Skip to main content
Log in

Advances in Arabidopsis research in China from 2006 to 2007

  • Progress Special Topics
  • Published:
Chinese Science Bulletin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Xu Z H. Recent progress in Arabidopsis research in China: A preface. J Integ Plant Biol, 2006, 48: 1–4

    Article  Google Scholar 

  2. Chen H D, Karplus V J, Ma H, et al. Plant biology research comes of age in China. Plant Cell, 2006, 18: 2855–2864

    Article  Google Scholar 

  3. Shen Y Y, Wang X F, Wu F Q, et al. The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 2006, 443: 823–826

    Article  Google Scholar 

  4. Liu X G, Yue Y L, Li B, et al. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 2007, 315: 1712–1716.

    Article  Google Scholar 

  5. Razem F A, El-Kereamy A, Abrams S R, et al. The RNA-binding protein FCA is an abscisic acid receptor. Nature, 2006, 439: 290–294

    Article  Google Scholar 

  6. Dai Y, Wang H Z, Li B H, et al. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell, 2006, 18: 308–320

    Article  Google Scholar 

  7. Dong L, Wang L, Zhang Y, et al. An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol Biol, 2006, 60: 599–615

    Article  Google Scholar 

  8. Wang X, Xu Y Y, Han Y, et al. Over expression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin. Plant Physiol, 2006, 140: 91–101

    Article  Google Scholar 

  9. Li G, Xue H W. Arabidopsis PLDζ2 regulates vesicle trafficking and is required for auxin response. Plant Cell, 2007, 19: 281–295

    Article  Google Scholar 

  10. Lou Y, Gou J Y, Xue H W. PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. Plant Cell, 2007, 19: 163–181

    Article  Google Scholar 

  11. Shi Y H, Zhu S W, Mao X Z, et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006, 18: 651–664

    Article  Google Scholar 

  12. Zheng B L, Deng Y, Mou J Y, et al. Cytokinin affects circadian-clock oscillation in a phytochrome B-and Arabidopsis response regulator 4-dependent manner. Physiol Plant, 2006, 127: 277–292

    Article  Google Scholar 

  13. Wang X P, Yi K K, Tao Y, et al. Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level. Plant Cell Environ, 2006, 29: 1924–1935

    Article  Google Scholar 

  14. Liu J, Wang X J. An integrative analysis of the effects of auxin on jasmonic acid biosynthesis in Arabidopsis thaliana. J Integ Plant Biol, 2006, 48: 99–103

    Article  Google Scholar 

  15. Zheng W G, Zhai Q Z, Sun, J Q, et al. Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. Plant Physiol, 2006, 141: 1400–1413

    Article  Google Scholar 

  16. Xu J, Li H D, Chen L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347–1360

    Article  Google Scholar 

  17. Chen Y H, Wu X M, Ling H Q, et al. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Cell Res, 2006, 16: 830–840

    Article  Google Scholar 

  18. Feng H Z, An F Y, Zhang S Z, et al. Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6. Plant Physiol, 2006, 140: 1345–1354

    Article  Google Scholar 

  19. Zhang J, Zhu H F, Liang H, et al. Further analysis of the function of AtBHLH29 in regulating the iron uptake process in Arabidopsis thaliana. J Integ Plant Biol, 2006, 48: 75–84

    Article  Google Scholar 

  20. Chen K L, Xu M X, Li G Y, et al. Identification of AtENT3 as the main transporter for uridine uptake in Arabidopsis roots. Cell Res, 2006, 16: 377–388

    Article  Google Scholar 

  21. Peng L, Ma J, Chi W, et al. LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell, 2006, 18: 955–969

    Article  Google Scholar 

  22. Sun X W, Peng L W, Guo J K, et al. Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell, 2007, 19: 1347–1361

    Article  Google Scholar 

  23. Ding Y H, Liu NY, Tang Z S, et al. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. Plant Cell, 2006, 18: 815–830

    Article  Google Scholar 

  24. Ge C M, Cui X, Wang Y H, et al. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res, 2006, 16: 446–456

    Article  Google Scholar 

  25. Huang W, Pi L, Liang W, et al. The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. Plant Cell, 2006, 18: 2479–492

    Article  Google Scholar 

  26. Wang X, Zhu L, Liu B Q, et al. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell, 2007, 19: 877–889

    Article  Google Scholar 

  27. Chu Z, Chen H, Zhang Y, et al. Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Physiol. 2007, 143: 213–224

    Article  Google Scholar 

  28. Song X F, Yang C Y, Liu J, et al. RPA, a class II ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis. Plant Physiol, 2006, 141: 966–976

    Article  Google Scholar 

  29. Mo X, Zhu Q, Li X, et al. The hpa1 mutant of Arabidopsis reveals a crucial role of histidine homeostasis in root meristem maintenance. Plant Physiol, 2006, 141: 1425–1435

    Article  Google Scholar 

  30. Miao Y C, Lv D, Wang P C, et al. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell, 2006, 18: 2749–2766

    Article  Google Scholar 

  31. Quan R D, Lin H X, Mendoza I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19: 1415–1431

    Article  Google Scholar 

  32. Zhao M G, Tian Q Y, Zhang W H. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol., 2007, 144: 206–217

    Article  Google Scholar 

  33. Zhang Y Y, Yang C W, Li Y, et al. SDIR1 is a novel RING finger E3 ligase that positively regulates stress-responsive ABA signaling in Arabidopsis. Plant Cell, 2007, in press

  34. Chen Z Z, Zhang H R, Jablonowski D, et al. Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol, 2006, 26: 6902–6912

    Article  Google Scholar 

  35. Chai M F, Wei P C, Chen Q J, et al. NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J, 2006, 47: 665–674

    Article  Google Scholar 

  36. Zhou H L, Cao W H, Cao Y R, et al. Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett, 2006, 580: 1239–1250

    Article  Google Scholar 

  37. Wang H, Chua N H, Wang X J. Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol, 2006, 7: R92

    Article  Google Scholar 

  38. Wu F J, Yu L, Cao W G, et al. The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Plant Cell, 2007, 19: 914–925

    Article  Google Scholar 

  39. Wang X, Zhang Y, Ma Q, et al. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO J, 2007, 26: 1934–1941

    Article  Google Scholar 

  40. Deng W W, Liu C Y, Pei Y X, et al. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. Plant Physiol, 2007, 143: 1660–1668

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo JianRu.

About this article

Cite this article

Liang, Y., Zuo, J. & Yang, W. Advances in Arabidopsis research in China from 2006 to 2007. CHINESE SCI BULL 52, 1729–1733 (2007). https://doi.org/10.1007/s11434-007-0274-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0274-1

Keywords

Navigation