
SCIENCE CHINA 
Life Sciences 

© The Author(s) 2015. This article is published with open access at link.springer.com life.scichina.com   link.springer.com 

                  
*Corresponding author (email: toru.takumi@riken.jp) 

THEMATIC ISSUE: Autism October 2015  Vol.58  No.10: 976–984 

• REVIEW • doi: 10.1007/s11427-015-4891-7  

Autism spectrum disorder model mice: Focus on copy number 
variation and epigenetics 

Nobuhiro NAKAI1,2,3, Susumu OTSUKA1, Jihwan MYUNG1,3 & Toru TAKUMI1,3,4* 

1Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan;  
2Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan;  

3RIKEN Brain Science Institute, Wako 351-0198, Japan; 
4Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 102-0076, Japan 

 
 

Autism spectrum disorder (ASD) is gathering concerns in socially developed countries. ASD is a neuropsychiatric disorder of 
genetic origin with high prevalence of 1%–2%. The patients with ASD characteristically show impaired social skills. Today, 
many genetic studies identify numerous susceptible genes and genetic loci associated with ASD. Although some genetic fac-
tors can lead to abnormal brain function linked to ASD phenotypes, the pathogenic mechanism of ASD is still unclear. Here, 
we discuss a new mouse model for ASD as an advanced tool to understand the mechanism of ASD. 
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Autism spectrum disorder (ASD) is diagnosed based on 
behavioral phenotypes usually by the age of three. The ASD 
patients show three major phenotypes: deficits in social in-
teraction, impaired communication, and repetitive behavior 
or restricted interest. In the past two decades, the prevalence 
has greatly increased from 0.01%–0.02% to 1%–2.6% [1]; 
but even now, the cause is unknown. Through twin studies, 
ASD has been recognized as a disorder with genetic etiolo-
gy. Monozygotic twins (MZ) show over 90% concordance 
of ASD, while dizygotic twins (DZ) show less than 10%. 
Because genomic information of MZ completely coincides 
with each other while the coincidence is only 50% in DZ, the 
high concordance of ASD must have a genetic origin. Re-
cently, a number of genetic variations in ASD patients were 
found by cytogenetics and genomics studies (Figure 1) [2–14]. 
The genetic variations include single nucleotide variations 
(SNVs) and copy number variations (CNVs). In the case of 
SNV, the mutation causes severe functional loss of the 

genes. CNV, on the other hand, is a large nucleotide change 
in chromosomal complement and can affect dosage of gene 
function in various ways (e.g. deletion or duplication). As it 
stands now, SNV and CNV are responsible for 5%–7% and 
10%–20% of all ASD cases, respectively, while other caus-
es of genetic variation remain unknown. A higher rate of 
CNV mutation is consistent within psychiatric disorders 
including schizophrenia. Incidentally, it is found that a 
greater enrichment of CNVs in individuals diagnosed with 
intellectual disability (ID) have severe craniofacial anoma-
lies and cardiovascular defects compared to those with epi-
lepsy or ASD [15]. CNVs in ASD can have comparatively 
milder effect than diseases with lethal pathology. In SNV 
cases, many of the causative genes identified code for cell 
adhesion molecules or scaffolding proteins (NLGN3, 
NLGN4, NRXN1, CNTNAP2, and SHANK3) [16]. These 
genes are important for organization of synaptic connec-
tions, which play a fundamental role in neuronal function. 
Not a few psychiatric syndromes show features of ASD. 
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Figure 1  The chromosomal region of CNVs found in ASD. The positional information of CNVs derives from the database of SFARI (Simons Foundation 
Autism Research Initiative) Gene. Red, blue, and green indicate deletion, duplication, and deletion/duplication, respectively; the height of the sideling bar 
indicates the amount of information by the number of reports. 

The patients with Rett syndrome (RTT) and Fragile X syn-
drome (FXS), which are neurodevelopmental disorders 
caused by mutations in MECP2 and FMR1 genes, respec-
tively, show concurrent symptoms of ASD (25%–100%) [16]. 
Conversely, the occurrence of RTT and FXS is seen in 
0.5%–2% of ASD patients. The patients with tuberous sclero-
sis have an ASD with a high rate (20%) of co-occurrence [16]. 
Tuberous sclerosis is caused by TSC1 or TSC2 mutations 
that affect a diversity of signaling pathways that overlap 
those related to the ASDs. It is also estimated that about 
40% of ID patients have an ASD [17]. Recent genetic stud-
ies of ID cases suggest that CNV is associated with ID and 
congenital anomalies. Although it is clear that ASD is clas-
sified as a congenital genetic disorder, it is possible that, 
alternatively, gene expression changes occur not only con-
genitally but also throughout life after birth by epigenetic 
modification. Aberrant epigenetic modifications are in-
volved in several neurodevelopmental disorders. Rett syn-
drome, Rubinstein-Taybi Syndrome (RTS) and Cof-
fin-Lowry Syndrome (CLS) are caused by the gene muta-
tion associated with dysfunction of a protein binding to 
methylated cytosine, a histone acetyltransferase, and a his-
tone phosphorylase, respectively [18]. These dysfunctions 
affect epigenetic status and cause downstream changes in 
susceptive gene expressions, resulting in neurodevelop-
mental disorders. These disorders can be caused by epige-
netic alteration of susceptible gene expression. The concept 
may be also applied to ASD. Besides genetic abnormality, 
other external factors such as environment, virus infection, 
and drug administration are considered to be risk factors of 
ASD (Figure 2). Due to unknown etiology in more than half 
of ASD, it is considered that the external factors can in-
crease risk of ASD in addition to genetic variations, possi- 

 

Figure 2  A conceptual model of the relation between susceptive gene 
expression and ASD risk. Genetic abnormality is the starting point of ASD 
risk. In addition, external factors such as environment, viral infection, and 
drug administration can coordinately affect the gene expression. The sus-
ceptibility to ASD is influenced by the aberrant gene expression relative to 
neuronal function. SNP, single nucleotide polymorphism.  

bly through changes in epigenetic status that the external 
factors can cause. 

1  Copy number variation (CNV) 

CNV is a large nucleotide change (1 kb to a few Mb) in 
chromosomal complement and the changes occur by inher-
itance or de novo mutation. De novo CNV occurs in off-
spring whose parents have no CNV and emerges with a  
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higher frequency compared to the inherited case. CNV is 
found in about 1% of general population but in most of the 
cases, it is not recognized as a cause of disease [12]. It is 
reasonable to suppose that the CNVs in general population 
do not have a large disease risk because the regions affected 
are non-susceptible. In the ASD case, however, genetic var-
iation seems to be localized in the genomic region that is 
susceptible to disorders. About 20% of ASD patients have 
one or a few CNVs throughout the whole genomic region 
(Figure 1). The CNV database has been under construction 
by scientists in cooperation with non-profit foundations (for 
example, Simons Foundation and Autism Speaks). Many 
genes are contained in the CNV chromosomal region. The 
gene expression is increased in duplication cases and de-
creased in deletion cases, which means that the gene dosage 
can influence risk and susceptibility of ASD. The CNVs 
have some commonality in chromosomal regions. Thus, the 
specific genetic difference is likely to be involved with 
pathogenesis of ASD. For example, 15q11-13 duplication 
and 16p11.2 deletion/duplication are the most frequent cas-
es found in ASD [2,13,19]. Recently, molecular network 
analysis suggested that the genes included in CNV regions 
are highly associated with neuronal functional processes 
(e.g. ubiquitination, neuronal cell-adhesion, synaptogenesis, 
axon guidance and dendrite morphogenesis) [3,5,7]. More-
over, transcriptomic analysis with the post-mortem brain 
implicated transcriptional and splicing dysregulation of 
mRNAs as underlying mechanisms of neuronal dysfunction 
in ASD [20]. There can be convergent pathways to neuronal 
function in ASD that exhibit autistic phenotype. Incidentally, 

the 4:1 male to female ratio in ASD suggests that pene-
trance is lower in females than in males. Gilman et al. [3] 
reported interesting results that CNVs in females are signif-
icantly larger than in males and genes affected by de novo 
CNVs in females are more functionally important for iden-
tified gene networks in ASD. The resistance to genetic per-
turbation in females is unlikely to be same in males. Given 
the increasing trend of the CNV studies, CNV will be more 
frequently found in ASD and other disorders. Although 
CNVs have large variations and the effect of CNV is yet 
poorly understood, there is no doubt that the CNVs includ-
ing susceptive genes are associated with ASD pathogenesis.  

2  Epigenetic alterations in ASD 

CNV influences the dosage imbalance of autism susceptive 
genes. Gene expression changes without genetic alterations, 
known as epigenetics, are also crucial mechanisms leading 
to ASDs. Recent evidence supports that alterations in epi-
genetics are involved in ASDs. RTT and FXS, neurodevel-
opmental disorders associated with ASDs, are related to 
epigenetic dysregulation [21,22]. Furthermore, a number of 

chromosomal loci that have linkage in ASDs are subjected 
to genomic imprinting, suggesting association of epigenetic 
factors increases the risk of ASDs [23]. In addition, global 
epigenetic analysis in lymphoblastoid cell lines obtained 
from monozygotic twins discordant for diagnosis of ASD 
suggested widespread epigenetic abnormality in patients 
with ASD [24]. ASD associated genes are decreased by 
increased promoter methylation in ASD brain samples as 
well as peripheral ones [25,26]. As above, epigenetics is 
accountable for heterogeneity of autism. Epigenetic modi-
fication in the brain plays an important role in individual 
behavior, learning and memory formation [27–29]. Recently, 
it is suggested that parental environment can affect epige-
netic modification of their children [30,31].  

3  DNA methylation and the associated disorder 

In vertebrates, the 5′ position of cytosine residue in cyto-
sine-guanine (CpG) dinucleotides is predominantly methyl-
ated [32]. Local methylation of cytosine in the region where 
CpGs appear frequently, called the CpG island, around 
transcription start site is closely related to gene repression. 
5-methylcytosine (5mC) is the most widely studied DNA 
modification that is important for genomic imprinting and X 
chromosome inactivation by induction of heterochromat-
inization. DNA methylation is regulated in developmental 
and tissue-specific manners by de novo methyltransferase 1 
(DNMT1) and DNMT3s. Demethylation mechanisms have 
been rapidly understood in the past few years since 
5-hydroxymethylation of cytosine (5hmC) was reported in 
the mammalian brain [33,34]. Ten-eleven-translocation 
genes (TETs) have important functions in hydroxylation, 
formylation and carboxylation of 5mC, following base ex-
cision repair to unmodified cytosine [35,36]. Global 5mC 
and 5hmC analyses suggested that 5hmC is associated with 
active gene state and involved in development and aging in 
the mammalian brain. DNA methylation is recognized by a 
family of DNA-binding proteins with methyl-CpG binding 
domains (MBDs), known as the MBD protein family. These 
proteins bind to 5mC that interacts with many components 
and usually act as transcriptional repressors. RTT is caused 
by mutation of methyl-CpG binding protein 2 (MeCP2) [37]. 
MeCP2 is a nuclear protein that attaches to methylated 
DNA and regulates gene expression by inhibiting or re-
cruiting transcription factors. Loss or mutation of MeCP2 
causes transcriptional deregulation and also leads to ASD 
phenotypes. All individuals with RTT have an ASD. FXS is 
the most common inherited cause of ID. Patients with FXS 
have a characteristic physical appearance and impaired be-
havior with co-occurrence of ASD in 25% of male and 6% 
of female patients [38]. FXS arises from extremely ex-
panded CGG triplet repeats localized at the promoter of the 
FMR1 gene which codes the Fragile X mental retardation  
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protein (FMRP). Inheritance of unstable allele causes ex-
pansion of the normal number of repeats (6–40). The ex-
panded allele increases instability and develops into 
pre-mutation (50–200) by inheritance, followed by full- 
mutation (200~) in a generation. The full mutation state 
results in hypermethylation of the promoter region of the 
FMR1 gene and prevents gene expression. The detailed 
mechanistic consequences of CGG repeat expansion and 
methylation are unclear. FMRP is involved in diverse bio-
logical processes including signal transduction, RNA pro-
cessing, and transcription. Loss of function of FMRP is 
linked to ASD phenotypes. Recently, a microdeletion that 
includes a single gene for methyl-CpG-binding domain 5 
(MBD5) was found in ASD patients [39]. MBD5 associates 
with heterochromatin but does not directly bind to methyl-
ated DNA [40]. MBD5 is likely to interact with myocyte 
enhancer-binding factor 2C, a gene known to regulate  
expression of neuronal genes and is associated with    
ASD [41,42]. The altered gene dosage such as in MBD5 
provides additional support for importance of DNA methyl-
ation in ASD. 

4  SNV and CNV relative to histone modifica-
tion 

Histone modification is another important mechanism of 
epigenetic modification. Acetylation and methylation of 
lysine residues in the histone H3 subunit are currently sub-
ject to considerable research as the processes mediate gene 
activation and silencing. Acetylation is regulated by histone 
acetyltransferases (HATs) and histone deacetylases (HD- 
ACs). Methylation of histone is also explained by histone 
lysine methyltransferases and demethylases as recently 
identified. Histone modification is involved in dynamic 
cellular functions such as stress response, signal induction, 
and responses to an environmental change [43]. There are 
syndromes considered specifically as epigenetic disorders. 
RTS, characterized by short stature, learning difficulties, 
and distinctive facial features, is caused by mutations in the 
cAMP (cyclic adenosine monophosphate) response ele-
ment-binding protein gene (CREBBP) [44]. The protein 
CREBBP recruits other transcription factors and has HAT 
activity. The mutation of CREBBP has potential to affect 
regulation of other genes, but the underlying mechanism 
connecting this epigenetic regulation to brain development 
is still unknown. CLS, which shows severe ID with abnor-
malities of growth, cardio-vascular system, and kyphosco-
liosis, is caused by loss-of-function mutations in the RSK2 
gene [45]. RSK2 is a growth factor-regulated serine- threo-
nine protein kinase that acts in the ras-mitogen-activated 
protein kinase signaling pathway. RSK2 affects chromatin 
structure through direct phosphorylation of histones. Dele-
tion of the epigenetic modification enzyme is possibly caus-
ative for autism. Recently, a mouse model for 9q34 sub-

telomeric deletion syndrome was generated [46]. This dis-
order is characterized by severe ID, developmental delay, 
facial dysmorphism, and autistic behavior caused by eu-
chromatin histone methyltransferase 1 (EHMT1) gene hap-
lo-insufficiency [47]. EMHT1 is associated with methyla-
tion of the 9th lysine of histone H3 (H3K9), which causes 
transcriptional repression. Mice with heterozygous deletion 
of Ehmt1 exhibit hypoactivity and the autistic-like beh-  
avior [46]. The abnormal histone modification can influence 
the occurrence and severity of neurodevelopmental disor-
ders. 

5  Prenatal stress from environmental factors 

Epigenetic markers are dynamically changed during gyno-
genesis, embryogenesis, differentiation, and development 
under rigorous controls. Flexibility of epigenetic modifica-
tions indicates that these epigenetic signatures can be desta-
bilized by environmental agents. Parental conditions    
(e.g. age and psychiatric history) and environmental factors 
(e.g. chemical exposure and maternal infection) at prenatal 
stage can become risk factors in neurodevelopmental disor-
ders [48,49]. It is possible that these risk factors affect reg-
ulation of epigenetic modulator and alter expression of 
genes that are responsible for brain functions. Valproic acid 
(VPA) has been used for treatment of depression, schizo-
phrenia, and bipolar disease [50,51]. Although the mecha-
nism is not fully understood, VPA is implicated to act as an 
inhibitor for class I and class IIb HDACs [52]. Given that 
global gene expression is affected by histone modification, 
the effect of VPA can be related to abnormal neuronal ac-
tivity in human brain. Furthermore, prenatal exposure to 
VPA is clinically linked to ASD [53]. Children with fetal 
valproate syndrome show phenotypic facial abnormalities, 
developmental disabilities, and, occasionally, major organ 
abnormalities and autism. Rodents prenatally exposed to 
VPA are used as an autism model. The fact that mice tran-
siently given VPA at E12.5, but not at E9 and E14.5, 
showed autism-like behavior at 8 weeks of age [54], sug-
gests hyperacetylation of histone at a critical period plays a 
key role in cortical pathology and generation of autism-like 
behavior. Moreover, prenatal stress exposure triggers epi-
genetic variations. Male offspring, but not female, exposed 
to prenatal stress in early gestation results in maladaptive 
behavior to stress response, which suggests that sex  
specific placental response underlies male vulnerability to  
autism [55]. There are certainly epigenetic sex differences 
in the brain [56] and it can also link to the different sensitiv-
ity between male and female in ASD. Psychological stress 
during pregnancy has also been recognized as a possible 
risk factor of autism [57,58]. Further investigations are nec-
essary to understand the relationship of autistic phenotype 
and DNA/chromatin modification in the brain during em-
bryogenesis. 
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6  Generation of model mice 

It is generally known that Mus musculus is a social species 
with high levels of reciprocal social interactions. At the 
same time, the genetic engineering in mice is well estab-
lished. Therefore, it is possible to generate ASD model mice 
with the genetic variation found in ASD. The usefulness of 
the model mouse requires certain criteria. First, the model 
mice should have “construct validity”. The construct valid-
ity means that the model mice have the same genomic dys-
function found in ASD patients. Unfortunately, it is difficult 
to generate the model mice for epigenetic alteration because 
of the aspect of construct validity. As noted above, a num-
ber of SNVs known for ASD (NLGN3, NLGN4, NRXN1, 
CNTNAP2 and SHANK3) are used to create model [59–64]. 
In a similar approach, model mice for RTT and FXS are 
also generated and analyzed [65–69]. However, given re-
cent findings, it is important to validate whether human 
CNV found in ASD affects autistic phenotypes or not [70]. 
We and other two groups reported that the model mice with 
human CNVs (chromosome 15q11-13, 16p11.2 and 22q11) 
show abnormal behavior and organic aberration of brain 
seen in ASD and schizophrenia [71–73]. These groups used 
chromosomal engineering established by Alan Bradley and 
colleagues [74,75]. To briefly describe the methods to con-
struct model mice for CNV, two loxP sites are inserted into 
two homologous chromosomes at each end of CNV in 
mouse embryonic stem (ES) cell. Using Cre recombinase, 
the chromosomes are recombined at the loxP sites and ei-
ther the duplication or the deletion type can be constructed. 
The ES cells with recombined chromosomes are implanted 
to blastocysts and the chimera mice with CNV are generated.  

7  Phenotypic assay 

7.1  Behavioral test 

The model mice should be checked by behavioral assays 
since ASD is diagnosed by behavioral phenotypes [76]. 
First, the mice are subjected to physical exam. If they have 
physical abnormality (i.e. blind eye, deafness, or ambulation 
difficulty), they must be considered improper for behavioral 
assays described below. It is necessary to know the mice 
have normal sensibility before they are subjected to social 
behavior tests. The olfactory test should be done with natu-
ral smells. It is critical to check if the mice can detect natu-
ral smells. The difficulty in olfaction affects social tests in 
mice because they mainly use olfactory function to under-
stand individuals and the environment of the area they are in. 
After normal physical and perceptive conditions are con-
firmed, the model mice are subjected to social behavior test 
and/or other tests of concern. ASD models should have 
“face validity”. The face validity means that the model mice 
show the abnormal behaviors seen in ASD patients. Main 
phenotypes are deficit in social interaction, impaired com-

munication, and repetitive behavior or restricted interest. 
The model mice described above exhibited such behavioral 
deficits [59–65,68,69,71–73]. The three-chamber test (or 
one chamber test) is used to check social interaction. The 
ultrasonic vocalization is used to check communication 
skills at young stages. The reversal learning test using Mor-
ris water maze or Barnes maze checks for behavioral in-
flexibility. Other behavioral tests are also performed to un-
derstand the face validity of the model mice (i.e. open field 
test and fear conditioning test for anxiety and context 
memory, home cage activity, circadian rhythm, and nurtur-
ing behavior). 

7.2  Pathomorphology 

Morphological research has found increased brain size in 
ASD patients at younger stage compared with age-matched 
controls [77]. MRI system is useful to measure the brain 
size of the model mice. It can be relevant to know the cor-
relation of CNV and brain size throughout developmental 
stages in ASD subjects. The model mice with 16p11.2 dele-
tion exhibit the significant increase of regional brain sizes 
but duplication mice, oppositely, exhibit a smaller tendency 
compared with wild type mice, suggesting that dosage of 
16p11.2 affects brain architecture [72]. The structures of 
mini-column in cortical region are also abnormal in ASD 
patients whose structures are reported to be small [78]. It is 
considered that the column difference is the origin of dys-
function in the regulation of sensory inputs and/or outputs. 
It is necessary to check model mice for the morphological 
abnormality using imaging tools. Given that recent molecu-
lar network analysis of CNV implied the dysfunction of 
neuronal cell-adhesion, synaptogenesis, axon guidance and 
dendrite morphogenesis, the pathomorphological aspects 
should not be ignored in studying the model mice [79]. In 
the model mice for ASD, Nlgn3, Shank3 and MeCP2 mu-
tant mice exhibit significant differences in spine density and 
dendrite length, suggesting the abnormalities in synaptic 
function and neurite growth may be a common dysfunction 
of ASD [63,69,80]. 

7.3  Pathophysiology 

There is a hypothesis that dysfunction of excitatory and 
inhibitory balance causes psychiatric disorders including 
ASD [81]. About 30% ASD patients have epilepsy and de-
creased GAD65/67 mRNA levels, as reported in several 
examples [82,83]. Moreover, many ASD model mice show 
excitatory/inhibitory (E/I) imbalance [61–65,84,85]. One 
method to verify this hypothesis is to perform immuno-
histochemistry analysis with the markers of excitatory and 
inhibitory neurons; for example, ratio of markers for vesic-
ular glutamate transporter (VGluT1,2,3) over vesicular 
GABA transporter (VGAT) would indicate the E/I balance 
among neuronal populations. Data from optogenetic ex-
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periments suggest that the social phenotypes can be affected 
by the imbalance of E/I ratio in the prefrontal region but not  
in the visual region in the cortex [84]. The immunohisto-
chemistry methods can be applied to measure the E/I ratio 
in the whole brain. If measurements of E/I markers suggest 
for imbalance, electrophysiological measurements should be 
employed to establish the functional E/I ratio. We suspect 
this approach can provide a viable means of elucidating 
neuron type-specific defects leading to autism. Ube3a 
knockout mice, the Angelman syndrome model, show an 
E/I imbalance and the dysfunction depends on inhibitory 
neuronal defects [87]. Interestingly, loss of MeCP2 in 
GABAergic neurons is more critical for social interaction 
than loss of the protein in catecholaminergic and sero-
tonergic neurons [65,88]. These reports suggest that the 
deficits of sociability emerge as a consequence of abnormal 
function in specific types of neurons. 

7.4  Pathological endophenotype analysis 

The point of endophenotype analysis is to assess genetic 
basis of ASD pathologies. Many candidate genes and loci 
are considered to be involved with ASD pathogenesis. 
However, precise pathology remains unknown. Specifically, 
it is unclear how the genetic mutation or variation affects 
the behavior of ASD. There is a general hypothesis on the 
mechanism of ASD pathogenesis where heterogeneous can-
didate genes and loci are converging on a (or some) main 
dysfunction of the central nervous system [89]. There can 
be dysfunctions in neuronal cell activity, synaptogenesis, 
dendrite extension, and/or fine neuronal connection in the 
ASD brain. If any such dysfunction were found in model 
mice, it would provide the next step toward the rescue of the 
dysfunction which can be treatable with a therapeutic drug. 
Clinical researchers are also seeking a biomarker of ASD to 
establish objective diagnosis criteria of ASD. A biomarker 
is a characteristic that is objectively measured and evaluated 
as an indicator of normal biological processes, pathogenic 
processes, or pharmacological responses to a therapeutic 
intervention. Therefore, the possibility of convergence to 
endophenotype of ASD must be fully evaluated. However, 
there are many reports of biomarkers associated with ASD 
but the results are controversial [90]. Given the heterogene-
ity involved with the population of ASD patients, the incon-
sistencies are not surprising. The merit of using the model 
mice is to evaluate the effect of a single genetic cause. The 
model mice with 15q11-13 duplication have lower serotonin 
content in the brain compared with the wild type [91], sug-
gesting that serotonergic dysfunction can cause behavioral 
abnormalities in ASD with 15q11-13 duplication. Some 
drug can be effective in the genetically specific ASD popu-
lation but the effectiveness cannot be guaranteed in other 
populations. By using the model mice with specific genetic 

variation, the therapeutic effect of drugs can be better eval-
uated and understood.  

8  Conclusion 

It is difficult to completely explain why patients with ASD 
exhibit defects in social behavior because many factors can 
intricately participate in behavioral phenotypes. But now, 
we have a strong tool with model mice to investigate the 
influence of genetic variations found in ASD. It will be 
useful not only to understand ASD pathology but also to 
find therapeutically efficacious drugs. CNV and epigenetic 
variations will continue to be discovered in ASD and other 
neurodevelopmental disorders. We argue in this review that 
the altered dosage and dysfunction of susceptible genes 
based on genetic and/or epigenetic variations can be a cause 
of ASD. Considering more a few occurrences of CNVs in 
general population, we speculate that such genetic and epi-
genetic variations account for the wide personality spectrum 
outside the borders of ASD. Studying the influence of al-
tered gene expression in a step-by-step way would be fruit-
ful in this regard.  
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