

© The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp

*Corresponding author (email: jhxiao@nankai.edu.cn)

Article

SPECIAL TOPICS:

Computer Science & Technology February 2012 Vol.57 No.6: 698706

 doi: 10.1007/s11434-011-4928-7

A membrane evolutionary algorithm for DNA sequence design in
DNA computing

XIAO JianHua1*, ZHANG XingYi2 & XU Jin3

1 The Research Center of Logistics, Nankai University, Tianjin 300071, China;
2 Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui

University, Hefei 230039, China;
3 School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

Received June 3, 2011; accepted October 21, 2011

DNA sequence design has a crucial role in successful DNA computation, which has been proved to be an NP-hard (non-deter-
ministic polynomial-time hard) problem. In this paper, a membrane evolutionary algorithm is proposed for the DNA sequence
design problem. The results of computer experiments are reported, in which the new algorithm is validated and out-performs cer-
tain known evolutionary algorithms for the DNA sequence design problem.

DNA computing, membrane computing, P system, DNA sequence design

Citation: Xiao J H, Zhang X Y, Xu J. A membrane evolutionary algorithm for DNA sequence design in DNA computing. Chin Sci Bull, 2012, 57: 698706, doi:
10.1007/s11434-011-4928-7

Membrane computing is an emergent branch of natural
computing, first introduced by Paun [1]. This unconven-
tional model of computation is a type of distributed parallel
system, which is inspired by the structure and function of
living cells. The devices of this model are called P systems.
Roughly speaking, a P system consists of a cell-like mem-
brane structure, in the compartments of which there are
multisets of objects that evolve according to given rules in a
synchronous, non-deterministic maximally parallel manner.
Many different classes of such computing devices have al-
ready been investigated. Most of them are computationally
universal, i.e., able to compute whatever a Turing machine
can do [2–4], and are computationally efficient, i.e., able to
trade space for time and in this way solve presumably in-
tractable problems in a feasible time (e.g., [5–9]). Mem-
brane computing is very attractive from a computational
point of view because of its hierarchical structure and in-
trinsic parallelism.

Evolutionary algorithms are robust optimization and
search methods inspired by evolutionary processes occur-

ring in natural selection and molecular genetics. They are
approximation algorithms that seek a trade-off between so-
lution quality and computational costs. The main features of
evolutionary algorithms are the representation and evalua-
tion of individuals, population dynamics, and evolutionary
operators, such as selection, crossover, and mutation [10].
Evolutionary algorithms exhibit an intrinsic parallelism de-
rived from dealing with multiple individuals, show remark-
able adaptability and flexibility to various applications, and
provide good search capabilities and robust results [11].

Both P systems and evolutionary algorithms are nature-
inspired models and are used to solve complex problems;
however, they are different with respect to the objects and
rules used and in the computational strategies employed.
While P systems represent a suitable formal framework for
parallel-distributed computation, evolutionary algorithms
are very effective for implementing different algorithms to
solve numerous problems [11]. Thus, the possible interac-
tion between P systems and evolutionary algorithms repre-
sents a fertile research field, as suggested by the list of 26
open problems in membrane computing [12]. The first at-
tempt in this direction was by Nishida [13,14], who devel-

 Xiao J H, et al. Chin Sci Bull February (2012) Vol.57 No.6 699

oped membrane (evolutionary) algorithms to solve the trav-
eling salesman problem. In those membrane algorithms,
membrane structure was used together with ideas from ge-
netic algorithms (cross-over and mutation operators), and
the traveling salesman problem was solved. A membrane
algorithm was also employed to solve the minimum storage
problem [15]. The quantum-inspired evolutionary algorithm
based on P systems was also developed to solve the knap-
sack problem and the radar emitter signals problem [16,17].
The similarities between distributed evolutionary algorithms
and P systems have been analyzed and new variants of dis-
tributed evolutionary algorithms were suggested and applied
for some continuous optimization problems [18]. In this
paper, a membrane evolutionary algorithm is proposed to
solve the DNA sequence design problem.

1 The DNA sequence design problem

DNA computing is a new paradigm of computation. DNA
computing is attractive both theoretically and technically
because of its intrinsic parallelism. DNA computing has
been used to solve various computationally complex prob-
lems, such as the Hamiltonian problem [19], the SAT prob-
lem [20,21], the Steiner tree problem [22], the maximal
clique problem [23], and the maximum independent set
problem [24]. Because the problems solved by DNA com-
puting are encoded by a DNA sequence, the design of DNA
sequences is crucial for successful DNA computation. To
make a set of DNA sequences effective in DNA computing,
they must fulfill a number of combinatorial and thermody-
namic constraints. Such a task is not easy to achieve, and it
has been shown that designing a set of good DNA sequenc-
es is an NP-hard (non-deterministic polynomial-time hard)
problem [25,26].

Various algorithms and methods have been proposed for
reliable DNA sequence design. Marathe et al. [27] proposed
a dynamic programming approach. Frutos et al. [28] devel-
oped a template strategy to select a great number of dissim-
ilar sequences. Arita et al. [29] introduced a genetic algo-
rithm into the DNA sequence design system and proposed a
random generate-and-test algorithm. Tanaka et al. [30] ap-
plied simulated annealing to optimize the set of DNA se-
quences. Cui et al. [31] proposed DNA sequence design
algorithm based on the PSO optimization. Wang et al. [32]
developed the GA/SA algorithm for DNA sequence design.
Qiu et al. [33] designed a hardware microprocessor to dis-
cover the DNA code under thermodynamic constraints.
Dyachkov et al. [34] introduced the concept of a stem simi-
larity function and discussed DNA codes based on stem
similarity. Kawashimo et al. [35] presented a local search
based algorithm for designing DNA short sequence sets
satisfying thermodynamic constraints with minimum free
energy criteria. Zhang et al. [36] proposed an invasive weed
optimization algorithm to optimize encoding sequences.

Successful DNA computing relies heavily on designing
or selecting proper DNA sequence to realize desired chem-
ical reactions and solution extractions. To ensure that
chemical reactions are controllable, some thermodynamic
and combinatorial constraints must be satisfied in the design
of DNA sequences.

1.1 Sequence design constraints

In the following context, (1)ix i m  and (1)jx j m 

are used to denote DNA sequences with length n, and m is
the cardinality of a set of DNA sequences. For convenience,
DNA sequence x is oriented from the 5′ to 3′ end, and the
reverse orientation is the 3′ to 5′ end. The Watson-Crick
complement of a sequence x is denoted by x , while the
reverse sequence of sequence x is denoted by xR.

(1) Thermodynamic constraint. T1 (melting tempera-
ture): Melting temperature is an important factor in the effi-
ciency of a DNA reaction, and can be used to select DNA
sequences with uniform melting temperatures. The nearest
neighbor mode [37] was used to calculate melting tempera-
ture, and the evaluation function ()TmF  of the melting

temperature is defined as follows:

1

() ()
i m

Tm Tm i
i

F f x




   , (1)

 2
tar gen() [() ()]Tm i i if x Tm x Tm x  , (2)

 gen 273.15
ln(/ 4)T

H
Tm

S R C






 
 

, (3)

where Tmtar is the target melting temperature, Tmgen(xi) is
the melting temperature of the generated sequence xi, R is
the gas constant (1.987 cal mol−1 K−1), H° and S° are the
enthalpy and the entropy, respectively, and CT is the salt
concentration.

(2) Combinatorial constraints. C1 (similarity measure
constraint): The similarity measure [38] is used to describe
the degree of similarity of two DNA sequences, and ensures
that each sequence is as unique as possible. The evaluation
function Similarity ()F  of the similarity measure constraint is

defined by eqs. (4) and (5).

 Similarity Similarity
1

() ()
i m

i
i

F f x




   , (4)

 Similarity
0 0 1

1

() max max (() , ())g k
i i i j

g n k n g
j m

j i

f x S x x x
      



  , (5)

where (−)g denotes g gabs, ()k
jx denotes the k position

right shift for DNA sequence xj, S(*,*) is the number of
corresponding places where two characters are the same.
For more information, refer to [38].

C2 (H-measure constraint): The H-measure is akin to the
similarity measure. The difference is that the H-measure

700 Xiao J H, et al. Chin Sci Bull February (2012) Vol.57 No.6

compares two given sequences from opposite directions,
while the similarity measure works in the same direction.
The H-measure computes how many nucleotides are com-
plementary between the given sequences to prevent cross
hybridization of two DNA sequences. Like the similarity
measure, the H-measure also uses the shift sequences. The
evaluation function of the H-measure measure constraint is
defined as follows:

 H_measure H_measure
1

() ()
i m

i
i

F f x




   , (6)

H_measure
0 0 1

1

() max max (() , ())g k R
i i i j

g n k n g
j m

j i

f x C x x x
      



  , (7)

where (() , ())g k R
i i jC x x x is the number of correspond-

ing places where two nucleotides are the same. For more
information, refer to [38].

C3 (hairpin structure constraint): Hairpin structure con-
sists of a ring part and a stem part, which can hybridize it-
self by forming a loop. The measure of hairpin structure
constraint calculates the probability to form a secondary
structure. Generally, the hairpin structure is not desirable for
DNA encoding. The equations are defined as follows [38]:

 Hairpin Hairpin
1

() ()
m

i
i

F f x


   , (8)

(/2)(2*)

Hairpin
/2

() Hairpin(,),
n pinlen rn pinlen

i i
r c pinlen r

f x x c
    

   

   (9)

where r is the minimum length to form a hairpin, pinlen
denotes the minimum length of the stem. A hairpin structure
is formed at position c for sequence xi, if more than half of
the bases in the subsequence , ,c pinlen cx x  hybridize to

the subsequence , ,c r c r pinlenx x   . Hairpin (,)ix c is 1; if

DNA sequence xi can form a hairpin structure, the value of
Hairpin (,)ix c is 0.

C4 (GC content constraint): The GC content is the per-
centage of G and C in a DNA sequence. It is important to
arrange the GC content such that the chemical character is
uniform. Thus, the evaluation function ()GCf  of the GC

content constraint is described as follows:

 GC GC
1

() ()
m

i
i

F f x


   , (10)

 2
GC gen tar() [GC () GC ()]i i if x x x  , (11)

where tarGC ()ix is the target value of GC content of DNA

sequence xi, and genGC ()ix is the GC content of the gener-

ated sequence.
C5 (continuity constraint): Continuity is often used to

describe the degree of successive occurrence of the same

base in a sequence. In a DNA sequence, if the same base
occurs continuously, the reaction is not well controllable
because they may cause an unexpected biological structure.
The formulations are defined as follows [38]:

 Con Con
1

() ()
m

i
i

F f x


   , (12)

1

2
Con

1 {A,T,C,G}

() ((,),)
n t

i i
j

f x T C x j t


 

 

   , (13)

1

, if there is such that , ,

(,) for 1 , ,

0, otherwise,

j k
i i

j k
i i

c c x x

C x j k c x

 





 

  
   



(14)

, if ,

(,)
0, otherwise,

i i j
T i j


 


 (15)

where (,)C x i is the number of the i-th base  occurring

continuously in DNA sequence x, and t is the target.

1.2 Evaluation function

In DNA sequence optimization, the content can be naturally
regarded as a constraint, not an objective function. So, more
precise formulation of DNA sequence optimization is a
constrained multi-objective optimization problem.

Using the weight-sum method, the multi-objective opti-
mization for DNA encoding can be transformed into a sin-
gle objective optimization problem. The fitness function can
be described as follows:

 

Fitness()= ()

, _ , , ,

{ ()}.

i i
i

GC

w F

i Similarity H measure Con Hairpin Tm

Subject to

F

 







(16)

For simplicity, we set each weight iw to unity. In this

paper, the constraint handling technology [39] is applied.
For more details, refer to [30].

2 A membrane evolutionary algorithm for
DNA sequence design

Before the membrane evolutionary algorithm is described in
detail, some concepts related to string object P systems are
briefly introduced.

2.1 A string object P systems

In this paper, several basic notions of membrane computing
are introduced. For more information, refer to [1].

 Xiao J H, et al. Chin Sci Bull February (2012) Vol.57 No.6 701

The membrane structure of a P system, shown in Figure
1, consists of several membranes arranged in a hierarchical
structure inside a main membrane, called the skin. A mem-
brane without any other membranes inside is said to be el-
ementary. A space delimited by one membrane and its im-
mediately lower membranes is called a region, and the re-
gion of an elementary membrane is the space delimited by it.
Each region can contain a multiset of objects and a set of
evolutionary rules, by which objects can evolve, and com-
munication rules, by which objects can be moved between
regions.

In string object P systems, the membranes can be marked
with + or −, and this is interpreted as an “electrical charge”,
or with 0, and this means “neutral charge”. We will denote
the three cases by []i i

 , []i i
 and 0[]i i .

A string object P system with active membranes and pri-
ority relations among the rules from each region is defined
as follows:

1 1 1 0(, , , , , (,), , (,),)n n nO u L L R R i     ,

where:
(i) O is an alphabet of objects; its elements are called

objects;
(ii)  is a membrane structure consisting of n membranes

(and hence the regions) injectively labeled with
1, 2, , , 1n n  ; n is called the degree of the system  ;

(iii) (1)iL i n  , are strings that represent multisets

over O, Li is initially placed in region i;
(iv) i is a partial order relation on iR , 1 i n  . Of-

ten, instead of 1 2(,) ir r  we will write 1 2r r . This

symbol has the following meaning: a rule 1 1 1:r u v from

a set iR is used in a transition step with respect to 

only if there is no rule 2 2 2:r u v in iR which can be

applied at the same step and 2 1r r ;

(v) 0 {1, 2, , }i n  is the label of the output membrane;

(vi) (1)iR i n  , are finite sets of evolution rules over
*O , iR is associated with region i of  , and it is of the

following forms:

(a)  1 1 2[|| ||] , 1, , ,0 , , , ,i k i ks s s k s s s O         .

Figure 1 A membrane structure.

Mutation rule M(s): This is similar to the uniform muta-
tion operator of a genetic algorithm, which is a simple re-
placement with a randomly selected character within a giv-
en alphabet set of objects. It is described in detail as follows.
Assign every bit as a mutation point in turn. For each muta-
tion point, we select a random value between 0 and 1 and
compare this with the mutation probability pm. If the ran-
dom value is less than pm, a random character is substituted
for the original character.

Mutation rules with replication work on string objects,
are associated with membranes and depend on the label and
the charge of membranes, but do not directly involve the
membranes, in the sense that the membranes are neither
taking part in the application of these rules nor are they
modified by them. Moreover, one string can evolve to more
than one string in that membrane using a rule of this type.

(b)  1 2 3 4 1 2 3 4[(,) (,)] , , ,0 , , , ,i is s s s s s s s O       .

Crossover rule 1 2(,)C s s : A rule of this type works on a

couple of string objects and can possibly be used only if the
polarization of the membrane is .

Similar to the binary genetic algorithm, we adopted a
simple crossover. Let n be the dimension of the string and pc
be the crossover rate, now choose a pair of strings:

1 1 1 2

2 1 1 2

(, , , , , ,),

(, , , , , ,),

pos pos n

pos pos n

s x x x x

s y y y y





  

  

and randomly generate a decimal r. If r < pc, apply a simple
two-point crossover to them as follows. Generate two ran-
dom integers pos1 and pos2 in the interval [1, n]. The com-
ponents of two individuals between the numbers pos1 and
pos2 will be exchanged. Then the new strings are generated
as follows:

3 1 1 2

4 1 1 2

(, , , , , ,),

(, , , , , ,).

pos pos n

pos pos n

s x y y x

s y x x y





  

  

By crossing a string with another string, two new strings
are created in region i and also the polarization of the
membrane is not modified.

(c)  1 2
1 2 1 2 1 2[] [] , , , ,0 , ,i i i is s s s O         .

Communication rule: An object is introduced in the
membrane, possibly modified during this process; the po-
larization of the membrane can be modified, but not its la-
bel.

(d)  1 2
1 2 1 2 1 2[] [] , , , ,0 , ,i i i is s s s O         .

Communication rule: An object is sent out of the mem-
brane, which is possibly modified during this process; the
polarization of the membrane can also be modified, but not
its label.

In P systems, the computation is a sequence of transitions
between the configurations starting from the initial config-
uration by applying the rules associated with regions in a
non-deterministic maximally parallel manner. The compu-

702 Xiao J H, et al. Chin Sci Bull February (2012) Vol.57 No.6

tation will halt in each region of the system when no rule
can be applied. The result of the computation is collected in
membrane i0 when the system arrives at the final configura-
tion. For more details about P systems information, refer to
[2].

2.2 Membrane evolutionary algorithm for DNA
sequence design

For convenience, we first provide some definitions and no-
tations before constructing the P systems for DNA sequence
design.  ,  and  are defined as DNA sequences
with the same length over{ , , , }A C G T , { , , , }A C G T    and

{ , , , }A C G T    , respectively.

Formally, the new system with active membranes and
priority relation is constructed as follows:

0 1 1 1 1(, , , , , , , , , , , , ,)n n n nO u L L L L L R R R R n      

where:
{ , , , , , , , , , , , } { | 0 5}

{ | 0 } { | 0 5},
i

i i

O A C G T A C G T A C G T U p i

U d i m U t i

         

   

0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 2 2 2 2 1 0[[[] [[] [[]]]]] ,n n n nu        

0L  , 1 2 0{ , , }i i
i i iL s s p , 1 1i n   ,

1 2 0{ , , }i i
i i iL s s p ,

0{ }iL t  , 1 i n  ,

The set 0R   and the sets iR (1 i n ), contain the

following rules:
(1) 0[|| ()] , , , ()i is s M s s s M s         .

Using this rule, two DNA sequences can be obtained.
One is obtained by first mutating the initial one, and then by
attaching two primes to its every symbol; the other is ob-
tained by attaching a prime to each symbol of the initial
one.

(2) 0[] , ,i is s s s      .

The prime is removed using this rule.
(3) 0

1 2 1 2 1 2 1 2[(,) (,)] , , , (,)i is s C s s s s C s s              .

Two new DNA sequences can be created using the rule
as above and their two primes are also removed.

(4) [] [] ,i i i is s s    .

A DNA sequence is sent out of a region and the polariza-
tion of the membrane is translated from + to −. For this type
of rule, priority is given as follows: for any 1 2,s s  , if

there is 1 2() ()f s f s , then the corresponding rule 1[]i is 

1[]i i s has a higher priority than the rule 2 2[] []i i i is s  ,

where f is the fitness function.
(5) 0[] [] ,i i i is s s    .

A DNA sequence is introduced into a region from the
outside region and the polarization of the membrane is
translated from − to 0. For this type of rule, priority is given

as follows: for any 1 2,s s  , if there is 1 2() ()f s f s ,

then the corresponding rule 0
1 1[] []i i i is s  has a higher

priority than the rule 0
2 2[] []i i i is s  , where f is the fitness

function.
Using the rules of types (4) and (5), the worst and best

DNA sequences in every region are sent to the outer region
and adjacent inner region, respectively.

(6) 0 0
0 1[] []i i i ip p .

(7) 0
1 2[] []i i i ip p  .

(8) 2 3[]i ip p  .

(9) 3 4[]i ip p  .

(10) 0
4 5[]i ip p .

(11) 0
5 0[]i ip p .

For the above rules, there are priority relationships as
follows: the rule of type (10) always has a higher priority
than the rules of type (1); the rule of type (11) always has a
higher priority than the rules of type (1).

The role of objects (0 5)ip i  is to cause the rules of

types (1), (2) and (3), (4), (5) be used in turn, and wait two
steps for the two worst DNA sequences to be deleted. Ini-
tially, there is a p0 in every region (1)i i n  , and then

only the rules of type (1) are used together with the rule of
type (6), and p0 is sent out of membrane i and becomes p1.
Moreover, the polarization of each membrane i is un-
changed; in the next step, the rules of types (2) and (3) can
be used. At the same time, using the rule of type (7), the
polarization of each membrane is translated from 0 to +, and
p1 is introduced in membrane i and becomes p2; then the
rules of type (4) can be used, which makes the polarization
become −. Moreover, the rule of type (8) can also be used,
which makes p2 translate to p3. In the next step, the rules of
types (5) and (9) can be used simultaneously; therefore, the
polarization is translated from − to 0 and p3 becomes p4.
The rules of types (10) and (11) always have a higher prior-
ity than the rules of type (1); therefore, in the following two
steps, the rules of types (10) and (11) must be used in turn,
the polarization keeps unchanged and p4 becomes p5, and
then becomes p0 again.

(12) 1[] , 0 1n i i nd d i m
    .

The objects di are counters. Initially, d0 is placed in
membrane n. In each computation period, a rule of this type
can be used, and there is only one rule of this type being
used, which is used together with the rule of type (9).
Therefore, the subscript of di only adds one in each compu-
tation.

(13) 0
1[] , 0 1i i i it t i    .

(14) 0 0
2 3[] []i i i it t    .

(15) 0
3 4[] []i i i it t 

    .

(16) 4 5[]i it t 
  .

 Xiao J H, et al. Chin Sci Bull February (2012) Vol.57 No.6 703

(17) 5 0[]i it t 
  .

The objects it have the similar role as the objects ip .

They make the rules of types (18) and (19) wait four steps,
and then only the rules of types (18) and (19) are used in
turn in each membrane ({1 ,2 , , })i i n      . When the

rules of types (1), (2), (3), (4), and (5) are used in turn in
membrane i , the rules of types (13), (14), (15) can be used
simultaneously. Thus, after these four steps, the polariza-
tion of membrane i is translated from 0 to + and t0 be-
comes t4.

(18) [] [] , , {1 ,2 , , }i i i is s i n  
           .

In this rule, the priority is given as follows: for any

1 2,s s  , if 1 2() ()f s f s , the corresponding rule 1[]i is 
 

[]i i 
  has a higher priority than the rule 2[] []i i i is  

    ,

where f is the fitness function.

(19) 0[] [] , , {1 , 2 , , }i i i is s i n 
           .

Similarly, there are priority relationships as follows: for
any 1 2,s s  , if 1 2() ()f s f s , the corresponding rule

0
1[] []i i i is 

    has a higher priority than the rule 2[]i is 
 

0[]i i  , where f is the fitness function.

The aim of the rules of types (18) and (19) is to delete the
two worst DNA sequences in membrane i at that moment.
After the polarization of membrane i′ becomes +, only the
rules of type (18) can be used together with the rule of type
(16), and at that moment there is only a rule of type (10)
being used in membrane i. Therefore, the worst DNA se-
quence in membrane i is deleted. At the same time, the po-
larization of membrane i′ is translated from + to  , and t4
becomes t5. In the next step, in membrane i′, only the rules
of types (17) and (19) can be used, and in membrane i, the
rule of type (11) can be used. Therefore, the second worst
DNA sequence is deleted in membrane i, and the polariza-
tion of membrane i′ becomes 0 again and t5 becomes t0
again. At the same time, the polarization of membrane i is 0
and simultaneously p5 evolves to p0.

From the previous explanation of the rules, we can easily
see how this P system works. Therefore, the results of a
computation with respect to this P system are all strings
over { , , , }A G C T collected in membrane n, at the moment

of the subscript i of di adding up to a given value m from 0.
Using this P system, the DNA sequence design problem can
be solved and two better DNA sequence can be obtained in
membrane n. The basic pseudocode of the membrane evolu-
tionary algorithm is shown in Figure 2.

The procedure of the membrane evolutionary algorithm
is shown as follows:

Step 1: Specify membrane structure 0 0 0 0 0 0
0 1 1 1 2 2 2[[[] [[]   

0 0 0 0 0 0 0
2 1 0[[]]]]]n n n n   with n regions contained in the skin

membrane; generate the initial strings in each region;
Step 2: In each elementary membrane, the mutation

Figure 2 Pseudocode algorithm for our membrane evolutionary algo-
rithm.

rule and crossover rule are implemented simultaneously,
and strings are evaluated by a fitness function;

Step 3: Communication rules are used to exchange
some information among the n regions or between each
region; the best and worst strings are sent to the adjacent
inner and outer regions, respectively;

Step 4: Update each region simultaneously; delete the
worst strings, and save the current best strings;

Step 5: If the stopping condition is satisfied, then out-
put the results; otherwise, return to step (2).

3 Simulation results

3.1 Algorithm parameters

In the simulation, the bases A, C, G and T are mapped to 0,
1, 2 and 3, respectively. m n-mer DNA sequences are con-
nected one by one in the same direction to form an m*n-mer
DNA sequences. We denote it as a string in the membrane
system.

The novel algorithm based on the new membrane system
constructed above for DNA sequence design is implement-
ed with Matlab 7.0. The parameters of the algorithm used in
our example are: the number of membranes is 20, the max-
imum iteration number is 1000, the probabilities of crosso-
ver and mutation rate are 0.7 and 0.03, respectively, the
threshold value t of continuity is 2, and salt concentration is
0.1 mol/L. For hairpins, we assumed that hairpin formation
requires at least six-base-pairings and a six-base loop.

3.2 Results and analyses

First, we compared the new algorithm with the multi-
objective evolutionary algorithm from [38]. In [38], Shin
et al. proposed a constrained multi-objective evolutionary
algorithm to solve DNA sequences optimization for reliable
DNA computing. Table 1 presents the sequences for
Adleman’s Hamilton problem in [38] and the sequences
generated by our algorithm. The comparison results in terms
of averages of fitness are shown in Figure 3.

From Table 1 and Figure 3, it is clear that our proposed

Begin
 Initialize membrane structure and parameters.
 While (not termination condition) do
 Execute mutation rule and crossover rule.
 Evaluate the fitness by fitness function.
 Execute communication rule.
 Update every region, delete worst strings.
 Record the current best solution.
 End
End

704 Xiao J H, et al. Chin Sci Bull February (2012) Vol.57 No.6

Table 1 Comparison of the sequences in the multi-objective evolutionary algorithm [38] and our sequences

DNA sequences (5′→3′) Continuity Hairpin H-measure Similarity Tm GC (%)

Our sequences

GCCGGAGCCTTCTTGATAAT 0 0 68 53 49.7408 50

AATCCTGCTTGTCCTCCTAC 0 0 63 50 48.5503 50

TGAGCTCTCTGTTCCAACGA 0 0 64 52 50.6557 50

ATGTAACACGCGGCCACTAA 0 0 63 50 52.0768 50

ACTCGGATTGTGTTGAACGC 0 0 71 51 51.3381 50

CGTTGTTGGCACCTACGTTA 0 0 68 54 50.6851 50

ATCCAGACTACCAAGGCCAA 0 0 61 48 50.0914 50

MOEA algorithm

CTCTTCATCCACCTCTTCTC 0 0 43 58 46.6803 50

CTCTCATCTCTCCGTTCTTC 0 0 37 58 46.9393 50

TATCCTGTGGTGTCCTTCCT 0 0 45 57 49.1066 50

ATTCTGTTCCGTTGCGTGTC 0 0 52 56 51.1380 50

TCTCTTACGTTGGTTGGCTG 0 0 51 53 49.9252 50

GTATTCCAAGCGTCCGTGTT 0 0 55 49 50.7224 50

AAACCTCCACCAACACACCA 9 0 55 43 51.4735 50

Figure 3 Comparison between the multi-objective evolutionary algo-
rithm [38] and our membrane evolutionary algorithm.

algorithm performs better than the multi-objective evolu-
tionary algorithm according to the average of fitness values
(Continuity, Similarity), except for the H-measure. Our al-
gorithm performed the same with regard to Hairpin and GC
content fitness. Furthermore, the range of melting tempera-
tures (from 48.5503 to 52.0768) for our algorithm is better
than that in [38] (from 46.6803 to 51.4735).

Then, our algorithm was compared with the hybrid
quantum chaotic swarm evolutionary algorithm [40]. In [40],
Xiao et al. developed a quantum chaotic swarm evolution-
ary algorithm to select good DNA sequences. DNA se-
quences and corresponding fitness values, including Simi-
larity, H-measure, Continuity and GC content as listed in
Table 2.

To evaluate the performance of the algorithms, the aver-
ages of objective values from Table 2 were calculated and

Table 2 Comparison of the sequences in the hybrid quantum chaotic swarm evolutionary algorithm [40] and our sequences

DNA sequences (5′→3′) Continuity Hairpin H-measure Similarity Tm GC(%)

Our sequences

TCTCTACGCCCACGCCCCAT 25 0 50 56 57.4337 65

TTGTGGAGTCCTGAGGTTAG 0 0 68 48 48.1325 60

GGTGTCGGGTGCACTAGGAG 9 0 65 46 54.2526 65

ACTCCAAGTACTCACCGCCT 0 0 62 58 52.3851 55

TACCAACGCAAATCAAAGAC 18 0 60 49 46.7491 40

TTTCTGTCCCTGATCAACTT 18 0 57 52 46.0839 40

ATGTCTCCGCCTTCTTCTCG 0 0 58 57 51.6151 45

QCSEA algorithm

CCATCTGCTTCACCGATTTA 9 3 65 51 47.6345 45

AGTGCAGTACCGAGAATATT 0 0 67 51 45.8979 40

ATTGAGCGCCCGGACTTCTC 9 0 64 56 54.5984 60

GATTGCGAGAAGGTGTGGAT 0 0 58 55 50.0279 50

GGGTGTAGAGTAGTCTCAGA 9 0 63 58 46.7121 50

CGTGTTCCTATTCCTTGTCC 0 0 57 54 48.0176 50

TAGTCTCTAACTCGGTTGTC 0 0 62 55 45.7525 45

 Xiao J H, et al. Chin Sci Bull February (2012) Vol.57 No.6 705

Figure 4 Comparison between the quantum chaotic swarm evolutionary
algorithm and our membrane evolutionary algorithm.

shown in Figure 4. From Figure 4, it can be seen that the
DNA sequences generated by our membrane evolutionary
algorithm performed better than the DNA sequences from
[40], according to three criteria (Hairpin, H-measure, and
Similarity), but not for Continuity.

4 Conclusions

In this paper, we propose a membrane evolutionary algo-
rithm for solving the DNA sequences optimization problem,
and apply it to produce good DNA sequences for DNA
computing. The simulation results show that our algorithm
is efficient in generating a set of high quality DNA se-
quences. Although this novel algorithm, based on mem-
brane computing, for DNA sequence design looks simplistic,
it has many advantages, such as simplicity, fast convergence,
and theoretical elegance. The algorithm deserves to be fur-
ther investigated, and can be modified to solve other hard
optimization problems.

The DNA sequence design problem is important in DNA
computing and biology. Further research will focus on more
accurate model formulations, and the development of effi-
cient algorithms based on dynamic P systems.

This work was supported by the National Natural Science Foundation of
China (60903105 and 61003038), the 2008 Program Project of Humanity
and Social Science of Nankai University (NKQ08058), the Opening Foun-
dation of the Key Laboratory of the University of Science and Technology
of China for High-Performance Computing and Applications (NHPCC-
KF-1102), and the Scientific Research Foundation for Doctor of Anhui
University (02203104).

1 Paun G H. Computing with membranes. Technical Report. Finland:
Turku Center for Computer Science, 1998

2 Pan L Q, Paun G. Spiking neural P systems: An improved normal
form. Theor Comput Sci, 2010, 411: 906–918

3 Wang J, Hoogeboom H J, Pan L, et al. Spiking neural P systems with
weights. Neural Comput, 2010, 22: 2615–2646

4 Pan L Q, Zeng X X, Zhang X Y. Time-free spiking neural P systems.
Neural Comput, 2011, 23: 1–23

5 Alhazov A, Martin-Vide C, Pan L Q. Solving a PSPACE-complete
problem by Prelognizing systems with restricted active membranes.
Fund Inform, 2003, 58: 67–77

6 Pan L Q, Martin-Vide C. Further remark on P systems with active
membranes and two polarizations. J Parallel Distr Com, 2006, 66:
867–872

7 Pan L Q, Martin-Vide C. Solving multidimensional 0-1 knapsack
problem by P systems with input and active membranes. J Parallel
Distr Com, 2005, 65: 1578–1584

8 Pan L Q, Alhazov A. Solving HPP and SAT by P systems with active
membranes and separation rules. Acta Inform, 2006, 43: 131–145

9 Pan L Q, Perez-Jimenez M J. Computational complexity of tissue-
like P systems. J Complexity, 2010, 26: 296–315

10 Srinivas M, Patnaik L M. Genetic algorithms: A survey. Computer,
1994, 27: 17–26

11 Back T, Hammel U, Schwefel H P. Evolutionary computation:
Comments on the history and current state. IEEE T Evolut Comput,
1997, 1: 3–17

12 Paun G H. Further twenty six open problems in membrane computing.
In: Gutierrez-Naranjo M A, Riscos-Nunez A, Romero-Campero F J,
eds. Proceedings of the 3rd Brainstorming Week on Membrane
Computing, 2005 January 31—February 4. Sevilla: Fenix Editora,
2005. 249–262

13 Nishida T Y. Membrane algorithms: Approximate algorithms for
NP-complete optimization problems. In: Ciobanu G, Paun G, Pe-
rez-Jimenez M J, eds. Applications of Membrane Computing. Berlin:
Springer-Verlag, 2006. 303–314

14 Nishida T Y. Membrane algorithms. LNCS, 2006, 3850: 55–56
15 Leporati A, Pagani D. A membrane algorithm for the min storing

problem. LNCS, 2006, 4361: 443–462
16 Zhang G X, Gheorghe M, Wu C Z. A quantum-inspired evolutionary

algorithm based on P systems for knapsack problem. Fund Inform,
2008, 87: 93–116

17 Zhang G X, Liu C X, Rong H N. Analyzing radar emitter signals with
membrane algorithms. Math Comput Model, 2010, 52: 1997–2010

18 Zaharie D, Ciobanu G. Distributed evolutionary algorithms inspired
by membranes in solving continuous optimization problems. LNCS,
2006, 4361: 536–553

19 Adleman L M. Molecular computation of solutions to combinatorial
problems. Science, 1994, 266: l021–1024

20 Lipton R. DNA solution of hard computational problems. Science,
1995, 268: 542–545

21 Braich R S, Chelyapov N, Johnson C, et al. Solution of a 20-variable
3-SAT problem on a DNA computer. Science, 2002, 296: 499–502

22 Zimmermann K. Efficient DNA sticker algorithms for NP-complete
graph problems. Comput Phys Commun, 2002, 144: 297–309

23 Ouyang Q, Kaplan P D, Liu S, et al. DNA solution of the maximal
clique problem. Science, 1997, 278: 446–449

24 Zhang C, Yang J, Xu J, et al. A DNA length reducing computing
model for maximum independent set problem. Chin Sci Bull, 2010,
55: 890–896

25 Garzon M, Deaton R, Neathery P, et al. On the encoding problem for
DNA computing. In: Rubin H, Wood D H, eds. Proceedings of 3rd
DIMACS Workshop on DNA Based Computers, 1997 June 23–27,
Philadelphia. Providence: American Mathematical Society, 1997.
230–237

26 Sager J, Stefanovic D. Designing nucleotide sequences for computa-
tion: A survey of constraints. LNCS, 2006, 3892: 275–289

27 Marathe A, Condon A E, Corn R M. On combinatorial DNA word
design. J Comput Biol, 2001, 8: 201–219

28 Frutos A G, Thiel A J, Condon A E, et al. DNA computing at surfac-
es: Four base mismatch word designs. In: Rubin H, Wood D H, eds.
Proceedings of 3rd DIMACS Workshop on DNA Based Computers,
1997 June 23–27, Philadelphia. Providence: American Mathematical
Society, 1997. 238

29 Arita M, Nishikawa A, Hagiya M, et al. Improving sequence design
for DNA computing. In: Whitley L D, Goldberg D E, Cantu-Paz E,

706 Xiao J H, et al. Chin Sci Bull February (2012) Vol.57 No.6

eds. Proceedings of Genetic and Evolutionary Computation, 2000
July 8–12, Las Vegas. San Fransisco: Morgan Kaufmann, 2000. 875–
882

30 Tanaka F, Nakatsugawa M, Yamamoto M, et al. Developing support
system for sequence design in DNA computing. LNCS, 2002, 2340:
129–137

31 Cui G Z, Niu Y Y, Wang Y F, et al. A new approach based on PSO
algorithm to find good computational encoding sequences. Prog Nat
Sci, 2007, 17: 712–716

32 Wang W, Zheng X D, Zhang Q, et al. The optimization of DNA
encodings based on GA/SA algorithm. Prog Nat Sci, 2007, 17: 739–
744

33 Qiu Q R, Mukre P, Bishop M, et al. Hardware acceleration for ther-
modynamic constrained DNA code generation. LNCS, 2008, 4848:
201–210

34 Dyachkov A G, Macula A, Rykov V, et al. DNA codes based on stem
similarities between DNA sequences. LNCS, 2008, 4848: 146–151

35 Kawashimo S, Ono H, Sadakane K, et al. Dynamic neighborhood
searches for thermodynamically designing DNA sequence. LNCS,
2008, 4848: 130–139

36 Zhang X C, Wang Y F, Cui G Z, et al. Application of a novel IWO to
the design of encoding sequences for DNA computing. Comput Math
Appl, 2009, 57: 2001–2008

37 Wetmur J G. DNA probes: Applications of the principles of nucleic
acid hybridization. Crit Rev Biochem Mol, 1991, 26: 227–259

38 Shin S Y, Lee I H, Kim D, et al. Multi-objective evolutionary
optimization of DNA sequences for reliable DNA computing. IEEE T
Evolut Comput, 2005, 9: 143–158

39 Meng W C, Qiu J J, Zhang Y H. Immune chaotic algorithm for con-
strained optimization problems (in Chinese). J Zhejiang Univ, 2007,
41: 299–303

40 Xiao J H, Xu J, Chen Z H, et al. A hybrid quantum chaotic swarm
evolutionary algorithm for DNA encoding. Comput Math Appl, 2009,
57: 1949–1958

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction

in any medium, provided the original author(s) and source are credited.

