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It has long been assumed that most parts of a genome and most genetic variations or SNPs are non-functional with regard to 
reproductive fitness. However, the collective effects of SNPs have yet to be examined by experimental science. We here de-
veloped a novel approach to examine the relationship between traits and the total amount of SNPs in panels of genetic refer-
ence populations. We identified the minor alleles (MAs) in each panel and the MA content (MAC) that each inbred strain car-
ried for a set of SNPs with genotypes determined in these panels. MAC was nearly linearly linked to quantitative variations in 
numerous traits in model organisms, including life span, tumor susceptibility, learning and memory, sensitivity to alcohol and 
anti-psychotic drugs, and two correlated traits poor reproductive fitness and strong immunity. These results suggest that the 
collective effects of SNPs are functional and do affect reproductive fitness.  
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Past studies of complex traits have met with great success in 
identifying a number of significant genetic variants, alt-
hough such variants usually account for only a small frac-
tion of the total trait variation and their functional roles typ-
ically remain unclear [1–8]. The focus on searching for a 
few major effect variants is under the null hypothesis in the 
field of population genetics that the majority of genetic var-

iations are neutral. This hypothesis, however, is at best in-
complete as the question of what determines genetic diver-
sity has long remained unsolved [9]. The neutral hypothesis 
in fact was mistaken right from its inception and never re-
ally explained the first and most remarkable result in mo-
lecular evolution, the genetic equidistance result [10]. While 
the assumption of neutrality has often passed tests by se-
quence-alignment based informatics approaches, such 
methods usually have their own set of assumptions, includ-
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ing assuming certain DNAs to be neutral such as synony-
mous (syn) sites and transposon-element derived sequences, 
and are therefore not truly conclusive tests free of neutral or 
uncertain assumptions [11–13]. In contrast, experimental 
science found little evidence for the neutral assumption. A 
majority of the noncoding parts of the human genome are 
transcribed [14], and numerous experimental researchers 
have now recognized an important functional role for these 
non-coding RNAs (for a review see [13,15]). Furthermore, 
we have recently proposed a more complete theory to su-
persede the neutral hypothesis and a key prediction of our 
theory is that the majority of a genome are functional 
[16,17].  

SNPs typically have just two alleles in a population and 
the minor allele (MA) has frequency (MAF) <0.5. Unlike a 
rare variant, however, a common MA typically has 
MAF >0.1. In theory, neutral could have two contrasting 
meanings. A minor allele could be either neutral because it 
is non-functional and under no Darwinian natural selection 
or only seemingly neutral or nearly neutral or slightly dele-
terious because it is both beneficial and deleterious and un-
der both positive and negative selection. Such opposite 
meanings of neutral may not be easily distinguishable by 
popular statistical tests for detecting selection. MAs were 
often found to be disease risk alleles [18]. However, most 
studies only looked at a few SNPs. The question whether 
the collective effects of common SNPs’ MAs are neutral 
has yet to be addressed. 

While too little genetic variations are known to hurt 
adaptive capacities, it is much less appreciated whether too 
much may exceed an organism’s maximum level of tolera-
ble disorder or entropy, given that mutations are after all 
random and disorderly in origin. Entropy is generally de-
fined as the logarithm of the number of ways the microstate 
can rearrange itself without grossly affecting the macrostate. 
An organism as a macrostate can accommodate certain lim-
ited amounts of microstates at the level of DNA rearrange-
ments or variations. Entropy is thus related to normal ge-
netic diversity as measured by the number of common SNPs. 
Genetic diversity at the maximum or optimum tolerable 
level would be adaptive or beneficial but would be delete-
rious if it is either above or below that level. It is therefore a 
priori expected that genetic diversity should be under both 
positive and negative selection and always at optimum level 
if time is long enough for equilibrium to be reached.   

We here used a novel method to test whether the total 
amount of SNPs carried by an individual is at an optimum 
level. We made use of multiple panels of genetic reference 
populations or recombinant inbred lines (RILs) that provide 
a powerful means to study the genetic basis of complex 
phenotypes [1926]. The RIL panels are derived from 
breeding of parental strains differing in phenotypes and 
genotypes. The F1 and F2 or up to F10 progenies are inter-
crossed to maximize random recombination and hence al-
lelic diversity in the offspring, which were then randomly 

selected for inbreeding up to 20 generations to generate the 
final panel of RILs homozygous for almost all variants or 
SNPs. During the random mating and subsequent inbreed-
ing process, there are ample opportunities for neutral vari-
ants to drift and for non-neutral variants to be selected. Im-
munity against pathogens is essential for survival and de-
pends on allelic diversity, which would positively select for 
enrichment of variants. On the other hand, individuals may 
die or be aborted before birth due to deleterious variants. 
While the population size of a RIL panel is small, the actual 
size of the offspring population of the original parents is 
much greater and includes many that died because of nega-
tive selection.   

If a trait is determined by multiple loci and robust to mi-
nor perturbations, one may expect that the trait may be ge-
netically affected in two mutually non-exclusive ways. One 
is a major effect mutation in one of these loci that alters a 
component of a multi-component pathway. Alternatively, it 
may take a large amount of mutations to harm the trait, 
while such mutations individually or in small amounts may 
have few discernable effects or even beneficial effects. Fur-
thermore, variations in the amount of mutations may ac-
count for quantitative variations commonly found in com-
plex traits. For example, the more the variants the better the 
adaptive immunity up to a point when too much variants 
may start to hurt other traits or be cancer prone. 

For any given panel of RILs, most SNPs would show 
MAs that are carried by less than half of the strains in the 
panel and the strains would differ in the contents of MAs 
that each carries. We defined “MA contents (MAC)” as the 
number of MAs in an individual divided by the number of 
SNPs scanned. Different from MAF, MAC is an individual 
measure. One predicts that strains with higher MAC should 
be similar to those with lower if the neutrality assumption is 
true. We here tested this by performing new trait analysis 
experiments as well as by using the large collection of data 
accumulated in the past several decades for genetic refer-
ence populations.   

1  Materials and methods 

1.1  MAC calculation and statistical methods 

SNPs datasets for the genetic reference populations were 
obtained from the literature and public databases. All anal-
yses were done with autosomal SNPs. Phenotypes data were 
from the literature and GeneNetwork. The number of strains 
in each RIL panel is given in Table S1 in Supporting Infor-
mation.   

The allele frequency of each SNP in a RIL panel or a 
control cohort was calculated by SNP Tools for Microsoft 
Excel and PLINK [27,28]. We excluded non-informative 
SNPs from MAC calculation that have frequency 0 for one 
of the alleles in both cases and controls or in a RIL panel or 
have frequency 0.5 in controls or a RIL panel.   
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A novel software Nucleotide Diversity 1 (ND1) was de-
veloped to count the number of mismatches between indi-
vidual genotypes as well as the number of heterozygous 
(Het) SNPs of each individual. Genetic distance is defined 
as the number of mismatches divided by the number of 
SNPs studied. Pairwise genetic distance (PGD) of a popula-
tion panel is defined as the average of all non-repetitive pair 
within a population. The number of genotype mismatches is 
counted as follows. For homozygous (Hom) vs. Hom mis-
match, a difference of 1 was scored. Hom vs. Het was 
scored 0.5. Het vs. Het was scored 0.5 since half of such 
cases are expected to be A/B vs. A/B with a difference of 0 
whereas the other half are expected to be A/B vs. B/A with 
a difference of 1 (A/B means the generic two-allele geno-
type of a SNP with A or B representing one of the four nu-
cleotides and the forward slash separating the two alleles). 
On a genome wide scale, the number of A/B vs. A/B match 
due to IBD (identical by descent) is expected to be similar 
to the number of A/B vs. B/A mismatch. We verified this 
approach by comparing the PGD in X chromosome for 
CEU females vs. CEU males using HapMap SNP data and 
found them to be similar as expected. In contrast, a software 
based on IBS (identical by status) such as PEAS that scores 
Het vs. Het as 0 showed the males to have much greater 
PGD in X than females [29]. For the missing genotypes 
N/N, N/N vs. Hom was scored as 0 and N/N vs. Het as 0.5.   

The following are the detailed steps in calculating MAC 
and the average distance to the MA set:  

(i) Obtain SNP genotype dataset of a RIL panel or a hu-
man population panel. 

(ii) Calculate allele frequency of each SNP’s two alleles 
in the panel and assign MA status to the allele with the 
smaller frequency. 

(iii) Use the ND1 software to count the number of mis-
matched SNPs between a sample and the set of MAs as-
signed in step two, and obtain the average mismatch # per 
sample. For this counting, the MA set has MAs in homozy-
gous form. 

(iv) Number of MAs in a sample=# SNPs free of N/N# 
mismatch with MAs. 

(v) MAC of each sample = # MAs/# SNPs free of N/N. 
(vi) Correction for N/N genotypes in counting the aver-

age # mismatch from step 3: corrected average mismatch 
#=pre-correction #×#SNPs/(#SNPs# N/N). 

(vii) Average distance to the MA set per sam-
ple=corrected # mismatch/# SNPs. 

The following exemplary data table illustrates the above 
procedures (Table 1). Shown in the table is a population 
panel with five samples listed in row 1 with each genotyped 
for a total of three SNPs as listed in column 1. The geno-
types of each SNP of each sample are in columns 3 to 7, 
with sample 5 having one N/N missing genotype. As an 
example, for SNP rs12345 in row 2, the A allele has a fre-
quency of 3/10=0.3 and is hence assigned as the MA. The 
set of MAs thus identified for all three SNPs is listed in 
column 2 that has the MAs in hom form. The MA set is 
therefore equivalent to an imagined sample who is homo-
zygous for the MAs of all the SNPs studied (MAC=1). Next, 
the number of mismatches between each sample and the 
MA set is determined using ND1 software as shown in row 
5, with the average per sample shown in row 8. The number 
of MAs of each sample is shown in row 6, with MAC value 
in row 7. The corrected average mismatch number is shown 
in row 9. The average distance to the MA set is shown in 
the last row.  

The correlation between genotype and phenotype was 
analyzed by linear and multivariate regression analysis us-
ing GraphPad’s statistics software Prism 5 and InStat3 and 
the software Significance Analysis of Microarrays. For 
multivariate regression analysis of the 3664 traits in BXD 
panel, most traits were unsuitable for analysis because of 
missing data. After removing these, there were 21 traits left, 
from which 13 were filtered out because of non-inde-  
pendent nature based on multivariate analysis. The remain-
ing nine traits were then analyzed by multivariate regression 
using InStat3. Other statistical methods used include Stu-
dent’s t test, two tailed, chi-square test, two tailed, linear 
and multivariate regression, and Pearson/Spearman correla-
tion analysis. Since the sample size is often large in our data 
sets, the Whitney-Mann test gave similar results as the t test 
and only t test data were presented.  

Table 1  Exemplary data table for illustration of MAC calculation 

SNP rsID MA set Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

rs12345 A/A G/A G/G G/G A/A G/G 

rs12346 T/T T/T G/T G/G G/G G/G 

rs12347 C/C C/T T/T T/T T/T N/N 

# mismatch with MA set 1 2.5 3 2 2 

Number MAs 3 2 0.5 0 1 0 

MAC 1 0.67 0.17 0 0.33 0 

Ave # mismatch with MA set: 2.1 
    

Corrected Ave # mismatch: 2.1×3/(31/5)=2.25   
Ave distance to the MA set: 2.25/3=0.75 
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1.2  Identification of trait specific set of MAs 

A number of traits showed correlation with other traits (Ta-
ble 2). We examined four traits among these, blood ethanol 
concentration (BEC, trait 3), its strongly correlated trait 
resistin level (trait 11), and its two non-correlated traits pain 
response (trait 4) and open field rearing behavior (trait 5) 
(Table 2). We picked out 61 strains with BEC data and 
wanted to select a subset of SNPs that could separate the 
BEC trait and its related traits from the non-related traits 
better than what the original random set of 51K SNPs had  

done.  
Each SNP genotype in an Excel data matrix like the 

above exemplary data table was converted into a MA score 
of 0, 0.5, or 1, depending on its MA content. If a genotype 
has no MA, it is scored 0; if it is het, it is 0.5; if it is hom for 
the MA, it is 1. So, the above exemplary data Table 1 can be 
converted to the MA score table (Table 3). 

Next, the 61 RIL strains were sorted based on their BEC 
value and divided into three groups of 20 strains each, with 
group 1 lowest and group 3 highest in BEC value. For each 
SNP, the average MA score in group 1 and 3 was deter-   

Table 2  Correlations among selected traits linked with higher MAC in BXD mice 

GN IDa) Sample# 
Spearman 

Trait 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Trait description 
r P 

10145 25 0.51 0.010 1 
     

** 
 

*b) 
          

* 
Maxi-threshold to 

ethanol induced ataxia 

10169 25 0.61 0.001 2 
  

* * 
   

* 
           

Methamphet. induced 
temp. change 

11453 61 0.49 <0.0001 3 
       

* 
 

* *** 
    

** 
   

Blood ethanol concen-
tration for males 

11307 60 0.44 0.001 4 
    

** 
       

** * * 
    

Hargreaves’ test for 
males 

11672 57 0.41 0.001 5 
              

* 
   

* 
Open field rearing 

activity from 10–15 min 

10022 20 0.61 0.005 6 
      

** 
 

** 
       

** 
  

Saccharin preference 
versus water ratio 

10493 25 0.46 0.020 7 
        

* 
          

Cocaine induced differ-
ence in locomotion 

10301 23 0.38 0.072 8 
              

* 
  

* 
 

Cocaine, nose pokes in 
hole board 

10494 24 0.39 0.061 9 
               

* 
   

Ethanol induced differ-
ence in locomotion 

10917 15 0.53 0.041 10            **        
Anxiety, transitions 

between light and dark 

14220 28 0.52 0.005 11 
            

* 
  

** 
 

* 
 

Resistin level after high 
fat diet 

12540 22 0.50 0.019 12 
                   

Transferrin saturation 
fed 3 ppm iron diet 

11725 57 0.57 0.002 13 
                  

* 
Gain in weight between 

8 and 9 weeks 

12886 16 0.61 0.012 14 
              

* 
    

Oxygen consumption 
males 

12568 38 0.63 <0.0001 15 
                 

** 
 

Deoxycorticosterone in 
cerebral cortex 

12852 16 0.60 0.015 16 
                 

* 
 

Food intake of 13-week 
old females 

12554 24 0.39 0.056 17 
                   

Depression assay, dura-
tion of immobility 

14226 28 0.46 0.015 18 
                   

IL17 level after high fat 
diet 

12396 64 0.30 0.016 19 
                   

Time in open quadr. in 
elevated 0 maze 

a) GeneNetwork identification number. b) Symbols *, **, and *** represent P<0.05, 0.01, 0.001 respectively, from Spearman analysis. 

Table 3  Exemplary data table for MA score calculation 

SNP rsID MA set Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

rs12345 A/A 0.5 0 0 1 0 

rs12346 T/T 1 0.5 0 0 0 

rs12347 C/C 0.5 0 0 0 N/N 
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mined and the significance of the difference between them 
was determined by t test. Each SNP was thus given a P val-
ue from the t test. Next the whole set of SNPs was ranked 
by the P values and divided into 10 groups based on the P 
values. These 10 groups were designated as P<0.05, 
0.050.11, 0.110.2, <0.2, 0.20.5, <0.5, 0.50.75, <0.75, 
0.751, or 01. For example, the SNPs in the <0.05 group 
all have P <0.05; the SNPs in the 0.050.11 group all have 
P value between 0.05 and 0.11. Finally, each group of SNPs 
was used to calculate MAC of each RIL strain. The same 
strain typically had different MAC values for different 
groups of SNPs.   

From the 61 RIL strains, we identified 24 strains that 
have phenotype data for all four traits concerned. Using 
each of the above 10 groups SNPs, we calculated the MAC 
of each strain. So each strain has 10 different MAC values 
corresponding to the 10 groups of SNPs. We then tested for 
correlation between MAC and the four traits of concern in 
the 24 strains to see which of the 10 groups of SNPs gave 
the best result. A strong correlation with BEC and its related 
traits but a poor one with unrelated traits was considered a 
good specificity profile for a group of SNPs. The group 
designated as <0.75 was found to have the best specificity 
profile and has 30336 SNPs.  

1.3  Animal experiments 

The study performed animal experiments and the animals’ 
care was in accordance with institutional guidelines. The 
Institutional Animal Care and Use Committee of the Central 
South University has approved this study. 

For brood size measurement, all lines were synchronized 
by transferring five adult nematodes to fresh dishes and 
allowing them to lay eggs for 34 h, after which the nema-
todes were removed. Twenty L4 individuals from each line 
were picked into 20 dishes and were allowed to lay eggs 
each day into a new dish for a total 8 d or until no more 
eggs were laid. The eggs in each dish were allowed to de-
velop for 2 d before being counted. 

See extended experimental procedures in Supporting In-
formation for experiments on immune responses and high 
fat diet-induced obesity in BXD mice.   

2  Results 

2.1  MA distribution profiles in genetic reference pop-
ulations 

We calculated MAF for each scanned SNP in a panel of 
genetic reference population. We then calculated MAC for 
each strain of a panel and plotted the MAC distribution 
curve (Figure 1; Table S1 in Supporting Information for 
strain descriptions). Great variations in MAC (~0.2 to ~0.7) 
were observed for C. elegans RILs from either the Kruglyak 

or the Kammenga laboratory (Figure 1A and B) [19,20], a 
yeast segregants panel analogous to a RIL panel in animals 
(Figure 1C) [21,22], and the BXD mouse RIL panel (Figure 
1F) [24,25]. Relative to these RILs, D. melanogaster inbred 
panel derived from the wild showed lower MAC and small-
er variation range (Figure 1D) [23]. RILs that were only 
partially inbred such as the collaborative cross (CC) G2F7 
mouse panel that has been inbred for only seven generations 
also showed small variation range in MAC (Figure 1E) [26]. 
For certain panels with large variations, an abrupt turn at the 
ends of the distribution curve, especially the higher end, 
was apparent, indicating an under-representation and hence 
lower survival success of strains with low or high MAC 
(Figure 1AD and F). The population distribution of MAC 
showed a bell curve as expected (Figure S1 in Supporting 
Information). For calculating MAC, the number of informa-
tive SNPs used for each panel ranged from ~120 to 
~151000. Since the SNPs used here are largely selected in a  
non-biased way, the number of SNPs used should not sig-
nificantly affect the calculation of MAC. Indeed as shown 
for the BXD mouse panel, MAC calculated from ~51000 
SNPs were highly similar to those calculated using two dif-
ferent non-overlapping sets of 1000 SNPs randomly select-
ed from the ~51000 (Figure S2 in Supporting Information). 

2.2  MAC correlates with quantitative variations in 
complex traits in model organisms  

To determine whether MAC may affect reproductive fitness, 
we examined brood size of 42 C. elegans RILs from the 
Kruglyak laboratory with Hawaii (HW) npr-1 genotype and 
62 RILs with N2 npr-1 genotype (Figure 2A and B). Their 
parental strains Hawaii CB4856 and Bristol N2 differ in 
npr-1 by one major effect SNP (F215V). Higher MAC was 
linked with lower brood size in a nearly linear fashion, with 
its effect stronger in HW npr-1 background (Figure 2A and 
B). The deleterious effect of higher MAC on reproductive 
traits was confirmed in three other RIL panels in mouse and 
rat, BXD, CC (G2F6), and BXHHXB (Table 4). In addition, 
higher MAC was linked with lower life span in C. elegans 
and mouse (Table 4), less startle response (the ability to 
respond rapidly to harmful changes in the environment) in 
D. melanogaster (for males, Spearman r=0.23, P=0.004) 
[23], and more chill coma response in D. melanogaster (for 
females, Spearman r=0.22, P=0.007) [23]. 

There are 3664 traits for the BXD mouse panel of 89 
strains characterized by numerous studies with data ar-
chived at GeneNetwork [30,31]. Fifteen traits were found 
linked with MAC by Pearson analysis and 15 by Spearman 
analysis (P<0.0001), including BEC, higher deoxycorti-
costerone level in cerebral cortex, and higher adrenal weight 
(Table S2 in Supporting Information). In comparison, as-
signing an arbitrary numerical value to each RIL strain did 
not produce any trait correlation with P<0.0001 in any of 
the 100 tests we did. 
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Figure 1  Distribution profile of MAC of each strain in a panel of genetic reference population. A, C. elegans RIL strains from the Kruglyak laboratory 
separated by the npr-1 F215V mutation into the HW and N2 types. B, C. elegans RIL strains from the Kammenga laboratory. C, Budding yeast segregants 
panel. D, D. melanogaster inbred strain panel derived from randomly selected individuals in the wild. E, Mouse RIL panel from Collaborative Cross at 7th 
generation of inbreeding. F, Mouse BXD RIL panel. Strain ID numbers are arbitrary in order to fit space for the Figure. 

There were 297 traits with P<0.05 (Table S2 in Support-
ing Information). Random sorting tests suggest that 60% of 
these correlations may be false positive at this P value. A 
few examples include lower maximum threshold to ethanol 
induced ataxia (Figure 3A) and lower blood ethanol con-
centration in males 20 min after ethanol injection (Figure 
3B). A number of related neurological traits were linked 
with higher MAC, including smaller methampheta-
mine-induced body temperature change, slower reversal 
learning, and higher sensitivity to pain (Table S2 in Sup-
porting Information, Table 4).    

Most of the 3664 traits in Table S2 in Supporting Infor-
mation were scored for less than half of the panel and dif-
ferent sets of strains were often used for scoring different 
traits. After filtering out traits and strains with too many 
missing data, we were able to perform multivariate regres-
sion analysis on nine traits, which identified three signifi-
cant associations, including BEC, adrenal zona fasciculata 
width, and hair coat color (Table S3 in Supporting Infor-
mation).   

In addition to reproductive fitness as mentioned above, a 
number of other traits were repeatedly found linked with 
MAC in different panels of RILs (Table 4). One was tumor 
susceptibility (Figure 4, Table 4). The effect of MAC in 

urethane induced lung tumor was only apparent when kras2 
oncogene was wild type (Figure 4A vs. 4B) [32]. There 
were also traits such as blood pressure that were repeatedly 
not found associated with MAC (Table 4). MAC also con-
sistently associated with traits linked to obesity and type 2 
diabetes. In BXHHXB rat, more MAs were linked with 
higher glucose level after high fructose diet (Figure 5A) and 
lower serum dopamine level (Figure 5B). In high fat diet 
fed BXD mice, higher MAC correlated with higher resistin 
level and more body weight increase (Table 2; Table S2 in 
Supporting Information).   

We next examined the hypothesis that greater genetic 
diversity may enhance adaptive immunity. A number of 
immunity traits in two panels of mouse RILs (BXD and 
BXH) were significantly associated with MAC (Table 5). 
Importantly, higher MAC was uniformly associated with 
stronger immune responses.   

The yeast segregant panel mentioned above in Figure 1C 
has been stably grown for many generations so that segre-
gants with excess deleterious SNPs would have failed to 
grow to be included in the panel. This yeast segregant panel 
has been used to identity SNPs involved in 316 response 
profiles to 92 drugs and chemical compounds [21]. From 
this published dataset, we identified 12 MAC linked traits at 
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Table 4  Repeated tests of associations between traits and MAC 

RIL panel Correlation 
Reprod. fit.a) Life span Alcohol sens.b) Cancerc) Blood pressure 

r P # r P # r P # r P # r P # 

BXD 
Pearson 0.23 ns 61 0.12 ns 20 0.27 0.04 25 0.22 ns 22 0.27 ns 21 

Spearman 0.25 0.05  0.16 ns  0.25 0.05  0.13 ns  0.28 ns  

                 

AXBBXA 
Pearson          t test, P<0.05 17    

Spearman          Lung tumor     
                 

CXB 
Pearson          0.69 ns 7    

Spearman          0.82 0.03     

                 

LXS 
Pearson    0.25 ns 43 0.23 0.05 74       

Spearman    0.29 0.06  0.27 0.02        

                 

CC (F6) 
Pearson 0.14 0.04 245             

Spearman 0.13 ns              
                 

BXHHXB 
Pearson 0.49 0.02 24          0.02 ns 32 

Spearman 0.50 0.01           0.06 ns  

                 

Worm Pearson 0.45 0.002 42             

Kruglyak Spearman 0.45 0.002              

                 

Worm Pearson    0.27 ns 35          

Kammenga Spearman    0.35 0.04           

a) Reproductive fitness includes uterus horn length (BXD), litter/brood size (CC, Worm), and fetal weights in left horn of uterus (BXHHXB rat). b) Al-
cohol sensitivity was assayed by distance traveled after ethanol injection. c) Cancer includes DEN induced liver tumor (BXD), urethane induced lung 
tumor (AXBBXA), and virus induced lymphoma (CXB).  

 

 
Figure 2  MAC on reproductive fitness in C. elegans. A, Brood size in 
Kruglyak RIL strains with HW npr-1 genotype. B, Brood size in Kruglyak 
RIL strains with N2 npr-1 genotype.  

 

Figure 3  MAC on ethanol traits in BXD mice. A, Maximum threshold to 
ethanol induced ataxia. B, Blood ethanol concentration in males.  
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Table 5  MAC on immune responses in mouse RIL panels 

Mice GN IDa) Sample # Trait description 
Pearson Spearman 

r P r P 

BXD 13969 24 CFU in liver 48 h post i.v. S. aureus infection 0.57 0.003 0.66 0.0005 

 
14313 6 White blood cell count after C. albicans i.v. infection 0.93 0.01 0.83 0.04 

 
10779 18 IgG1 anti-cF.IX (coagul. Factor IX) after cF.IX injection 0.6 0.01 0.48 0.04 

 
10695 21 Pulmonary granulomatous inflammation by BCG 0.47 0.03 0.39 ns 

 
12668 33 Formation of dermal lesions, ECTV footpad 0.36 0.04 0.32 ns 

 
10663 20 Cytotoxicity in spleen T cells post AdLacZ i.v. injection 0.43 ns 0.55 0.01 

 
10806 25 Mortality after i.p. C. psittaci infection 0.39 0.05 0.43 0.03 

BXH 10115 10 Survival times of allograft 0.68 0.02 0.6 0.04 

a) GeneNetwork identification number. 

 

Figure 4  MAC on tumorigenesis in mouse RILs. A, The number of lung tumors induced by urethane in kras2 wild type AXBBXA strains. B, The number 
of lung tumors induced by urethane in kras2 mutant AXBBXA strains. Also shown are average tumor values of top and bottom half in MAC and t test P 
values.   

zero false discovery rate, which all showed more growth 
inhibition in strains with higher MAC, indicating a link be-
tween lower reproductive fitness and higher MAC. Seven 
among these involved four drugs that are FDA-approved 
antipsychotic and antidepression drugs (sertraline, trimepra-
zine, chlorpromazine, and trifluoperazine), and one    
involved the FDA-approved cancer drug Tamoxifen   
(Table 6). 

2.3  Trait specific set of MAs  

We found that certain traits were correlated with certain 
other traits (Table 2). To confirm among the MAC-linked 

traits that correlated traits share more MAs than non-   
correlated traits (Table 2), we developed an approach to 
identifying trait specific set of MAs as described in the 
Methods. From 51469 SNPs originally used for calculating 
MAC for the BXD panel, we identified a BEC-specific set 
of 30336 SNPs. When the MAC value of each RIL strain 
was calculated using the BEC specific set, the BEC trait 
was strongly linked with MAC (Spearman r=0.66, 
P=0.0004) and so was its related trait resistin level (r=0.53, 
P=0.008). In comparison, relatively weak association was 
noted for the two BEC-nonrelated traits, rearing behavior 
(r=0.4, P=0.06) and pain (r=0.46, P=0.03). In contrast, 
two non-related traits, resistin level and pain response, 
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Table 6  MAC correlation with yeast growth in the presence of a compound using 105 segregants 

Compounds 
Pearson Spearman 

r P r P 

diphenyleneiodonium 64 h 16 µmol L1 0.44 <0.0001 0.39 <0.0001 

sertraline 68 h 20.9 µmol L1a)  0.36 0.0004 0.36 0.0003 

sertraline 52 h 20.9 µmol L1  0.30 0.003 0.30 0.004 

sertraline 78 h 20.9 µmol L1  0.31 0.002 0.33 0.001 

diphenyleneiodonium 64 h 16 µmol L1 0.30 0.003 0.29 0.004 

alverine 118 h 105.5 µmol L1  0.29 0.004 0.31 0.002 

tamoxifen 70 h 13.5 µmol L1  0.33 0.001 0.28 0.007 

trimeprazine 80 h 83.8 µmol L1 0.33 0.001 0.33 0.001 

chlorpromazine 70 h 15.7 µmol L1 0.31 0.003 0.27 0.009 

sertraline 90 h 20.9 µmol L1  0.31 0.002 0.32 0.002 

cinnarazine 68 h 33.9 µmol L1 0.27 0.009 0.22 0.03 

trifluoperazine 90 h 26 µmol L1 0.27 0.007 0.27 0.007 

a) FDA-approved drugs in italics. 

 

Figure 5  MAC on glucose and dopamine levels in rat RILs. A, Glucose 
concentration in 10-week-old BXHHXB male rats fed a diet with 60% 
fructose from 8 to 10 weeks. B, Serum dopamine level in 6-week-old male 
BXHHXB rats.   

scored the best correlation with MAC among the four traits 
of concern if MAC value was calculated using the original 
random set of 51469 SNPs.   

We next asked whether poor reproductive fitness and 
strong immunity are correlated, which would indicate some 
sharing of SNPs. The MAC-linked reproductive trait in BXD 
mice is uterus horn length at maturity as shown in Table 4. 
There was a correlation between this trait and formation of 
secondary dermal lesions upon ectromelia virus infection of 
footpad (Pearson r=0.40, P=0.03 for mixed sexes).  

3  Discussion 

3.1  The collective effects of SNPs are not neutral 

Our results suggest a non-neutral role for the collective ef-
fects of most SNPs. MAC was linked with poorer rather 
than better performance in adaptive traits. Lower reproduc-
tive fitness may be sufficient to explain the lower frequency 
of some of these MAs. Negative selection en utero may also 
do so, and the effects of these MAs on some adult traits may 
reflect pleiotropy. In contrast, the link between higher MAC 
and better immunity and the inverse correlation between 
immunity and reproduction indicate simultaneous positive 
selection of the negatively selected MAs and explain why a 
common MA should be common rather than rare. While we 
have yet to obtain direct evidence for a functional role of 
the collective effects in any traits, the most parsimonious 
explanation for all the results here is natural selection. 
These results represent the first formal test of the neutral 
theory with regard to the collective effects of SNPs and 
have dramatically restricted the relevance of the infinite 
sites model.  

This study analyzed numerous mouse traits for associa-
tions with MAC. About a dozen traits showed highly sig-
nificant association with MAC (P<0.0001) when no such 
association was observed for 100 random sorting simula-
tions. These traits are therefore sufficient to support the 
conclusion that MAC is linked with certain traits. Further-
more, our direct experimental test of the hypothesis of MAC 
association with reproductive fitness in C. elegans produced 
highly significant result, which is also sufficient to support a 
functional role of the collective effects of SNPs. 

Among the numerous traits in BXD mice examined here, 
hundreds passed the weak significance value of P<0.05. 
There is a high possibility of false positives here. Most of 
these should therefore be considered as results of an explor-
atory study needing future verification. Using a multiplicity 
adjustment method such as the Bonferronni correction here 
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may be of limited value since the method is widely known 
to be controversial and even absurd [33]. Such corrections 
are favored by researchers adhering to the neutral frame-
work as they help to artificially reduce the amount of func-
tional SNPs. Indeed, certain associations that would have 
been found by Bonferronni correction as false positives 
were in fact real because they could be repeatedly observed 
in independent studies as shown in Table 4. Most animal 
experiments have small sample sizes due to practical and 
financial reasons. The value of our study is to give the 
community a select list of MAC-linked traits worthy of fu-
ture confirmatory studies.   

Do the results here mean an additive effect of large 
numbers of MAs in MAC action and hence non-neutrality 
of most MAs? Many major effect risk alleles of diseases are 
known to be minor alleles [18], which may plausibly imply 
that the effect of MAC may be mediated by a few known 
major effect risk alleles rather than large numbers of minor 
effect MAs. But this may not necessarily be the case. The 
effect of MAC was in fact abolished or weakened by major 
effect MAs such as kras2 mutation in lung cancer or npr-1 
mutation in brood size as found here. Furthermore, MAC 
preferentially affects traits with larger number of known 
additive QTLs [34]. Obviously, the more the number of 
QTLs involved in a trait, the less the individual effect of 
each QTL on the trait. Thus, MAC-linked traits are ex-
pected to have more additive minor effect SNPs as risk al-
leles than those not linked to MAC. The individual effect of 
such SNPs may not be possible for existing methods like 
GWAS to detect. Thus, the concept and methods of MAC 
here may help solve the “missing heritability” problem of 
some complex traits [1].    

The results here suggest insights into the pathogenesis of 
certain diseases. It is well established that accumulation of 
somatic mutations causes cancer, although most such muta-
tions are assumed to be neutral or “passengers” rather than 
“drivers” [35,36]. That RIL strains with more germline 
SNPs or MAC have higher lung cancer incidences suggests 
an oncogenic role for too much genetic variations.  This 
makes good sense since cells with more random variations 
or SNPs should have more entropy, which would make 
growth control less precise and stable. Alcohol addiction in 
humans is associated with lower initial sensitivity to alco-
hols/drugs and strong alcohol and sweet preference and 
consumption [37]. Strains with high MAC showed these 
phenotypes and may thus serve as models of human alco-
holism. High MAC in mice were linked with increase in 
resistin and insulin level and decrease in IL-17 level. Such 
alterations have been implicated in mouse and human obe-
sity and T2D [38,39].    

The mechanism of action of MAC in complex diseas-
es/traits may be hard to delineate precisely and usefully, 
since the defining characteristic of complexity may be the 

breakdown of causality. As simply put by Goldenfeld and 
Woese, “complex systems are ones for which observed ef-
fects do not have uniquely definable causes, due to the huge 
nature of the phase space and the multiplicity of paths” [40]. 
Thus, holistic system or architectural plan approaches may 
be more productive in studying MAC action.     

3.2  Optimum genetic diversity 

Genetic diversity may increase with time but will eventually 
reach an optimum limit due to negative selection of the del-
eterious effects of too many random mutations. Complex 
diseases such as cancer and lower reproductive fitness as 
linked with higher MAC may be the price paid for main-
taining the optimum or maximum limit. On the other hand, 
adaptive immunity may suffer if MAC is too low. So, it is 
optimum MAC level rather than either low MAC or high 
MAC that is adaptively most advantages.   

The two extremes in the quantitative values of a trait, 
such as either too high or too low level in a hormone such 
as deoxycorticosterone as found here, often represent 
suboptimum population minorities, and are less desirable 
relative to the optimum level. The two extreme values 
would be represented by high and low MAC (Figure 6). 
Thus, both high and low MAC would be associated with 
less desirable traits. Here, lower survival rate of individuals 
with low MAC that are below optimum level would be in 
effect equivalent to higher survival rate for individuals with 
greater MAC. So, the nearly linear association of MAC with 
quantitative variations of traits automatically insures posi-
tive selection for MAs, in addition to negative selection. 
Such dual selection may explain why a MA is not too rare 
in frequency.  

At the optimum level of allelic diversity, the overall 
slightly deleterious nature of MAs would be in homeostasis  

 

 

Figure 6  General schemes for both positive and negative selections of 
minor alleles. A complex trait typically shows quantitative variations in a 
population, with suboptimum values (either too high or too low) in the tail 
ends of the population bell curve as schematically shown here. Association 
of low MAC with suboptimum values of traits would result in negative 
selection of low MAC, which is equivalent to positive selection for higher 
MAC. On the other hand, association of high MAC with suboptimum 
values of traits also results in negative selection of high MAC. Thus, the 
nearly linear association of MAC with quantitative variations of complex 
traits automatically insures both positive and negative selection for MAs.  
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with the slightly beneficial nature of major alleles. The op- 
timum concept here means a Pareto optimum or simply the 
best that can be achieved due to a balance between positive 
and negative selection at a particular time point under a 
specific level of epigenetic or organismal complexity [41]. 
As time and complexity changes, the optimum level of nu-
cleotide diversity will also change.  

What determines genetic diversity has been a long- 
standing unsolved puzzle [9]. The key to solve this puzzle 
may be to recognize two kinds of diversity, optimum and 
liner time dependent, as we proposed in the maximum ge-
netic diversity theory [16,17]. The results here provide evi-
dence for a critical role of physiology or system construc-
tion requirements in optimum genetic diversity as suggested 
by the maximum genetic diversity theory [16,17]. Genome 
compositional constraints may also play a role [42]. Opti-
mum genetic diversity is a novel concept that may help 
solve more puzzles in genetics in the years to come.   
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