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Understanding protein folding rate is the primary key to unlock the fundamental physics underlying protein structure and its 
folding mechanism. Especially, the temperature dependence of the folding rate remains unsolved in the literature. Starting from 
the assumption that protein folding is an event of quantum transition between molecular conformations, we calculated the 
folding rate for all two-state proteins in a database and studied their temperature dependencies. The non-Arrhenius temperature 
relation for 16 proteins, whose experimental data had previously been available, was successfully interpreted by comparing the 
Arrhenius plot with the first-principle calculation. A statistical formula for the prediction of two-state protein folding rate was 
proposed based on quantum folding theory. The statistical comparisons of the folding rates for 65 two-state proteins were car-
ried out, and the theoretical vs. experimental correlation coefficient was 0.73. Moreover, the maximum and the minimum fold-
ing rates given by the theory were consistent with the experimental results. 
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It is well known that a protein chain can spontaneously fold 
into its unique native structure [1,2]. To paraphrase Levin-
thal’s paradox, if a protein were to attain its correctly folded 
configuration by sequentially sampling all the possible 
conformations, it would require a period of time longer than 
the age of the universe to arrive at its correct native con-
formation [3]. Apart from theory, it is a fact that experi-
mentally measured times for spontaneous folding of sin-
gle-domain globular proteins range from microseconds [46] 
to tens of minutes [7]. Thus, how configurations of proteins 
are determined and what makes them fold so quickly are 
questions that constitute a longstanding puzzle in molecular 
biology. While two prominent models have been proposed 
to study the protein folding mechanism, folding nucleus [8,9] 
and folding tunnel [1014], the importance of topology and 

contact order in protein folding has been recognized over 
the last 15 years, and many new models to predict the pro-
tein folding rate have been published [1529]. 

Curiously, it is notable that the rate at which proteins fold 
is highly sensitive to temperature, showing non-Arrhenius 
behavior, i.e., the temperature dependence of the rate con-
stant is, in fact, not exponential for these reactions. The 
nonlinearity of logarithm folding rate on temperature 1/T 
has been conventionally interpreted by the nonlinear tem-
perature dependence of the configurational diffusion con-
stant on rough energy landscapes [30] or by the temperature 
dependence of hydrophobic interaction [31,32]. Another 
model was proposed more recently to interpret the differ-
ence between folding and unfolding by introducing the 
number of denatured conformation depending on tempera-
ture [33]. Recent experimental data indicated very different 
and unusual temperature dependencies of the folding rates 
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existing in the system of λ685 mutants [34] and in some de 
novo designed ultrafast folding protein [35]. These unusual 
Arrhenius plots of ultrafast folders provide an additional 
kinetic signature for protein folding. 

Protein folding mechanism is commonly studied by use 
of classical molecular dynamics (MD) simulation as a main 
theoretical tool. However, when we observe the folding 
event at the molecular level, the application of quantum 
theory should be more reasonable. In fact, the classical ap-
proach is simply too limited to realize a complete solution 
of the protein folding problem, especially when the key goal 
is understanding of the fundamental physics underlying the 
folding mechanism. It is well known that fluorescence and 
phosphorescence are phenomena closely related to protein 
folding. However, since such phenomena can only be un-
derstood in the context of the quantum transition between 
molecules, the study of protein folding should not be di-
vorced from the framework of quantum folding theory. 
Although the role of quantum decoherence was widely rec-
ognized in the last decades, the estimate of decoherence 
time for torsion degrees of freedom of a macromolecule 
does not preclude the possibility of its maintenance of 
quantum nature [36]. In recent years the quantum mechani-
cal calculation for three-atom and four-atom reactions was 
worked out and the rate constant as a function of tempera-
ture was deduced [37]. However, to generalize the quantum 
calculation to the multi-atom system is still a difficult task. 
That protein folding is essentially a quantum transition be- 

tween torsion states was proposed in recent work 
[36,3841]. Based on this essential argument, the present 
work aims to apply the quantum transition theory to study 
the folding rate of two-state proteins, making a comprehen-
sive analysis of the existing rate data and bringing more 
insight to the widely distributed and uniquely tempera-
ture-dependent folding rates.  

1  Materials and methods 

1.1  Datasets 

Recently Garbuzynskiy and coworkers [42] collected fold-
ing rate data for 107 proteins—69 two-state proteins and 38 
multistate proteins. Of the 69 two-state proteins, four (PDB 
code 1VII, 2PDD, 1PRB and 2A3D, respectively) will not 
be considered in our study because their folding experi-
ments were carried out at high temperature, and extrapola-
tion of these experimental results to 25°C inevitably con-
tains a large error. The remaining 65 two-state proteins 
whose folding experiments were carried out at around 25°C 
constitute the dataset we used to compare the theoretical vs. 
experimental results (see details of the dataset as listed in 
Table 1). On the other hand, in studying the temperature 
dependence of folding rate, we used the experimental data 
of 16 proteins collected by Ghosh et al. [33] (Table 2). 

Table 1  The folding rates and structural parameters for 65 two-state proteinsa) 

PDB code 
Experimental data Calculated parameters 

Structure class ∆G/RT # lnkf
# L* Lα

& Lβ
& F$ N$ 

1aps α+β 7.4 1.6 98 18 36 1 382 
1avz β 9.2 4.9 57 0 17 1 211 
1ayi α 4.9 7.2 85 47 0 25 332 
1ba5 α 4.7 5.9 53 33 0 81 208 
1bdd α 7.5 11.7 58 36 0 81 212 
1bf4 β 10.2 7.0 63 9 33 1 258 
1c9o β 7.6 7.2 66 0 40 1 254 
1csp β 4.2 6.5 67 0 36 1 255 

1cun_16 α 10.8 4.8 106 91 0 81 442 
1cun_17 α 11.2 3.4 107 94 0 81 424 
1div_c α+β 11.2 3.3 92 27 35 1 354 
1div_n α+β 6.5 6.6 56 19 11 1 229 
1e0g α+β 4.7 7.0 48 15 8 1 186 
1e0l β 2.0 10.6 37 0 12 1 128 
1e0m β 2.8 8.9 37 0 13 1 133 
1e41 α 11.8 6.8 104 70 0 81 394 
1fex α 5.3 8.2 59 31 0 25 225 
1fkb α+β 9.7 1.6 107 8 41 1 413 

1fnf_9 β 2.0 0.9 90 0 49 1 335 
1ftg α/β 5.5 2.8 168 47 31 1 635 
1g6p β 10.3 6.3 66 0 28 1 263 
1idy α 7.0 8.7 54 30 0 25 184 
1iet α+β 4.4 3.0 94 6 6 1 346 

1imq α 9.2 7.3 85 45 0 25 315 
1jmq β 1.7 8.4 40 0 6 1 152 
1jo8 β 5.2 2.5 58 0 23 1 221 
1jyg α 4.6 9.1 69 45 0 81 286 
1k0s β 19.5 7.4 143 14 63 1 565 

       (To be continued on the next page)
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(Continued)         

PDB code 
Experimental data Calculated parameters 

Structure class ∆G/RT # lnkf
# L* Lα

& Lβ
& F$ N$ 

1k85 β 8.4 1.4 88 0 47 1 269 
1k8m β 8.7 0.9 93 0 33 1 352 
1l2y α 1.0 12.5 20 7 0 25 73 
1l8w α 10.5 2.0 271 154 4 25 947 
1lmb α 7.2 10.4 80 57 0 81 307 
1lop β 17 6.6 164 20 56 1 624 
1m9s β 5.7 4.0 76 0 13 1 301 
1mjc β 3.9 5.3 69 0 33 1 244 
1n88 α+β 5.9 2.0 96 22 27 1 372 
1nti α 10.9 7.0 86 53 0 81 345 
1o6x α+β 7.2 6.8 81 22 15 1 275 

1pgb_a α+β 8.0 6.3 56 14 24 1 208 
1pgb_b β 0 12.0 16 0 10 1 58 

1pin β 5.1 9.3 34 0 12 1 129 
1pnj β 6.3 1.0 86 0 24 1 301 
1poh α+β 8.9 2.7 85 29 23 1 320 

1prs_c β 7.3 2.0 83 4 23 1 318 
1prs_n β 12.4 3.0 90 7 32 1 326 
1qtu β 11 0 109 6 53 1 426 
1rfa α+β 11.2 8.4 78 12 21 1 307 
1ris α+β 14.4 6.1 97 28 47 1 392 
1shg β 5.9 1.1 57 0 26 1 230 
1spr α+β 12.2 8.7 103 18 29 1 396 
1srm β 5.7 4.4 56 0 16 1 209 
1t8j α 1.4 11.8 23 8 0 25 86 
1ten β 8.8 1.1 89 0 48 1 343 
1u5p α 10.7 11.0 110 93 0 81 441 
1ubq α+β 14.1 7.3 76 12 24 1 299 
1urn α+β 16.3 4.6 96 28 24 1 379 
1w4j α 6.0 12.3 51 23 0 25 164 
1wit β 8.6 0.4 93 0 48 1 349 
256b α 17.3 12.3 106 81 0 81 424 
2acy α+β 7.3 0.8 98 24 41 1 379 
2ci2 α+β 16.1 5.8 64 11 14 1 250 
2ptl α+β 7.4 4.1 60 12 24 1 220 

2wxc α 4.6 11.2 47 20 0 25 153 
a-helix α 0 15.5 21 20 0 81 42 

a) #, ∆G(J mol1)/RT=∆G(J)/kBT where ∆G(J) is folding free energy per molecule defined by unfolded initial state energy minus folded final state energy, 
lnkf the logarithm folding rate (kf in unit s1). Both data are taken from [42]. *, The chain length L means the number of folded residues according to PDB. &, 
Secondary structure was assigned from Protein Data Bank [43] coordinates of proteins by using the program dssp ([44], http://swift.cmbi.ru.nl/gv/dssp/), 
which marks helical residues by symbols H and β-structural residues by symbols E. Lα means the number of α helical residues, and Lβ the number of 
β-structural residues. $, N is the number of torsion modes calculated following the rule given in section 1.2. F is the structural class parameter defined in the 
text eq. (11) and calculated following the rule: F=81 for (LαLβ)/L0.6, 25 for 0.3(LαLβ)/L<0.6, and 1 for (LαLβ)/L<0.3. Lα and Lβ are the number of resi-
dues in α helix and β sheet, respectively, and L is the number of folded residues according to PDB. 

Table 2  Data of temperature dependence of protein folding rate 

Protein short name PDB code Mutants Tc Tf Gf/kBTf Reference 
BdpA 1bdd F13W/G29A 350 283 10.37 [45] 
NTL9 1divn Wild type 350 283 7.81 [46] 
FBP28 1e0l ∆N∆C-Y11R/W30F 327 298 3.43 [47] 
En-HD 1enh Wild type 325 298 3.55 [6] 

Apocytochrome b5 1iet Wild type 319 283 4.40 [48] 
Trp2-cage 1l2y P12W 331 296 2.41 [49] 
Trp-cage 1l2y Wild type 315 284 1.91 [4] 
-repressor 1lmb Y22W 334 313 4.77 [34] 
-repressor 1lmb Y22W/A37G 328 313 2.80 [34] 

-repressor 1lmb Y22W/G46A/G48A 341 328 2.94 [34] 

Pin WW domain 1pin Wild type 332 313 3.01 [50] 

Pin WW domain 1pin S18G 330 312 2.65 [50] 

Pin WW domain 1pin N26D 311 302 1.35 [50] 

Prb7-53 1prb K5I/K39V 372 348 4.06 [51] 

α3D 2a3d Wild type 346 318 3.45 [35] 

Psbd41 2pdd Wild type 326 314 1.75 [52] 
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1.2  Quantum folding model 

We investigated protein folding rate as the quantum transi-
tion between torsion states on polypeptide chain. Compared 
with other dynamic variables, such as mobile electrons, 
chemical bonds and stretching-bending vibrations, also 
called fast variables, molecular torsion has the lowest ener-
gy and can be viewed as the slow variable of the macromo-
lecular system. Assuming that “the slow variables slave the 
fast ones” and using the nonadiabaticity operator method, a 
formula for protein folding rate in analytical form was de-
duced in previous results [36,39], as 
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where W means protein folding rate at given temperature 
and denaturant concentration, VI   is slow-variable factor 

and EI   fast-variable factor, N is the number of torsion 

modes participating in a quantum transition coherently, jI  

denotes the inertial moment of the atomic group of the j-th 
torsion mode (I0 denotes its average),   and   are the 
initial and final frequency parameters j  and j  of tor-

sion potential averaged over N torsion modes, respectively, 
  is the averaged angular shift between initial and final 
torsion potential (Figure 1), M is the number of torsion an-
gles correlated to fast variables, 2a  is the square of the 
matrix element of the fast-variable Hamiltonian operator, or, 
more accurately, its change with torsion angle, averaged 
over M modes, Bk  is Boltzmann constant, T is absolute 

temperature and G  is the free energy decrease per mol-
ecule between initial and final states, 
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1

N

j
j

E E


   ， jE  is the energy gap between initial 

and final states for the j-th mode. The substantial argument 
for the derivation of eq. (1) is the assumption on the torsion  

 

Figure 1  Typical potential curve for a given torsion mode j. The sub-
script j has been omitted for brevity. The case given in figure is for E>0 
and <′. The quantum state in the potential is defined by (k, n) where 
k=1,2 indicates the wave function localized around 1st or 2nd minimum of 
the potential and n refers to the vibration energy level. 

as slow variables and the adiabatic approximation applica-
ble. 

To obtain quantitative result from eq. (1) one should 
calculate the number of torsion modes N in advance. N de-
scribes the coherence degree of multi-torsion transition in 
the folding. Based on the idea that the two-state protein 
folding is equivalent to a quantum conformational transition 
we assume that N is obtained by the numeration of all 
main-chain and side-chain dihedral angles on the polypep-
tide chain except those residues on its tail which does not 
belong to any contact. A contact is defined by a pair of res-
idues at least four residues apart in their primary sequence 
and with their spatial distance no greater than 0.65 nm. Each 
residue in such contact fragment contributes two main-chain 
dihedral angles and, for non-alanine and -glycine, it con-
tributes 14 additional side-chain dihedral angles [53]. To 
avoid repetitive enumeration, we assume that n=polypeptide 
chain length minus residues not contained in any contact 
fragment. Thus, the total number of main-chain dihedral 
angles in the polypeptide chain is 2n. The number of 
side-chain dihedral angles n′ can be enumerated in the same 
way (Table 3, Figure 2).  

Based on eq. (1), the following two problems on protein 
folding rate were studied. 

1.2.1  Temperature dependence of protein folding rate 

The temperature dependence of the transition rate reflects 
the folding dynamics of a protein. In principle, for any giv-
en protein, the problem can be solved starting from eqs.  

Table 3  The number of side-chain dihedral angles for 20 amino acids 

Amino acids Ala Arg Asn Asp Cys Gln Glu Gly His Ile 

n′ 0 4 2 2 1 3 3 0 2 2 

Amino acids Leu Lys Met Phe Pro Ser Thr Trp Tyr Val 

n′ 2 4 3 2 2 1 1 2 2 1 
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Figure 2  The sketch map of torsion angles (dihedrals) for a typical pep-
tide chain 1ENH. The 20th amino acid Phe and the 24th amino acid Arg 
are a pair of contact residues of 1ENH. Five residues Phe, Asn, Glu, Asn 
and Arg compose a contact fragment. The main chain dihedrals φi and ψi 
for the i-th amino acid and the side chain dihedrals χij (j=1,…,4) are labeled 
in the diagram. The total number of dihedral angles in this example is 23. 

(1)and (2). In addition to the explicit T dependence in these 
equations, we should consider the association between free 
energy change G and temperature. Assuming that the tor-
sion potential is susceptible to temperature at melting point 
(Tc) since a protein may undergo a transition of structure 
near melting temperature [54], and setting 
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where Gf is the measured value of folding free energy de-
crease at temperature Tf. Inserting eqs. (3)–(5) into eqs. (1) 
and (2), we obtain 
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where S is the slope parameter and R—its modification on 
Arrhenius plot and const means a constant independent of 
temperature T, 
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with 2 2
0jI NI     2 2( ) ( ) . 

Thus, the relationship between rate slope and tempera-
ture on Arrhenius plot is 

 2d ln 1

d(1 / ) 2

W
S T RT

T
   . (9) 

In a previous work [55] we deduced a similar relation for a 
simple system consisting of molecular torsions and only 
electrons as fast variables. It was demonstrated that, because 
the temperature dependences of folding rate caused mainly 
by torsion motion but not by fast-variables, only small 
changes occur (namely, the symbol of 1/2T term in eq. (9)) 
between two results and no important modification can be 
observed on the Arrhenius plot [36]. 

1.2.2  Statistical investigations on the folding rates of 65 
two-state proteins 

To make the statistical investigation of the folding rate for 
two-state proteins, based on eqs. (1) and (2) a model on the 
folding rate can be established through the following steps.  

(i) Study the relationship between folding free energy ∆G 
and N.  At a given temperature, it was reported that the 
folding free energy ∆G of a polypeptide chain is approxi-
mately proportional to chain length [42,56]. Accordingly, 

we investigated ∆G with N  for 65 two-state proteins 
and found a good linear relationship existing in these two 
quantities:  

 
B

G
b N c

k T


  , (10) 

with b=0.709, c=4.08. Here ∆G (free energy decrease per 
molecule) is taken from the measured value ∆G/(kBT)=lnkf 
lnku in the literature (kf and ku are experimental folding and 
unfolding rate, respectively) [42] at T≠Tc with T lower than 
Tc by an amount not too small. The data of ∆G and N for 65 
proteins can be found in Table 1. 

(ii) Study the relationship of fast-variable factor Mā2 
with N.  The fast-variable factor Mā2 is generally related to 
N. Detailed analysis indicates that it also depends on the 
structural class of the protein, e.g., the secondary content of 
the protein. We assume it takes a form of 

 2 ,d
uMa c FN   (11) 

where cu is a constant in the database which will be ab-
sorbed in c0 of the next equation (12), F is a factor related to 
the secondary structure content of the protein, and d is a 
dimensional parameter describing how the fast-variable is 
related to torsion potential. 

(iii) Give an expression for the folding rate of any 
two-state protein in the database.  Inserting eqs. (10) and 
(11) into eq. (1), we obtain the relationship between folding 
rate and torsion mode number N, as 

2
0.5 0.5 1

0
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2 2 2
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Here, 2 2
0 ( ) / ( )BI k T    is a torsion energy related 

parameter and c0 is a constant independent of N, determined 
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by the minimization of the sum of the errors of folding rate 
between theoretical and experimental values for all proteins 

in the database, 
2
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
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the frequency ratio averaged over proteins).  

2  Results 

2.1  Results of temperature dependence of folding rate 
for 16 typical proteins 

We have predicted a universal protein folding rate/temper- 
ature relationship given by eq. (6) or (9) on the Arrhenius 
plot. As is well known, the experiments on protein folding 
rate/temperature relationships exhibit the following charac-
teristics of non-Arrhenius behavior. The folding rate uni-
versally decreases upon increase of temperature, and even 
the crossover occurs at high temperature from normal posi-
tive barrier to abnormal negative [4,6,34,35,4956]. These 
characteristics can all be explained by the temperature-  
dependent terms in eq. (6). The last term, RT2 in eq. (9) is 
the main terms contributing to curvature of the Arrhenius 
plot. To make a more quantitative comparison between the-
ory and experimentation, we studied 16 proteins with cur- 

rently available experimental data on temperature-depend- 
ent folding rate and folding free energy (Table 2). We find 
that eq. (6) is in good agreement with the rate/ temperature 
dependence for each protein (Figure 3). It is not surprising 
that the non-Arrhenius dependence occurs in the protein 
folding rate since lnW given by eq. (1) contains the square 
free energy term (∆G)2 in addition to the linear term ∆G. 
Therefore, the curious non-Arrhenius temperature-depend- 
ence has been successfully explained in the proposed quan-
tum folding model. 

In our model the universal non-Arrhenius characteristics 
of folding rate are described by two slope parameters S and 
R and these parameters are related to the known folding 
dynamics. Through solving eqs. (7) and (8), we obtain 
η∆E(Tc) and ε (or  ) for each protein since S and R 
have been determined by temperature-dependent folding 
rates, and the free energies ∆Gf have been measured at some 
temperature Tf. Then, for given η, the energy gap parameter 
∆E(Tc) is obtained, and the frequency-ratio parameter λ is 
deduced. Thus, all parameters related to torsion potential 
defined in this theory can be determined. The results are 
summarized in Table 4. We notice that all conformational 
potential parameters can be calculated consistently with 
each other for all studied proteins. These torsion parameters 
will be able to give deeper insights into the understanding of 
folding mechanism. 

Table 4  The folding temperature dependence and related torsion potential parameters for 16 proteinsa) 

PDB code S R 
( )c

B f

E T

k T


 

B fk T


 11( 10 )   5.5   N 

1bdd 24669 0.2441 48.76 10.66 1.4153 6.12 212 

1div 32076 0.2930 37.61 5.35 0.9649 4.91 229 

1e0l 16241 0.1780 28.49 5.91 1.5995 3.80 97 

1enh 33182 0.3345 31.23 3.84 0.8424 4.25 227 

1iet 70322 0.7322 37.09 2.58 0.5463 5.77 346 

1l2y(p12w) 14796 0.1602 20.98 3.64 1.4398 3.21 73 

1l2y(wt) 18957 0.1774 11.44 0.90 0.7023 1.10 73 

1lmb(wt) 83920 0.7613 49.06 4.11 0.7684 6.67 307 

1lmb(g46a) 30292 0.3313 44.99 2.64 0.6155 7.03 307 

1lmb(sa37g) 112897 1.0766 56.76 13.34 1.4154 9.13 307 

1pin(wt) 69675 0.6812 44.28 4.00 1.1677 7.17 129 

1pin(s18g) 77113 0.7565 42.79 3.41 1.0819 7.02 128 

1pin(n26d) 27063 0.2990 23.64 2.75 0.9520 3.52 129 

1prb 47886 0.3893 47.30 6.92 1.3737 7.14 179 

2a3d 18486 0.1812 30.46 6.33 1.0186 4.11 273 

2pdd 159403 1.5560 44.50 1.87 0.7321 7.62 152 

a) Column 1 gives PDB code of each protein. S and R in columns 2 and 3 are best-fit slope parameter of the folding temperature dependence. Columns 
47 are torsion potential parameters which are calculated from eqs. (7) and (8). Column 7 gives λ at 5.5   that is near the estimate of frequency-ratio 

/   from unfolding rate data. Column 8 gives the number of torsion modes of the polypeptide chain. In all calculations the average torsion inertial mo-

ment of atomic groups in polypeptide 44 2
0 10 kg mjI I   is assumed. 
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Figure 3  Model fits to overall folding rate kf vs. temperature 1000/T for 16 proteins. Experimental logarithm folding rates are shown by “o”, and solid lines 
are theoretical model fits to the folding rate (kf in unit s1, T in unit Kelvin). PDB codes and references on the experimental temperature dependence for 16 
proteins are given in Table 2. 

2.2  Prediction on temperature dependence of unfold-
ing rate for 16 typical proteins 

It was indicated that the plots of lnW versus 1/T are strongly 
curved for refolding of some proteins, but almost linear for 
their unfolding under denaturant [33]. However, in our 
model the folding and unfolding can be studied on the same 
foot. From eq. (1) the unfolding rate Wu for the reversed 
process is easily obtained by the replacement of ∆G by ∆G 
and  ( ) by  ( ) in Wf, as eq. (13). It leads to 
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In eqs. (14) and (15), ( ) ( )c cE T E T   ,     
2 2

0( ) NI  , f fG G   . Therefore, in this theory the 

folding and unfolding rates are correlated with each other, 
needless of introducing any further assumption as given   
in [33]. 
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From eqs. (7), (8), (14), and (15) one deduces 

22 ( )

2 ( )
B c

B c

k S E T
s

k S E T 




  


 
,            (16) 

2R
r

R 


 ,               (17) 

obeying 

/s r     .              (18) 

Thus, the temperature dependence of unfolding rate can 
fully be predicted from the temperature dependence para- 

meters of folding rate under given frequency ratio /  . 
The frequency ratio can be estimated from the parameter   
in Table 4. We found that the predictions for 16 proteins are 
in good agreement with experimental data (Figure 4).    
s  and r  for each protein are given in Table 5, whose 

difference r s r      is generally smaller than 15%, 

falling in the range of measurement error of rates. Moreover, 
that the calculated frequency ratios /   for these 16 
fast-folding proteins are all smaller than 1 (close to 1) ex-
plains the plots of lnW versus 1/T less curved for unfolding 
than for folding.

 
 

 

Figure 4  Model fits to overall unfolding rate ku vs. temperature 1000/T for 16 proteins. Experimental logarithm unfolding rates are shown by “o”, and 
theoretical model fits to logarithm unfolding rate are shown by “Δ” (ku in unit s1, T in unit Kelvin). 
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Table 5  The parameters used in the prediction for temperature dependence of protein unfolding ratea) 

PDB Code S′ R′ s r / B fk T   MRE 

1bdd 36742.43 0.2304 0.972 0.972 11.35 0.085 

1div 41209.80 0.2807 0.979 0.979 5.65 0.252 

1e0l 23226.90 0.1321 0.962 0.862 6.43 0.013 

1enh 41084.84 0.2779 0.981 0.911 3.97 0.021 

1iet 78345.63 0.7521 0.983 0.999 2.66 0.412 

1l2y(p12w) 19495.24 0.1318 0.957 0.907 3.97 0.006 

1l2y(wt) 21660.65 0.1422 0.985 0.895 0.97 0.004 

1lmb(wt) 95405.16 0.6422 0.978 0.918 4.31 0.012 

1lmb(g46a) 46610.77 0.2342 0.971 0.841 14.15 0.009 

1lmb(sa37g) 121636.30 0.9459 0.977 0.937 2.78 0.010 

1pin(wt) 75475.70 0.5714 0.946 0.916 4.49 0.012 

1pin(s18g) 81804.30 0.6353 0.946 0.916 3.85 0.011 

1pin(n26d) 33085.92 0.2220 0.972 0.862 3.44 0.008 

1prb 59773.65 0.3304 0.961 0.921 7.25 0.005 

2a3d 27437.16 0.1294 0.985 0.845 6.46 0.015 

2pdd 157517.20 1.3787 0.951 0.941 2.05 0.009 

a) S′ and R′ in the 2nd and 3rd column are calculated by inserting folding parameters ( )cE T , S and R into (16) and (17) and taking s and r from 

columns 4 and 5; sin the 4th column is given by the frequency ratio /   (eq. (18)) calculated from 5.5   in Table 4 and r in the 5th column is sup-

posed to be sr, where r is introduced to take the possible error existing in the unfolding rate measurement (the values of  and r have been chosen 

appropriately through the minimization of MRE); ′ in the 6th column is deduced from 2/ s ; MRE in the 7th column is the mean error between theory and 

experiment defined by 
1

1
| (ln ln ) / ln |

n
i i i
u u u

i

MRE k W k
n 

  , i
uk  and i

uW  are experimental and theoretical unfolding rates respectively at the i-th tempera-

ture (i=1,…,n). Following this definition, if the unfolding rate of a protein takes a value near 0 at some temperature then the MRE will be abnormally large 
(as shown in the table for 1div and 1iet).  

2.3  Results of statistical analysis of 65 two-state protein 
folding rates 

Eq. (12) gives a relation for predicting the folding rate of 
any two-state protein. For a dataset of 65 two-state protein 
at temperature T0=298 K, the prediction results are shown in 
Figure 5. The correlation between theoretical logarithm rate 
lnWf and experimental lnkf has attained 0.73. Much work on 
the folding rate prediction was published in the pure-   
empirical approach. They include the prediction model 
based on amino acid sequence [18,2628], based on tertiary 
structure [15,29] and based on secondary structure [17], etc. 
The prediction accuracy is generally dependent on the size 
of database. For the same database of 65 two-state proteins, 
the prediction results are listed in Table 6. 

From Table 6 we find the present prediction is better than 
other empirical models in the correlation coefficient R and it 
is comparable with model ACO, SMCO and Leff but better 
than others in the standard error σ. Garbuzynskiy et al. [42] 
recently proved that the measured protein folding rates fall 
within a narrow triangle (called Golden triangle). Our re-
sults give an explanation for the origin of the Golden trian-
gle. 

It is worth pointing out that if the free energies G are 
directly taken from the experimental data instead of using 
eq. (10) then the prediction accuracy on folding rate from (1) 
and (11) will be further increased, the correlation coefficient 

 

Figure 5  Comparison between theoretical and experimental folding rates 
for 65 two-state proteins. Theoretical predictions are calculated from eq. 
(12). In theoretical calculation, the parameters are chosen as follows: 
b=0.709, c=4.08, ρ=0.097, c0=2.07×1013, and d=5.5. If ρ is changed to 0.03 
and d is changed to 4.2 then the correlation R is slightly increased to 0.74. 
F and N are taken from Table 1. 

R between theoretical and experimental logarithm rate for 
65 two-state proteins attained 0.78 [57].
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Table 6  Comparison among different folding rate prediction methods based on the same set of 65 two-state proteins 

Models R P-value 
SFoldRatea) 0.53 5.81×106 7.04 

CIpredb) 0.61 5.49×108 4.02 

FOLD-RATEc) 0.17 0.17 16.26 

SWFoldRated) 0.10 0.42 7.18 

RCOe) 0.16 0.19 4.06 

ACOe) 0.67 9.33×1010 2.68 

SMCOf) 0.72 1.47×1011 2.83 

Leff
g) 0.65 3.88×109 3.10 

Lh) 0.33 0.0069 3.78 

lnLh) 0.53 6.89×106 3.44 

Present method 0.73 5.79×1012 2.78 

All the models were tested on the set of 65 two-state proteins. R, P-value and σ are correlation coefficient, level of significance of linear regression (by 
F-test) and standard error between experimental folding rates and predicting folding rates, respectively. The standard error is defined by 

2

1

( ) / ( 2)
n

i i
i

y x n


   (yi the experimental folding rates, xi predicting folding rates, n=65). In model RCO, ACO, SMCO, Leff, L and lnL the Jack-knife 

test was used in obtaining the predicting folding rates. a) Result from the Nα [18] web server at http://gila.bioengr.uic.edu/lab/tools/foldingrate/fr0.html. b) 
Result from the CI [26] web server at http://ibi.hzau.edu.cn/FDserver/cipred.php. c) Result from the Fold-Rate [27] web server at http://psfs.cbrc.jp/fold-rate/. 
d) Result from the SWFoldRate [28] web server at http://www.jci-bioinfo.cn/swfrate/input.jsp. e) Results of RCO [15] and ACO [29] from web server at 
http://depts.washington.edu/bakerpg/contact_order/. f) Size-modified contact order SMCO=RCO×L0.7 [29], L, number of residues that have defined 
three-dimensional coordinates and contribute to the relative contact order (RCO) calculations. g) The effective length of the folding chain Leff=LLH+l1NH 
[17], where LH is the number of residues in helical conformation, NH is the number of helices, and l1=3. Following [17], the folding rate is proportional to 

eff
PL  with P=0.1. The prediction is carried out by using the linear regression between eff

PL  and experimental rate and the Jackknife test. Secondary structure 

was assigned from Protein Data Bank coordinates of proteins by using the program DSSP, which marks helical residues by symbols H. h) L is number of 
residues that have defined three-dimensional coordinates. 

3  Discussion 

3.1  Temperature dependence of free energy and fold-
ing rate 

In studying the temperature dependence of folding rate, we 
assume that the torsion potential parameter ∆E is a linear 
function of T by eq. (3). This is equivalent to assuming that 
the free energy change ∆G per molecule is linearly depend-
ent on temperature by the relationship that exists between 
∆E and ∆G, as in eq. (2). The linear relationship between 
∆G and T is checked for 15 proteins under investigation 
(listed in Table 2, apart from 1iet whose free energy cannot 
be fully determined from the experimental data [48]), and 
we found that the correlation coefficients were higher than 
0.99 for most proteins. Figure 6 gives two examples. 

To solve the conformational parameters η∆E(Tc), ε and 
  for each protein from slope parameters S and R on 
Arrhenius plot, one should use the free energies ∆Gf meas-
ured at temperature Tf. It is required that Tf be lower than 
melting temperature Tc by 10 degrees or more, because 
there is some ambiguity in the experimental determination 
of the free energy change ∆G as T near Tc. The reason is as 
follows. From eq. (1) the relation between unfolding rate Wu 
and folding rate Wf is 
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Eq. (19) means the thermodynamic equilibrium condition 
for chemical reaction ∆G=0 is slightly different from the 
dynamical equilibrium Wf = Wu for protein folding due to 
the non-equal bias frequency distribution of { j } and 

{ j }. Usually the free energy G  at given temperature T 

was measured through ln( / )B f uG k T k k   in literatures. 

However, from eq. (19), this determination of free energy is 
not accurate as T near Tc, where ln( / )f uk k  is a small 

quantity and the term proportional to ln /   cannot be 
neglected. Then, we study how the calculated ( )cE T  

will be changed if there exist some errors in the       

fG  measurement. Given [ / ( )]f B fG k T   the change of 

( ) /cE T ( )B fk T , [ ( ) / ( )]c B fE T k T   is plotted for vari-

ous temperature Tf in Figure 7. We find [ ( ) /cE T   

( )]B fk T  increases rapidly as Tf approaches Tc. Thus, the 

small error in free energy measurement at temperature Tf 
near Tc would bring about the instability of some theoretical 
results. 

Since the denaturant possibly changes the torsion force 
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Figure 6  The linear relation of experimental folding free energy ∆G with temperature T for protein 1E0L and 1PIN. 

 

Figure 7  The change of ( ) / ( )c B fE T k T , [ ( ) / ( )]c B fE T k T  , with temperature Tf for given [ / ( )] 0.1f B fG k T   . The coordinate is the change of 

conformational energy parameter [ ( ) / ( )]c B fE T k T  , the abscissa is the temperature where fG  is measured. The measurement errors of free energy at 

all temperatures are assumed to be 10%. The protein 1iet is not shown due to the scarcity of unfolding rate data. 

field, the energy gap ∆E is a function of both variables, 
temperature and denaturant. Therefore, the free energy ∆G 
and the folding and unfolding kinetics depend not only on 
the temperature but also on the denaturant concentration. 
The denaturant dependence of folding rate has not been 
discussed in the article; however, the problem can be stud-
ied in the present theory because eq. (1) provides a basis for 
understanding the role of the influence of temperature and 
denaturant on the folding/unfolding kinetics. 

3.2  The relation between free energy and N 

The linear relation of free energy ∆G with N , eq. (10), is 
used in the statistical analysis of protein folding rates. The 

relationship of ∆G with N  can be understood by the 
Einstein’s formula of random walk—distance square pro-
portional to the number of walk steps—in his famous analy-
sis of Brownian movement. The relation has been tested for 

65 two-state proteins under investigation (Figure 8A). The 
regression analysis gives the correlation coefficient R be-

tween ∆G and N  as 0.67 (P<0.0001, F-statistic test). 
Garbuzynskiy et al. [42] suggested another relation between 
free energy ∆G and length of chain L, 2 /3

LG Lg B L   . 

As a comparison we plot Garbuzynskiy’s relation ∆G/(kBT) 
vs. 2/3( ) / ( )L BLg B L k T  in Figure 8B. We found the 

correlation coefficients R are nearly the same for both rela-
tionships of free energy with protein dimension. 

To study the origin of the error occurring in the statistical 

relation between free energy and N , we change the 
temperature at which the free energy is measured for     
16 proteins in Table 2 and classify these proteins into   
five groups following the divergence of temperature 

2

1

( ) / ( 1)
n

i
i

T T T n


    (n=16). Adding these 16 pro-

teins into 65-protein dataset in Table 1, we obtain a new 
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dataset with 74 proteins after removing the repetitious ones. 

By making statistics on free energy with N , we obtain 
the correlation coefficient for each group of 74 proteins. 
The correlation coefficient R and the diversity of tempera-
ture fT  are listed in Table 7. The result shows that the 

correlation of / ( )f B fG k T  with N  increases with de- 

creasing fT  for five groups. Therefore, the deviation 

from linear relation / ( )f B fG k T  with N  at least 

partly comes from temperature diversity of proteins in the 
studied group. 

3.3  The dimensional parameter d and the struc-
ture-related parameter F 

The dimensional parameter d is introduced in the 
fast-variable factor Mā2 of the folding rate formula, eq. (11). 

The relationship involves Mā2 as it changes with dN  . If 
the fast-variable factor were not related to N, then it could 
be shown that the folding rate would be an increasing func-
tion of N, thus conflicting with experimental data. From the 
general form of the potential function for peptides, 

V~
12 10 6

ij ij ij ij

ijij ij ij

A B C D

rr r r

 
    

 
  [58], it is reasonable to as-

sume that the matrix element of the stretching-bending (as a 

part of fast-variables) Hamiltonian includes a factor of 0dr , 

in turn leading to Mā2 including a factor of 01 2 /3dN   for a 

globular protein. This explains why dN   should be intro- 

duced in Mā2. If d0=10 (or 6), then d=5.66 (or 3), consistent 
with d=5.5 (or 4.2) by fitting experimental rates in Figure 5. 
In fact, to give a theory consistent with experimentation, the 
dimension parameter d should be chosen such that it is re-

lated to slow-variable parameter 2 2
0 ( ) / ( )BI k T   . 

From the statistical analysis of 65 two-state proteins we 

obtain a good linear relation existing between d and 1  in 

the range 1 <55 
1

0.0568 6.0872d


 
   

 
. Therefore, 

one has to assume d according to the  value of the database. 

For example, we assumed d=5.5 (as 0.097  ) in eq. (12) 

for 65-protein dataset. One may also assume d=4.2 (as 

0.03   with smaller 2 2( )  ) for the fast-folding pro-

tein dataset as those proteins listed in Table 2. 
The structure-related parameter F is also introduced in 

the fast-variable factor Mā2 of the folding rate formula. 
From experimental data analysis we found that F should be 
larger for a protein with more residues in α helix; for exam-
ple, F takes a value 81 for pure α helix chain (Table 1). Al-
pha helix, or a protein with abundant α helices, may have a 
quite oblong or oblate ellipsoid, instead of spheroid, shape. 
In globular protein of ellipsoidal shape, many residue pairs 
have a smaller distance than the average distance of a pair 

in spherical proteins of the same volume. By factor 0dr  
(d0=10~6) in the interaction potential, only those pairs with 
the smallest distance predominantly contribute to the 
fast-variable matrix-element ā. Moreover, the ellipsoidal 
protein will have an enhancing factor F in Mā2. If the min- 

 

 
Figure 8  Relationship of free energy ∆G/(kBT) with N . A, Free energy ∆G/(kBT) vs. N  for 65 two-state proteins. B, Free energy ∆G/(kBT) vs. 

2/3( ) / ( )L BLg B L k T  for 65 two-state proteins where parameters LB =3.36 kBT and the best fit g=0.39 kBT are used, and L is the length of polypeptide 

chain defined in [42]. 

Table 7  The correlation between / ( )BG k T  and N  increases with the lowering of temperature deviation in measurements 

δT 24.3 18.0 15.0 12.9 12.3 

R 0.6477 0.6687 0.6776 0.6887 0.6895 
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imal pair-distance decreases by a factor μ=1.25~1.45, then 

the enhancing factor is F= 02d =87, which is close to 81, as 

required by experiments. Therefore, we assume the predic-
tion rule: F=81 for (LαLβ)/L0.6, F=25 for 0.3(LαLβ)/ 
L<0.6, and F=1 for (LαLβ)/L<0.3 (Lα and Lβ are the number 
of residues in α helix and β sheet, respectively, and L is the 
total number of folded residues). Our experience shows that 
the different choice of F-value in the intermediate region 
0.3(LαLβ)/L<0.6 is insensitive to the prediction results. 

3.4  On the theoretical relationship of lnW vs. N  for 
two-state protein 

Figure 9 gives the theoretical relation of lnW vs. N  for 
two-state protein. The curves are plotted following eq. (12). 
As ρ=0.097 and d=5.5, one has W=Wmax=1.8×108 s−1 at 
N=N1=8 and W=Wmin=3.26 s−1 at N=N2=1283. The maxi-
mum and minimum of folding rate, namely lnWmax, lnWmin, 

1N  and 2N , changes with ρ and d but within a smaller 

range (as ρ<0.65 and d<6). The rate Wmax is consistent with 
the known experimentally measured rate of conformational 
rearrangement of one amino acid residue [42]. On the other 
hand, although the rate Wmin is much higher than the ex-
perimental lower limitation Wmin (biol)=0.003 s−1 [42], the 
predicted minimum of the rate seems not conflict with any 
existing two-state protein data. For multi-state protein one 
may assume the folding is a mutual process of several 
quantum transitions in different domains and that some time 
delays exist between these transitions [40]. Therefore, it is 
reasonable to assume that multistate folding proceeds in a 
larger spatial dimension and needs more execution time. 

 

 

Figure 9  The theoretical relationship lnW vs. N . The curves are 
plotted following eq. (12) under parameter choices b=0.709, c=4.08 and 
F=1 for various ρ and d. As ρ=0.097 and d=5.5, one has W=Wmax=1.8×108 
s−1 at N=N1=8 and W=Wmin=3.26 s−1 at N=N2=1283. The maximum and 
minimum of folding rate changes with ρ and d but within a smaller range 
(as ρ<0.65 and d<6). 

3.5  Generalization of folding rate prediction to the case 
of varying temperature  

Eq. (12) is established based on the statistical analysis of 
protein folding rates at given temperature T=T0=298 K. 
However, the equation can be generalized and it will be 
usable for the prediction of the folding rate of any two-state 
protein at different temperatures 0T T . Assume the pa-

rameters b and c in eq. (12) are replaced by 
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and the dependence of ρ on T, namely 0
0

T

T
  , is taken 

into account. Then, from eq. (12) one can deduce 
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Notice that eq. (21) takes the same form of temperature de-
pendence as given in eq. (6). Thus, eqs. (21) and (22) pro-
vide a useful tool for predicting protein folding rates at dif-
ferent temperatures. For 15 proteins (listed in Table 2, apart 
from 1iet) whose experimental data on the temperature- 
dependent rates and free energies had previously been 
available, the prediction results are shown in Table 8. 

 From Table 8 we find that Spred/Rpred is in good agree-
ment with S/R for each of the 15 proteins and R/Rpred takes a 
value between 0.6 and 3 for most proteins. This gives basi-
cally consistent-with-experiment predictions for the tem-
perature dependence of folding rates. The larger deviations 
of R/Rpred from one for some proteins are attributed to the 
common 0  used in calculating Rpred. In fact, the diversity 

of 2 2( )   for different proteins (that can be found in 

Table 4) makes 0  vary in the 15-protein dataset.  

 By using eqs. (20)(22) with the same parameters, we 
are able to predict the folding rate for the proteins 1VII [59], 
2PDD [52], 1PRB [51] and 2A3D [35] (collected in [42] but 
not considered in our 65-protein dataset) whose folding 
rates were measured at high temperatures (higher than T0). 
The calculated temperature dependences of these proteins 
agree well with the experimental data. Theoretical logarithm 
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Table 8  The parameters for predicting temperature-dependent folding rates of 15 proteinsa) 

PDB code S/R(×104) Spred/Rpred(×104) R/Rpred 

1bdd 10.10 10.65 0.987 

1div 10.95 10.66 1.189 

1e0l 9.12 10.09 0.687 

1enh 9.92 10.66 1.357 

1l2y (p12w) 9.24 9.71 0.605 

1l2y (wt) 10.69 9.71 0.670 

1lmb (wt) 11.02 10.65 3.129 

1lmb (g46a) 9.14 10.65 1.362 

1lmb (sa37g) 10.49 10.65 4.425 

1pin (wt) 10.23 10.38 2.679 

1pin (s18g) 10.19 10.37 2.974 

1pin (n26d) 9.05 10.38 1.176 

1prb 12.30 10.59 1.560 

2a3d 10.20 10.67 0.741 

2pdd 10.24 10.50 6.180 

a) Fifteen proteins are taken from Table 2. S and R are taken from Table 4. Spred and Rpred are calculated following eq. (22). In calculation 

0 0.709 298Tb   , 0 4.08 298Tc    are assumed, consistent with b=0.709 and c=4.08 used in Figure 5, and b1=2, c1=1.5, 2 2
0 0 0( ) / ( )BI k T   =0.03 

are assumed after optimization. 

 
folding rates lnW differing from experimental lnkf at differ-
ent temperatures for each protein are only in the range of 
1%2%. 

3.6  Comparison with molecular dynamics predictions 

Recently, by using massively parallel supercomputer Anton, 
the atomic-level molecular dynamics simulations were per-
formed for 12 fast-folding proteins and the folding times of 
these proteins were predicted [60]. The experimental meas-
urements of the folding rate were carried out under higher 
temperatures. Of the 12 proteins, only Villin, NTL9 and 
Homeodomain are not included in the 65-protein dataset 
and have experimental rate data at lower temperature near 
298 K. By using eq. (12) we predicted the folding times for 
Villin, NTL9 and Homeodomain are 8.5, 1287 and 70 µs 
respectively, near the experimental values 0.7 [61], 827 [62] 
and 13 µs [63]. The differences between predicted lnWf and 
experimental lnkf fall in the range as shown in Figure 5. 
While the molecular dynamics simulations by Shaw et al. 
gave the folding times 2.8, 29 and 3.1 µs respectively. But 
their simulation temperatures were assumed to be near  
360 K, explicitly higher than experimental temperature. If 
the MD simulation is not strongly dependent on temperature, 
then the above two predictions, from MD simulation and 
from quantum folding, can be compared with each other. 
About the temperature dependence of folding rate, our ap-
proach has deduced a definite relation, eq. (21). We have 
checked the relation for proteins Villin [61], BBL [64] and 
α3D [35] whose experimental data on folding rate at more 
than one temperatures were published. The logarithm fold-
ing times at different temperatures are in accordance with 
eq. (21) and the corresponding 0  for each protein is ob- 

tained, 0 =0.0235, 0.0389 and 0.0334 respectively for 

three proteins. All parameters 0  taking a value near 0.03 

are consistent with the optimal 0  used in the statistical 

analysis of 15 fast-folding-protein dataset (Table 8). 

4  Conclusion 

The temperature dependence of the folding rates for 16 
fast-folding proteins is studied statistically from the view of 
quantum transition and the abnormal non-Arrhenius peculi-
arities have been explained. A statistical formula for the 
prediction of protein folding rates is proposed based on 
quantum folding theory. The formula is tested on a dataset 
of 65 two-state proteins and compared with other prediction 
models. The results obtained in this article support the con-
formational quantum transition theory of protein folding, 
giving a new approach to the exploration of the protein 
folding mechanism.  
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