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The rates of protein folding with photon absorption or emission and the cross section of photon -protein inelastic scattering are 
calculated from quantum folding theory by use of a field-theoretical method. All protein photo-folding processes are compared 
with common protein folding without the interaction of photons (non-radiative folding). It is demonstrated that there exists a 
common factor (thermo-averaged overlap integral of the vibration wave function, TAOI) for protein folding and protein pho-
to-folding. Based on this finding it is predicted that (i) the stimulated photo-folding rates and the photon-protein resonance 
Raman scattering sections show the same temperature dependence as protein folding; (ii) the spectral line of the electronic 
transition is broadened to a band that includes an abundant vibration spectrum without and with conformational transitions, and 
the width of each vibration spectral line is largely reduced. The particular form of the folding rate––temperature relation and 
the abundant spectral structure imply the existence of quantum tunneling between protein conformations in folding and pho-
to-folding that demonstrates the quantum nature of the motion of the conformational-electronic system.  
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Proteins are huge microscopic systems composed of several 
thousands of atoms. In principle, proteins should obey 
quantum laws. Recently, we proposed a protein quantum 
folding theory [1–3]. Although bioinformatics studies, such 
as the prediction of protein structure and function from mo-
lecular sequences, have achieved significant successes, the 
dynamic problem associated with protein folding remains 
unresolved. The proposed quantum folding theory empha-
sizes the concept of torsional cooperative transitions. The 
importance of a torsion state can be examined as the fol-
lowing: a multi-atom system, the conformation of a protein 
is fully determined by bond lengths, bond angles and torsion 
angles (dihedral angles). Torsion angles are the most easily 
changed of these three physical features, even at room tem-
perature, and are usually assumed to be the main variables 
of a protein conformation. Simultaneously, the torsion po-
tential generally has several minima, with the transition 

between minima responsible for conformational changes. 
All torsion modes between contact residues are taken into 
account in the proposed quantum folding theory. These 
modes are assumed to participate in the quantum transition 
cooperatively. In fact, the Bose condensation of strongly 
excited longitudinal electric modes represents an example 
of cooperativeness in living systems and was proposed in 
the 1970s [4,5]. The fold cooperativeness of a protein was 
also demonstrated in earlier literature [6]. These publica-
tions explained the possible existence of the cooperative-
ness in protein folding or in living systems from the point of 
non-linear dynamics and thermodynamics. More recently, 
contact order has been introduced as an important parameter 
for understanding and calculating the folding rate [7]. 
Meanwhile, the dihedral transition was observed more di-
rectly in the statistical analysis of protein conformational 
changes [8]. The cooperative dihedral transitions were 
found to occur in most (~82%) polypeptide chains. Based 
on the above considerations we formulated a quantum the-
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ory on non-radiative protein folding. The point of folding as 
a quantum transition can solve the folding speed problem 
(Levinthal’s paradox)–how proteins can fold so fast when 
they can sample so many possible configurations [9]. In 
particular, the proposed theory can successfully interpret the 
non-Arrhenius behavior of the temperature dependence of 
folding rates [3]. 

To explore the fundamental physics behind the folding 
more deeply and to clarify the quantum nature of the folding 
mechanism more clearly we shall study the protein pho-
to-folding processes, namely, the photon emission or ab-
sorption in protein folding and the inelastic scattering of 
photons on proteins (photon-protein resonance Raman scat-
tering). Although fluorescent proteins have been extensively 
used as biological markers to observe gene and protein ex-
pression [10] and the fluorescence technique has been de-
veloped to examine protein folding and protein-protein in-
teraction dynamics [11], quantitative theory on fluorescent 
transitions and its relation to protein folding remains unclear. 
The reason for this absence of information may be the com-
plexity of the fluorescence mechanism, for example, many 
active proteins need a cofactor or other small molecules to 
fluoresce. An additional reason may be attributed to the 
prevalent “too-classical” understanding of protein folding 
and therefore the lack of a theoretical method to treat the 
problem. However, the newly proposed quantum folding 
theory affords a sound basis for discussing and studying 
these problems. In fact, photon emission or absorption in 
protein folding and the inelastic scattering of photons on 
proteins, as an electromagnetic process, can be accurately 
described by quantum electrodynamics. Because the elec-
tronic transition emitting or absorbing photon is coupled to 
the conformational change of a protein; the torsion transi-
tion in a polypeptide chain plays an important role in deter-
mining the photon emission/absorption rates or cross sec-
tions. We shall make the first-principle-calculation on the 
rates and cross sections of these photo-folding processes 
based on quantum electrodynamics. The quantitative results 
will provide several checkpoints on the quantum folding 
theory. The experimental tests of these theoretical predic-
tions will provide refined evidence on the quantum nature 
of protein folding and photo-folding.  

1  Theoretical method: deduction of protein 
photo-folding from quantum folding theory 

1.1  Hamiltonian for protein folding and photo-folding 

A protein is regarded as a conformation (torsion coordinate 
{ }j   mainly)––electron system. Protein folding is de-

scribed by the Hamiltonian 1 2, ( , , ).H H x 

     

 In 

adiabatic approximation the wave function of the system 

can be expressed as 

 ( , ) ( ) ( , ),M x x      (1) 

and these two factors satisfy: 

 2 ( , , ) ( , ) ( ) ( , ),aH x x x          (2) 

 1 , ( ) ( ) ( ),kn kn knH E
        


        

 (3) 

where  denotes the electronic state and (k, n) refer to the 
conformation- and vibration-states, respectively. The Ham-

iltonian 1 ,H 

 

  
 includes the kinetic energy term 
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22 j jI 

 
   

 
 (Ij is the inertial moment of the jth mode) 

and the torsion potential term. The torsion potential gener-
ally has several minima with respect to each i and near 
each minimum the potential can be approximately ex-
pressed by a potential of a harmonic oscillator. Any small 
asymmetry in the potential has been shown to cause a strong 
localization of the wave functions [1]. The localized con-
formational state is labeled by the quantum number k. Since 
the adiabatic wave function is not a rigorous eigenstate of 
the Hamiltonian H1+H2, there exists a transition between the 
adiabatic states that result from the off–diagonal elements of 
H1+H2. The transition describes the non-radiative protein 
folding [1].  

Since H2 contains the electronic kinetic energy term, 
from gauge invariance of Hamiltonian H1+H2 we obtain the 
electromagnetic interaction: 
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where m is the electron mass, c k  and c 

k  are annihila-

tion and production operators, respectively, for a photon 
with the wave vector k, frequency k and polarization 

,εk  and V0 denotes the normalization volume. From the 

perturbation H1
(EM) to second order and H2

(EM) to first order 
we calculate three types of protein photo-folding processes: 
(i) the stimulated single photon emission and absorption 
accompanying protein folding; (ii) the spontaneous photon 
emission in protein folding; and (iii) the photon-protein 
resonance Raman scattering. All calculations are carried out 
by the quantum electrodynamics method. To simplify the 
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notation, the calculations are made in units of 1,c   

and only in the final results the Planck constant ħ and the 
velocity of light c are written explicitly. 

1.2  Stimulated photon emission and absorption in 
protein folding 

We initially discuss single photon absorption. Set 
,i kn   k  where ~ ( , ) ( ) ( ,kn knkn M x x        

)  and  k  the photon number of the wave vector k and 

polarization . k  For the multi-torsion case, 1 2( , ,    

..., )N  and ( )kn   is the product of the functions of the 

single argument. Likewise, set , 1f k n     k  where 

~ ( , ) ( ) ( , ).k n k nk n M x x                  The above pro-

cess is depicted by the reaction equation: 

 k  photons + protein in (knα) → 

( 1 k ) photons + protein in (k′n′′). 
By using eq. (5) we obtain 

 

(EM)
1 ;

0

0

2

( ) ( )d ,
2 k n

k n kn

kn

e
f H i

m V

e

m V 


  


   






    

   

  




  

   

k
k

k

k
k

k

P

P





 (7) 

where 

;

0 0

( , )( ) ( , )d d

( ) ( )d ( , )( ) ( , )d

( ) ( )d

k n

k n

k n kn k n kn

kn

kn

M x i M x x

x i x x




   

  

  

  

        

    

  

  


     

 





  

  





 







P

P

(8) 

 P  is the matrix element of the electron momentum. In 

the above deduction of eq. (8), the Condon approximation, 

namely, the matrix element ( , )( ) ( , )d ,x i x x    
     

which does not depend on , has been used. The overlap 

integral ( ) ( )d
k n kn     
  

  of the vibration wave func-

tion can be calculated under the harmonic approximation of 
the torsion potential [1]. Note that because ,    the 

wave function ( )kn   and ( )k n     are not orthogonal 

to each other and the overlap integral always exists even for 
.k k   After taking into consideration the thermal average 

over the initial vibration states and the summation over the 
final vibration states we obtain the absorption rate: 
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B(n,T) represents the Boltzmann factor for the thermal  
average, j (′j) is the frequency parameter of the jth torsion 
harmonic potential in the initial (final) state, Ej is the en-
ergy gap between the initial and final states (the minimum 
of the jth initial potential minus that of the jth final) and j 
is the angular displacement of the torsion potential (the po-
sition difference between two minima of the jth torsion po-
tential). pj represents the net change in the vibration quan-
tum number for the torsion oscillator mode j, which satisfies 
the constraint: 

 j
j

p p  (15) 

in the last summation of eq. (10). IV is the Thermo-Averaged 
Overlap Integral (TAOI). By use of the asymptotic formula 
for the Bessel function [12]: 

 1/2 2( ) (2π ) exp( / 2 )z
pe J z z p z    for z >> 1 (16) 

VjI  can be simplified. Finally we obtain 
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  is the average of the initial torsion frequencies j  over 

the oscillator mode j. In eq. (17) the energy gap E has been 
replaced by the free energy decrease G to take the torsion 
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frequency difference j j   into account [1]. IV is a func-

tion of j (or its average  ), j (or its average  ), 

2( )j  (or its average 2( ) ) and jE (or its sum E). 

Note that the simplified expression (17) is obtained when 
zj>>1. For photo-folding with a conformational change, 

,k k   the condition is always fulfilled. The single photon 
absorption cross section is obtained readily from (9): 
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The corresponding absorption rate is denoted by Wa. By 
comparison with the non-radiative folding rate [1]: 
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where IV is defined by eq. (10) and has the same simplified 
expression as eq. (17), and the matrix element of the elec-
tronic wave function IE is given by 
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where I0 is the average inertial moment and lj represents the 
magnetic quantum number of the electronic wave function 

( , ).x   We obtain the ratio of rates: 
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 k  is the incident photon flux in the pho-

to-folding process. Setting  

15~ 2π 10 , k  37
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2
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and 
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leads to 23 26(10 10 ) .a

f

W
F

k
    Consequently, when the 

photon flux is large enough, F > 1023 cm2 s1, the single 
photon absorption rate is comparable with the protein fold-
ing rate. 

The double- and multi-photon absorption rates or cross 
sections can be calculated by the same method with the se-
cond and the higher order perturbations. As a general rule, 
the absorption rates contain the TAOI factor, IV.  

For a single-photon stimulated emission 

 k  photons+protein in (kn) → 

( 1) k  photons + protein in (k′n′′). 

Set ,i kn   k  and , +1f k n     k . Through 

calculating the matrix element (EM)
1i H f  the sin-

gle-photon stimulated emission cross section is deduced as 
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The double- and multi-photon stimulated emission can be 
calculated in the same way through the second and the 
higher order perturbations. All results contain the TAOI 
factor IV. 

1.3  Spontaneous emission in protein folding and the 
spectrum structure of photo-folding 

Following the same perturbation approach and setting the 
initial photon number 0 k  in the above deduction of 

the stimulated emission, one obtains the single-photon 
spontaneous emission rate. The rate of the quantum transi-
tion from a given initial state i kn  to the definite 

final state of  k  photons ,f k n     k  is 

 
2(EM)

12π ( ) .fi k n knW E E f H i      k  (26) 

In the spontaneous emission case, the frequency of the 
emitted photon is not given a priori because no stimulating 
electromagnetic field of given frequency exists. Adopting a 
continuous representation of the electromagnetic field ex-
pansion and replacing the sum over the photon final states 
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The numerical estimate gives 

8~ 10e VI  as 
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units).  
As IV = 1, eq. (27) is in accordance with Einstein sponta-

neous emission formulas. We find the spectral linewidth has 
been largely reduced because of the overlap integral factor 
IV. In fact, a spectral line of the electronic transition from 
state  to ′ has been broadened to a band consisting of 
numerous single spectral lines. The spectral shape function is 
determined by the -function ( ).k n knE E       k  For an  

electronic transition of given frequency 0 0

1
( ( ) ( ))     
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there are a band of spectral lines characterized by the transi-
tion    but with different ( ( )k n  ) and (kn) satisfying 

.kn k nE E      k  

1.4  Photon-protein resonance Raman scattering 

Consider the inelastic scattering: 

 k  photons in ( )     kk  photons in ( ) k + protein 

in (kn) → 
( 1) k  photons in ( ) ( 1)    kk  photons in 

( ) k +protein in (k′n′′). 
Set ,  ,  i kn       k k  and ,  1,f k n     k  

1 .   k  The scattering matrix element: 
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the second term of (28) is obtained: 
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where ;k n kn   P  can be simplified by eq. (8) under the 

Condon approximation. 
I I Ik nE   depends on I more 

strongly than kInI and there are a set of resonant intermedi-
ate states with the same I but different kInI. The energy of 
the resonant band {kInIIC} for a given I = IC is denoted 

by EIC. Leaving only the resonant term in the summation, 
near resonance has the following: 
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Similarly,  

 

; ;( ) ( )
  

0

( ) ( )
( ) ( )d .

0

I I I I I I

I I I I I I

I I

k n

k n k n k n kn

k n kn k n

kn
kn IC

E E i

E E i

     

  

     






    
  

    




  




  

  

  


  





k k

k

k k

k

P P

P P

 

 
 

(32)

 

Since ( )kn   is the solution of the eigenvalue eq. (3), 

we have the completeness of the wave functions: 

 ( ) ( )= ( ).
I I IC I I IC
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The completeness of eq. (33) has been used in the above 
deduction of eqs. (31) and (32). Summing up the contribu-
tion from (EM)

1H  and (EM)
2 ,H  and inserting eqs. (29)–(32) 

into eq. (28) we obtain the cross section of the quantum 
transition from the initial state i to a definite final state f: 

 
2

02π
( ) .fi k n kn fi

V
E E T 



   
       k k

k

 (34) 

After taking the thermal average over the initial torsion 
vibration states and summation over the final torsion states 
and photon states in the direction d (multiplied by a factor 

2
0
3

d
(2π )

V 
 k

k ) we obtain 

 
22

2

d
( 1) ,

d 4π R V

e
I I

mc 
 



 

 
    

k
k

k

 (35) 

where IV is the TAOI given by eq. (10) or (17) and 
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is the Raman tensor and IC is the resonance width of the IC 
band. Eq. (35) is in accordance with Kramers-Heisenberg 
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cross section formulas [13] as IV = 1. The factor 
2

24π

e

mc
 in 

eq. (35) represents the electron classical radius. After being 
excited to a higher quantum state by absorbing photons, the 
orbital electron of a protein can relax to its ground state by 
emitting a fluorescence photon. The inelastic cross section 
eq. (35) can be used to explain the distribution and polariza-
tion of fluorescence photons. The occurrence of IV in eq.  
(35) indicates that the inelastic cross section obeys the same 
law of temperature dependence as in protein folding.  

2  Results and discussion: test on the protein 
quantum folding theory 

2.1  Common factors of the thermo-averaged overlap 
integral of the torsion vibration wave function 

We have studied protein-photon interactions and deduced 
the photon absorption/emission cross section and Raman 
scattering section in protein folding. All these sections 
(transition rates) have been compared with usual non-radia-      
tive folding rates (without the interaction of a photon). The 
general features of all photo-protein cross sections are the 
proportionality of the cross section to the TAOI of the tor-
sion vibration wave function (eqs. (10), (11) and (17)). The 
factor has also occurred in non-radiative folding rate for-
mulas [1]. It is the generalization of the overlap integral of 
the single mode harmonic oscillators, which has been de-
scribed in previous work [14], to represent multi-modes and 
non-equal frequencies between initial and final states. Since 
both the initial kn and final k′n′′ are approximated by the 
harmonic oscillator wave function, the overlap integral IV is 
determined by two sets of harmonic frequencies {j} and 

},{ j  and by the energy gap Ej and angular shift j be-

tween two potentials of the jth torsion modes (j = 1, …, N). 
Although the overlapping wave functions in non-radiative 
folding are kn and k′n′ with equal quantum number α 
while in photo-folding are kn and k′n′′ with ,    

both overlap integrals IV’s are the same functions of torsion 
potential parameters j, ,j  j and Ej. The analytical 

form of IV (eq. (17)) shows how the transition rate depends 

on the frequency ratio j

j




 of the jth torsion potential, the 

potential energy difference Ej and the angular shift j. 
The overlap integral is classified into two categories: 
k k  (without conformational change) and k k  (with 
conformational change). The protein folding belongs to the 
second category, whereas the protein photo-folding may 
occur in both categories, with and without conformational 
changes. 

The common factor of the overlap integral IV provides 

important information on protein folding and photo-folding. 
The detailed comparison of two kinds of folding processes 
can provide evidence on the quantum nature of the folding 
mechanism. 

2.2  Temperature dependence of stimulated photon 
emission and absorption, and resonance Raman scatter-
ing 

The stimulated photon absorption and emission cross sec-
tions are given by eqs. (21) and (25), respectively. For high 
incident photon flux the stimulated cross sections are large 
enough to observe. The cross section of the inelastic pho-
ton-protein resonance Raman scattering is given by eq. (35). 
All these protein photo-folding processes contain the same 
TAOI factor IV in their cross sections, which also occurs in 
the non-radiative folding rate. Since the temperature de-
pendencies of these folding rates and sections are deter-
mined by the factor IV, it indicates that the folding rates 
should obey the same temperature dependence. As is well 
known, the non-Arrhenius behavior of the protein folding 
rate vs. temperature is a long-standing unsolved problem. 
Biologists are interested in understanding why protein fold-
ing depends on temperature in such an unusual way [15]. 
However, from quantum folding theory, Luo and Lu have 
deduced a general formula for the temperature dependence 
of the non-radiative transition rate kf [3]: 
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where       2 2
0( (jI NI     2 2） ）  (40) 

is a scale variable of the torsion energy, I0 represents the 
average torsion inertial moment of atomic groups in the 
polypeptide，N is the number of the collective torsion modes 

of the polypeptide chain, 2

av
( )j   is the average 

angular shift of the torsion potential, and 

 ln lnj

j j

N
 
 

 
   (41) 

describes the effect of the non-equal initial frequency to 
final. Eq. (39) shows that the temperature dependence is 
decided by three torsion potential parameters, namely the 
energy gap E, the average angular shift  (or   in ) 

and the initial-to-final frequency ratio .



 In the vicinity 

of the melting temperature, Tc, the temperature dependence 
of E should be considered. Suppose ( ) ( )cE T E T     
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( )cm T T  is near Tc. One obtains the same temperature 

dependence in eq. (38); however, eq. (39) is replaced by 
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where 1
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 describes the structural susceptibil-

ity of the torsion potential near the melting temperature and 
Gf the equilibrium folding free energy decrease measured 
at temperature Tf. Note that in this case, the three torsion 
potential parameters are replaced by Gf,  and ( ).cE T  

Having deduced eqs. (38), (39) and (42), Luo and Lu suc-
cessfully interpreted the experimental temperature depend-
encies of all known protein folding rates.  

(i) They proved that for 15 proteins whose experimental 
data were available the temperature dependencies of the 
folding rate are all in agreement with eq. (38). 

(ii) By using S, R and the equilibrium free energy as input, 
the torsion potential parameters for each protein were fully 
determined in a consistent manner. The temperature de-
pendence of the folding and the unfolding rates of a protein 
can be deduced in a unifying approach. It has been proved 
that the mutants may have very different temperature de-
pendencies of the folding rates by virtue of the varying tor-
sion potential parameter E that arise because of the muta-
tion [16].  

Since the photo-folding and the usual non-radiative fold-
ing have the same IV factor, we can make predictions that 
the temperature dependence of photo-folding obeys the 
same eqs. (38)–(42), deduced from non-radiative folding. 
Figures 1 and 2 give two examples. Figure 1 describes the 
temperature dependence of lnkf versus 1/T for Trpcage 
(PDB code 1L2Y). Figure 2 shows the dependence lnkf1/T 
for the WW domain of Pin（PDB code 1PIN). In depicting 
two curves the torsion potential parameters are taken from 
the non-radiative folding and the experimental lnkf in 
non-radiative folding at given temperatures are plotted for 
reference. By taking the difference of the torsion potential 
between the initial and final electronic states into account, 

the torsion potential parameters E,  and 



 of photo-     

folding are different from those in non-radiative folding, 
and they are in principle dependent on the emitted or ab-
sorbed photon frequency. However, the electronic state has 
an influence upon the torsion potential, mainly through E. 
From eq. (39) we know that the E influences the slope 
term S of lnkf 1/T relation. If the potential gap E in pho-
to-folding is greater (smaller) than that in non-radiative 
folding, then the Arhenius curve of photo-folding should be 
more (less) steep than Figure 1 for 1L2Y or should add a 

negative (positive) correction on the slope of the curve pre-
sented in Figure 2 for 1PIN. 

Note that in the deduction of the temperature dependence, 
eq. (38), the “high temperature approximation”, 

2
2

( ) 1B
j j j

k T
Z I 


 has been assumed for the Bessel 

function simplification (see eq. (16)). It requires 

 .j

B jk TI
 


 (43) 

For a typical torsion inertial moment Ij = 1037 g cm2  
 

 

Figure 1  Arhenius plot for Tryptophan cage (1L2Y) folding. The param-
eters used in drawing the theoretical curve were taken as Gf = 0.7 kcal 
mol1 (Tf = 296), E(Tc)=9.0kBTf,  = 0.59kBTf, or  = 0.12; N = 18 [3]. 
The experimental lnkf of the non-radiative folding at given temperatures  

can be found in [17]. 

 
Figure 2  Arhenius plot for the WW domain of Pin (1PIN) folding. The 
parameters used in drawing the theoretical curve are taken as Gf = 1.9 
kcal mol1 (Tf = 312), E(Tc) = 43.5kBTf,  = 3.85kBTf, or  = 0.13; N = 
99 [3]. The experimental lnkf of the non-radiative folding at given temper- 

atures can be found in [17]. 
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it means that 21.6 10 ,j    which can be fulfilled in the 

case of conformational change, .k k   However, for pho-
ton emission and absorption accompanying small structural 
relaxation, the protein conformational change may not occur 
(i.e., k k  ) and the angular shift may be small. If eq. (43) 
is not fulfilled, then the original expressions (10) and (11) 
for the TAOI should be used instead of eq. (17), and the 
temperature dependence of the folding rate, eq. (38), should 
be modified. 

2.3  Broadening of the spectral line and structure of the 
electronic spectrum in protein photo-folding 

The motion of orbital electrons obeys the wave equation, eq. 
(2). In a given macromolecular configuration  = 0, the 

energy is 0( )   and the emitted photon frequency is 

0 0

1
( ( ) ( ))      


k  as the electron jumps from   

to ′. However, because of the coupling between the struc-
ture of a protein and electron motion, the electronic jump 
inevitably causes protein structural relaxation or conforma-
tional changes. That is, the quantum state of the confor-
mation-electron system changes from Mkn(, x) to Mk′n′′(, 
x) because of the electronic transitions. The protein struc-
ture variation, in turn, makes the frequency of the emitted 
photon shift from k  to   k k  with 

 0 0

1 1
( ) ( ( ) ( )).kn k nE E  

           
 

k  (44) 

Thus the electronic transition spectrum is broadened and a 
spectral band is formed that corresponds to the electronic 
transition →′. The band includes the abundant vibration 
spectrum without and with the conformational transition. 
The former corresponds to k k  and the latter corre-
sponds to .k k  The width of the spectral band is deter-
mined by the torsion vibration frequency. For example, for 
the spectral line 15~ 2π 10 k s1, the band width is in the 

order of 1013 s1, one hundredth or thousandth of the line 
frequency, and it consists of a large amount of transitions 
between  and ′ in several tens of vibration energy levels. 

Now we discuss the width of each spectral line in the 
band. The rate of spontaneous emission of a photon in pro-
tein folding is given by eq. (27). It contains the overlap in-
tegral factor IV. The reason can be explained by the follow-
ing argument. If an electron jumps from one orbital to an-
other in the same molecular harmonic potential the transi-
tion will obey a strong selection rule and all transitions with 
changing vibration quantum number will be forbidden be-
cause of the orthogonality of the wave functions ( )kn   

and ' ( )kn    ( ).n n  However, for an electronic transi-

tion with an initial and final torsion vibration in different 

harmonic potentials the vibration wave functions ( )kn   

and ( )k n     cannot be orthogonal to each other and the 

overlap integral exists. This is the so-called ‘forbidden’ 
transition. The overlap integral TAOI is an important de-
terminant factor of the ‘forbidden’ transition rate. In the 
preceding calculation of a single-photon emission we esti-
mate 8~ 10e VI  s1. IV changes over a wide range. From 

eqs. (17) and (18) the following is found: 
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2 2 2 4
0
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    (45) 

This equation gives rise to IV taking a maximum at 

2
max( ) =

2

2
0

( )
.

B

G

NI k T


 The typical value of max( )VI  is 

105–104. In the left of the maximum, 2 2
max( ) ( ) ,   IV 

rapidly decreases as →0 following 
2

const
exp .

( )
 
 
 

 In 

the right of the maximum, IV approximately changes with 
1( ) .   Assuming IV~105 we obtain e~103 s1. A typical 

lifetime for an atomic energy state is about 108 s, corre-
sponding to a natural linewidth of about 6.6×108 eV. 
Therefore, the width e of the spectral line in protein photo-      
folding is five orders smaller than the natural linewidth. 
Moreover, due to its exponential dependence on 2( ) ,  IV 

may take a value much lower than 105 for small . This 
leads to the extra-narrowness of the width e. This is a 
well-marked characteristic of the photo-folding spectral lines. 

2.4  Conclusion 

Protein photo-folding––protein folding with photon absorp-
tion or emission and the inelastic scattering of a photon on a 
folded protein––is a useful field for experimentally deter-
mining whether protein folding obeys quantum laws. The 
particular form of the same temperature dependence (eq. 
(38)) for protein non-radiative folding and photo-folding, 
and the dominant structure of the photo-folding spectral 
band that consists of many narrow lines are two primary 
results deduced from protein quantum folding theory. These 
results are closely related to the fundamental aspects of 
quantum laws. First, the results imply the existence of a set 
of quantum oscillators in the transition process and these 
oscillators consist primarily of the torsion-vibration type of 
low frequency. Second, the results indicate that quantum 
tunneling does exist in protein folding, which means the 
non-locality of the state and the quantum coherence of con-
formational-electronic motion. The coherence is rooted 
deeply in the cooperative motion of many structural con-
stituents (e.g., atomic electrons, molecular torsions) under a 
given temperature. Experimental tests on the above predic-
tions are required and these studies will provide clearer ev-
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idence on the quantum nature of protein folding and pho-
to-folding.  

The author is indebted to Drs. Lu Jun and Zhang Ying for numerous dis-
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