ( )] , , , ( )i is s M s s s M s         . 

Using this rule, two DNA sequences can be obtained. 
One is obtained by first mutating the initial one, and then by 
attaching two primes to its every symbol; the other is ob-
tained by attaching a prime to each symbol of the initial 
one. 

(2) 0[ ] , ,i is s s s      . 

The prime is removed using this rule. 
(3) 0

1 2 1 2 1 2 1 2[ ( , ) ( , )] , , , ( , )i is s C s s s s C s s              . 

Two new DNA sequences can be created using the rule 
as above and their two primes are also removed. 

(4) [ ] [ ] ,i i i is s s    . 

A DNA sequence is sent out of a region and the polariza-
tion of the membrane is translated from + to −. For this type 
of rule, priority is given as follows: for any 1 2,s s  , if 

there is 1 2( ) ( )f s f s , then the corresponding rule 1[ ]i is   

1[ ]i i s has a higher priority than the rule 2 2[ ] [ ]i i i is s  , 

where f is the fitness function. 
(5) 0[ ] [ ] ,i i i is s s    . 

A DNA sequence is introduced into a region from the 
outside region and the polarization of the membrane is 
translated from − to 0. For this type of rule, priority is given 

as follows: for any 1 2,s s  , if there is 1 2( ) ( )f s f s , 

then the corresponding rule 0
1 1[ ] [ ]i i i is s   has a higher 

priority than the rule 0
2 2[ ] [ ]i i i is s  , where f is the fitness 

function. 
Using the rules of types (4) and (5), the worst and best 

DNA sequences in every region are sent to the outer region 
and adjacent inner region, respectively. 

(6) 0 0
0 1[ ] [ ]i i i ip p . 

(7) 0
1 2[ ] [ ]i i i ip p  . 

(8) 2 3[ ]i ip p  . 

(9) 3 4[ ]i ip p  . 

(10) 0
4 5[ ]i ip p . 

(11) 0
5 0[ ]i ip p . 

For the above rules, there are priority relationships as 
follows: the rule of type (10) always has a higher priority 
than the rules of type (1); the rule of type (11) always has a 
higher priority than the rules of type (1). 

The role of objects (0 5)ip i   is to cause the rules of 

types (1), (2) and (3), (4), (5) be used in turn, and wait two 
steps for the two worst DNA sequences to be deleted. Ini-
tially, there is a p0 in every region (1 )i i n  , and then 

only the rules of type (1) are used together with the rule of 
type (6), and p0 is sent out of membrane i and becomes p1. 
Moreover, the polarization of each membrane i is un-
changed; in the next step, the rules of types (2) and (3) can 
be used. At the same time, using the rule of type (7), the 
polarization of each membrane is translated from 0 to +, and 
p1 is introduced in membrane i  and becomes p2; then the 
rules of type (4) can be used, which makes the polarization 
become −. Moreover, the rule of type (8) can also be used, 
which makes p2 translate to p3. In the next step, the rules of 
types (5) and (9) can be used simultaneously; therefore, the 
polarization is translated from − to 0 and p3 becomes p4. 
The rules of types (10) and (11) always have a higher prior-
ity than the rules of type (1); therefore, in the following two 
steps, the rules of types (10) and (11) must be used in turn, 
the polarization keeps unchanged and p4 becomes p5, and 
then becomes p0 again. 

(12) 1[ ] , 0 1n i i nd d i m
    . 

The objects di are counters. Initially, d0 is placed in 
membrane n. In each computation period, a rule of this type 
can be used, and there is only one rule of this type being 
used, which is used together with the rule of type (9). 
Therefore, the subscript of di only adds one in each compu-
tation. 

(13) 0
1[ ] , 0 1i i i it t i    . 

(14) 0 0
2 3[ ] [ ]i i i it t    . 

(15) 0
3 4[ ] [ ]i i i it t 

    . 

(16) 4 5[ ]i it t 
  . 



 Xiao J H, et al.   Chin Sci Bull   February (2012) Vol.57 No.6 703 

(17) 5 0[ ]i it t 
  . 

The objects it  have the similar role as the objects ip . 

They make the rules of types (18) and (19) wait four steps, 
and then only the rules of types (18) and (19) are used in 
turn in each membrane ( {1 ,2 , , })i i n      . When the 

rules of types (1), (2), (3), (4), and (5) are used in turn in 
membrane i , the rules of types (13), (14), (15) can be used 
simultaneously. Thus, after these four  steps, the polariza-
tion of membrane i  is translated from 0 to + and t0 be-
comes t4.  

(18) [ ] [ ] , , {1 ,2 , , }i i i is s i n  
           . 

In this rule, the priority is given as follows: for any 

1 2,s s  , if 1 2( ) ( )f s f s , the corresponding rule 1[ ]i is 
   

[ ]i i 
   has a higher priority than the rule 2[ ] [ ]i i i is  

    , 

where f  is the fitness function. 

(19) 0[ ] [ ] , , {1 , 2 , , }i i i is s i n 
           . 

Similarly, there are priority relationships as follows: for 
any 1 2,s s  , if 1 2( ) ( )f s f s , the corresponding rule 

0
1[ ] [ ]i i i is 

     has a higher priority than the rule 2[ ]i is 
   

0[ ]i i  , where f is the fitness function. 

The aim of the rules of types (18) and (19) is to delete the 
two worst DNA sequences in membrane i at that moment. 
After the polarization of membrane i′ becomes +, only the 
rules of type (18) can be used together with the rule of type 
(16), and at that moment there is only a rule of type (10) 
being used in membrane i. Therefore, the worst DNA se-
quence in membrane i is deleted. At the same time, the po-
larization of membrane i′ is translated from + to  , and t4 
becomes t5. In the next step, in membrane i′, only the rules 
of types (17) and (19) can be used, and in membrane i, the 
rule of type (11) can be used. Therefore, the second worst 
DNA sequence is deleted in membrane i, and the polariza-
tion of membrane i′ becomes 0 again and t5 becomes t0 
again. At the same time, the polarization of membrane i is 0 
and simultaneously p5 evolves to p0. 

From the previous explanation of the rules, we can easily 
see how this P system works. Therefore, the results of a 
computation with respect to this P system are all strings 
over { , , , }A G C T  collected in membrane n, at the moment 

of the subscript i of di adding up to a given value m from 0. 
Using this P system, the DNA sequence design problem can 
be solved and two better DNA sequence can be obtained in 
membrane n. The basic pseudocode of the membrane evolu-
tionary algorithm is shown in Figure 2. 

The procedure of the membrane evolutionary algorithm 
is shown as follows: 

Step 1: Specify membrane structure 0 0 0 0 0 0
0 1 1 1 2 2 2[ [ [ ] [ [ ]     

0 0 0 0 0 0 0
2 1 0[ [ ] ] ] ] ]n n n n    with n  regions contained in the skin 

membrane; generate the initial strings in each region; 
Step 2:  In each elementary membrane, the mutation  

 

Figure 2  Pseudocode algorithm for our membrane evolutionary algo-
rithm. 

rule and crossover rule are implemented simultaneously, 
and strings are evaluated by a fitness function; 

Step 3:  Communication rules are used to exchange 
some information among the n regions or between each 
region; the best and worst strings are sent to the adjacent 
inner and outer regions, respectively; 

Step 4: Update each region simultaneously; delete the 
worst strings, and save the current best strings;  

Step 5:  If the stopping condition is satisfied, then out-
put the results; otherwise, return to step (2). 

3  Simulation results 

3.1  Algorithm parameters 

In the simulation, the bases A, C, G and T are mapped to 0, 
1, 2 and 3, respectively. m n-mer DNA sequences are con-
nected one by one in the same direction to form an m*n-mer 
DNA sequences. We denote it as a string in the membrane 
system. 

The novel algorithm based on the new membrane system 
constructed above for DNA sequence design is implement-
ed with Matlab 7.0. The parameters of the algorithm used in 
our example are: the number of membranes is 20, the max-
imum iteration number is 1000, the probabilities of crosso-
ver and mutation rate are 0.7 and 0.03, respectively, the 
threshold value t of continuity is 2, and salt concentration is 
0.1 mol/L. For hairpins, we assumed that hairpin formation 
requires at least six-base-pairings and a six-base loop. 

3.2  Results and analyses 

First, we compared the new algorithm with the multi-   
objective evolutionary algorithm from [38]. In [38], Shin  
et al. proposed a constrained multi-objective evolutionary 
algorithm to solve DNA sequences optimization for reliable 
DNA computing. Table 1 presents the sequences for 
Adleman’s Hamilton problem in [38] and the sequences 
generated by our algorithm. The comparison results in terms 
of averages of fitness are shown in Figure 3.  

From Table 1 and Figure 3, it is clear that our proposed  

Begin 
  Initialize membrane structure and parameters. 
  While (not termination condition) do 
    Execute mutation rule and crossover rule. 
    Evaluate the fitness by fitness function. 
    Execute communication rule. 
    Update every region, delete worst strings. 
    Record the current best solution. 
  End 
End 
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Table 1  Comparison of the sequences in the multi-objective evolutionary algorithm [38] and our sequences 

DNA sequences (5′→3′) Continuity Hairpin H-measure Similarity Tm GC (%) 

Our sequences 

GCCGGAGCCTTCTTGATAAT 0 0 68 53 49.7408 50 

AATCCTGCTTGTCCTCCTAC 0 0 63 50 48.5503 50 

TGAGCTCTCTGTTCCAACGA 0 0 64 52 50.6557 50 

ATGTAACACGCGGCCACTAA 0 0 63 50 52.0768 50 

ACTCGGATTGTGTTGAACGC 0 0 71 51 51.3381 50 

CGTTGTTGGCACCTACGTTA 0 0 68 54 50.6851 50 

ATCCAGACTACCAAGGCCAA 0 0 61 48 50.0914 50 

MOEA algorithm 

CTCTTCATCCACCTCTTCTC 0 0 43 58 46.6803 50 

CTCTCATCTCTCCGTTCTTC 0 0 37 58 46.9393 50 

TATCCTGTGGTGTCCTTCCT 0 0 45 57 49.1066 50 

ATTCTGTTCCGTTGCGTGTC 0 0 52 56 51.1380 50 

TCTCTTACGTTGGTTGGCTG 0 0 51 53 49.9252 50 

GTATTCCAAGCGTCCGTGTT 0 0 55 49 50.7224 50 

AAACCTCCACCAACACACCA 9 0 55 43 51.4735 50 

 
 

 

Figure 3  Comparison between the multi-objective evolutionary algo-
rithm [38] and our membrane evolutionary algorithm. 

algorithm performs better than the multi-objective evolu-
tionary algorithm according to the average of fitness values 
(Continuity, Similarity), except for the H-measure. Our al-
gorithm performed the same with regard to Hairpin and GC 
content fitness. Furthermore, the range of melting tempera-
tures (from 48.5503 to 52.0768) for our algorithm is better 
than that in [38] (from 46.6803 to 51.4735). 

Then, our algorithm was compared with the hybrid 
quantum chaotic swarm evolutionary algorithm [40]. In [40], 
Xiao et al. developed a quantum chaotic swarm evolution-
ary algorithm to select good DNA sequences. DNA se-
quences and corresponding fitness values, including Simi-
larity, H-measure, Continuity and GC content as listed in 
Table 2. 

To evaluate the performance of the algorithms, the aver-
ages of objective values from Table 2 were calculated and  

Table 2  Comparison of the sequences in the hybrid quantum chaotic swarm evolutionary algorithm [40] and our sequences 

DNA sequences (5′→3′) Continuity Hairpin H-measure Similarity Tm GC(%) 

Our sequences 

TCTCTACGCCCACGCCCCAT 25 0 50 56 57.4337 65 

TTGTGGAGTCCTGAGGTTAG 0 0 68 48 48.1325 60 

GGTGTCGGGTGCACTAGGAG 9 0 65 46 54.2526 65 

ACTCCAAGTACTCACCGCCT 0 0 62 58 52.3851 55 

TACCAACGCAAATCAAAGAC 18 0 60 49 46.7491 40 

TTTCTGTCCCTGATCAACTT 18 0 57 52 46.0839 40 

ATGTCTCCGCCTTCTTCTCG 0 0 58 57 51.6151 45 

QCSEA algorithm 

CCATCTGCTTCACCGATTTA 9 3 65 51 47.6345 45 

AGTGCAGTACCGAGAATATT 0 0 67 51 45.8979 40 

ATTGAGCGCCCGGACTTCTC 9 0 64 56 54.5984 60 

GATTGCGAGAAGGTGTGGAT 0 0 58 55 50.0279 50 

GGGTGTAGAGTAGTCTCAGA 9 0 63 58 46.7121 50 

CGTGTTCCTATTCCTTGTCC 0 0 57 54 48.0176 50 

TAGTCTCTAACTCGGTTGTC 0 0 62 55 45.7525 45 
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Figure 4  Comparison between the quantum chaotic swarm evolutionary 
algorithm and our membrane evolutionary algorithm. 

shown in Figure 4. From Figure 4, it can be seen that the 
DNA sequences generated by our membrane evolutionary 
algorithm performed better than the DNA sequences from 
[40], according to three criteria (Hairpin, H-measure, and 
Similarity), but not for Continuity. 

4  Conclusions 

In this paper, we propose a membrane evolutionary algo-
rithm for solving the DNA sequences optimization problem, 
and apply it to produce good DNA sequences for DNA 
computing. The simulation results show that our algorithm 
is efficient in generating a set of high quality DNA se-
quences. Although this novel algorithm, based on mem-
brane computing, for DNA sequence design looks simplistic, 
it has many advantages, such as simplicity, fast convergence, 
and theoretical elegance. The algorithm deserves to be fur-
ther investigated, and can be modified to solve other hard 
optimization problems. 

The DNA sequence design problem is important in DNA 
computing and biology. Further research will focus on more 
accurate model formulations, and the development of effi-
cient algorithms based on dynamic P systems. 
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