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A DNA barcode is a short segment of sequence that is able to distinguish species. A barcode must ideally contain enough vari-
ation to distinguish every individual species and be easily obtained. Fungi of Nectriaceae are economically important and show 
high species diversity. To establish a standard DNA barcode for this group of fungi, the genomes of Neurospora crassa and 30 
other filamentous fungi were compared. The expect value was treated as a criterion to recognize homologous sequences. Four 
candidate markers, Hsp90, AAC, CDC48, and EF3, were tested for their feasibility as barcodes in the identification of 34 
well-established species belonging to 13 genera of Nectriaceae. Two hundred and fifteen sequences were analyzed. Intra- and 
inter-specific variations and the success rate of PCR amplification and sequencing were considered as important criteria for es-
timation of the candidate markers. Ultimately, the partial EF3 gene met the requirements for a good DNA barcode: No overlap 
was found between the intra- and inter-specific pairwise distances. The smallest inter-specific distance of EF3 gene was 3.19%, 
while the largest intra-specific distance was 1.79%. In addition, there was a high success rate in PCR and sequencing for this 
gene (96.3%). CDC48 showed sufficiently high sequence variation among species, but the PCR and sequencing success rate 
was 84% using a single pair of primers. Although the Hsp90 and AAC genes had higher PCR and sequencing success rates 
(96.3% and 97.5%, respectively), overlapping occurred between the intra- and inter-specific variations, which could lead to 
misidentification. Therefore, we propose the EF3 gene as a possible DNA barcode for the nectriaceous fungi. 

barcoding gap, expect value, fungal genomes, homologous sequence, PCR and sequencing success rate, sequence varia-
tion 
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DNA barcoding, in the strict sense, is defined as the stand-
ardized analysis of an easily obtained fragment for se-
quence-based identification of species [1]. A barcode should 
have the attributes required for rapid species identification 
for biodiversity assessment, detection of species invasion, 
food and feedstuff safety, ecology, natural resources con-
servation, ornamental fish trade, and human health [212]. 
In the animal kingdom, the mitochondrial cytochrome c 
oxidase 1 gene is capable of species identification [1318]. 

In plants, the combination of rbcL and matK [19], 
psbA-trnH and ITS (internal transcribed spacer) [20] and 
ITS2 [21,22] are considered as appropriate barcodes. How-
ever, recognition of a universal DNA barcode for fungi has 
been a more challenging task, because many fungi are mi-
croscopic, species concepts are inconsistently applied, and 
some fungi are pleomorphic [23]. In recent years, studies 
have increasingly focused on fungal DNA barcoding. The 
ITS region was found to be effective for species discrimina-
tion of six genera in Zygomycota [24], Trichoderma and 
Hypocrea in Ascomycota [25], and the Cortinarius section  
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of Calochroi [26], Melampsora [27] and some edible fungi 
[23] in Basidiomycota. Nevertheless, this region appeared 
to be problematic in dealing with some closely related spe-
cies of arbuscular mycorrhizal fungi [1], the blue stain fungi 
[28], and nectriaceous fungi [29]. Other barcode loci, such 
as nuclear 28S rDNA and translation elongation factor 1α 
gene, provide a greater capability of species separation in 
some groups [25,30,31]. Zhao et al. [29] investigated four 
candidate DNA barcode markers for their feasibility in the 
identification of some nectriaceous fungi, and the -tubulin 
gene was proposed as a possible barcode. So far, an official 
DNA barcode for fungi has not been defined [1,32]. In pre-
vious studies, the majority of the candidate markers were 
selected from genes applied to fungal phylogeny.  

Since the publication of the first fungal genome, the 
model yeast Saccharomyces cerevisiae in 1996 [33], more 
than 400 fungal genome projects have been launched. One 
hundred and twenty-eight fungal species have been se-
quenced or partially sequenced [34]. Recent research on 
fungal genomics have concentrated on phylogeny [35,36], 
pathogenicity [37,38], antifungal drug discovery [3941], 
yeast comparative genomics [42,43], and the search for a 
DNA barcode [44,45]. Comparative genomics has become a 
powerful and useful tool as datasets increase, and more data 
are able to discriminate conserved from divergent DNA [46]. 
Moreover, this approach identified conserved genes that are 
only found in fungi [42]. 

Fungi of Nectriaceae are distributed worldwide and occur 
on various substrates in tropical and subtropical regions [47]. 
They are economically important, show very high species 
diversity, and a broad range of lifestyles [48]. Rapid species 
identification of the group is required for plant disease diag-
noses, discovery of new bioactive compounds, exploration of 
potential biocontrol agents, and protection from harmful my-
cotoxins [29]. In this study, we compared the genomes of 
Neurospora crassa and 30 other filamentous fungi, and uti-
lized the expect value (E-value) as a criterion to identify ho-
mologous sequences. Among the obtained sequences, four 
candidate barcode markers were selected and tested for their 
feasibility as a DNA barcode for the nectriaceous fungi. The 
genes encode the heat shock protein 90 (Hsp90), the 
ADP/ATP carrier protein (AAC), the cell division cycle pro-
tein 48 (CDC48), and the elongation factor 3 (EF3). 

1  Materials and methods 

1.1  Materials studied 

Two hundred and fifteen sequences of four candidate mark-
ers, Hsp90, AAC, CDC48, and EF3 genes, from 34 clearly 
documented and generally accepted species belonging to 13 
genera of Nectriaceae were analyzed. All sequences have 
been deposited in GenBank (Table 1).  

1.2  Genome comparison 

To select a candidate DNA barcode marker, 31 genomes of  

filamentous fungi (including 16 spp. of Eurotiomycetes, 10 
of Sordariomycetes, three of Dothideomycetes, and two of 
Leotiomycetes), which are publicly available on the Internet, 
were investigated. The program Standalone BLAST 2.2.21 
[49] was set up on a Windows XP system, and a local data-
base was generated for each genome of the filamentous 
fungi. The complete genome of Neurospora crassa was 
split into individual gene sets. Each protein-coding gene 
was compared separately against each of the 30 genomes 
using Standalone BLASTN. An E-value cutoff of 0.1 was 
used to identify significant hits in this analysis. All BLAST 
analyses were run with default parameters in Standalone 
BLAST. The BLAST output files were parsed using PERL 
scripts, which generated a single line of output from each 
BLAST output file [42,50]. For each dataset, the individual 
lines were combined into a single file, and the file imported 
into a spreadsheet program, and then analyzed using Mi-
crosoft Office Excel (Windows XP). Certain specific groups 
of homologous sequences with a given E-value were 
aligned by ClustalX 1.81 [51].  

1.3  Primer design 

To design primers for PCR amplification and sequencing of 
the candidate markers, we used the corresponding sequenc-
es of gene fragments derived from whole-genome sequenc-
es of certain Sordariomycetes species including Fusarium 
graminearum, F. oxysporum, F. verticillioides, Magnaporthe 
grisea, N. crassa, Verticillium albo-atrum, and V. dahliae. 
A complete alignment was carried out using ClustalX [51] 
to find the conserved regions for primer design. Five primer 
pairs were designed using Primer Premier 5.0 [52], accord-
ing to the main principles proposed by Compton [53], Dief-
fenbach and Dveksler [54], Goller et al. [55], Innis et al. 
[56], Saiki [57], and Sambrook and Russell [58].  

1.4  DNA amplification and sequencing 

Genomic DNA of each strain was isolated from mycelium 
grown on potato dextrose agar at room temperature for 
about two weeks [59]. The PCR reaction was performed on 
an ABI 2720 Thermal Cycler (Gene Co. Ltd., Foster City, 
California, USA). The 25 μL reaction system comprised 
16.25 μL of double distilled water, 2.5 μL of 10× PCR 
buffer, 2 μL of MgCl2 (25 mmol L1), 1 μL of each primer 
(10 μmol L1), 0.5 μL of dNTP (10 mmol L1 each), 1.5 μL 
of DNA template, and 0.25 μL Taq DNA polymerase (5 U 
μL1). The PCR primers used were newly designed in this 
study. The cycling conditions were an initial step of 5 min 
at 95C; 35 cycles of 40 s at 94C, 40 s at 54/56/52/62C 
for Hsp90/AAC/CDC48/EF3, respectively, and 40 s at 72C; 
followed by 10 min at 72C. The PCR products were veri-
fied by electrophoresis of 2.5 μL products on a 1% agarose 
gel and staining with ethidium bromide. A molecular size 
marker was included to estimate length of the amplification 
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Table 1  Materials used in this study 

Species 
Collection number 

or sourcea) 
GenBank accession number 

Hsp90 AAC CDC48 EF3 

Albonectria rigidiuscula (Berk. & Broome) Rossman & Samuels HMAS 183135 JN131641 JN131694 JN131748 JN131802 

 HMAS 183509 JN131642 JN131695 JN131749 JN131803 

Chaetopsinectria chaetopsinae (Samuels) J. Luo & W.Y. Zhuang HMAS 76860 JN131658 JN131712 JN131766 JN131820 

Corallomycetella repens (Berk. & Broome) Rossman & Samuels AR 4659 JN131615 JN131668 JN131722 JN131776 

Cosmospora coccinea Rabenh. CBS 114050 JN131609 JN131662 JN131716 JN131770 

C. cupularis J. Luo & W.Y. Zhuang HMAS 97514 JN131638 JN131691 JN131745 JN131799 

C. episphaeria (Tode) Rossman & Samuels HMAS 99194 JN131632 JN131685 JN131739 JN131793 

C. henanensis Y. Nong & W.Y. Zhuang HMAS 183528 JN131635 JN131688 JN131742 JN131796 

C. meliopsicola (Henn.) Rossman & Samuels HMAS 86473 JN131618 JN131671 JN131725 JN131779 

Cosmospora sp. 1 HMAS 76861 JN131655 JN131709 JN131763 JN131817 

 CBS 122578 JN131610 JN131663 JN131717 JN131771 

Cosmospora sp. 2 GJS 85.205 JN131649 JN131703 JN131757 JN131811 

C. vilior (Starbäck) Rossman & Samuels HMAS 183636 JN131646 JN131700 JN131754 JN131808 

Cyanonectria cyanostoma (Sacc. & Flageolet) Samuels & Chaverri GJS 98.127 JN131652 JN131706 JN131760 JN131814 

Gibberella zeae (Schwein.) Petch HMAS 98297 JN131631 JN131684 JN131738 JN131792 

Haematonectria haematococca (Berk. & Broome) Samuels & Rossman HMAS 183156 JN131636 JN131689 JN131743 JN131797 

 HMAS 183157 JN131637 JN131690 JN131744 JN131798 

 HMAS 183514 JN131643 JN131696 JN131750 JN131804 

H. ipomoeae (Halst.) Samuels & Nirenberg HMAS 188477 JN131647 JN131701 JN131755 JN131809 

 HMAS 188475 JN131648 JN131702 JN131756 JN131810 

Lanatonectria flavolanata (Berk. & Broome) Samuels & Rossman HMAS 91516 JN131622 JN131675 JN131729 JN131783 

L. flocculenta (Henn. & E. Nyman) Samuels & Rossman HMAS 76873 JN131653 JN131707 JN131761 JN131815 

Nectria australiensis Seifert HMAS 83397 JN131654 JN131708 JN131762 JN131816 

N. cinnabarina (Tode) Fr. HMAS 98306 JN131625 JN131678 JN131732 JN131786 

 HMAS 98311 JN131629 JN131682 JN131736 JN131790 

N. pseudotrichia (Schwein.) Berk. & M.A. Curtis HMAS 97518 JN131634 JN131687 JN131741 JN131795 

 HMAS 183560  JN131699 JN131753 JN131807 

 HMAS 183175 JN131645 JN131698 JN131752 JN131806 

 HMAS 183559 JN131644 JN131697 JN131751 JN131805 

Neonectria castaneicola (W. Yamam. & Oyasu) Tak. Kobay. & Hirooka HMAS 76865 JN131656 JN131710 JN131764 JN131818 

 HMAS 83369 JN131657 JN131711 JN131765 JN131819 

 HMAS 183542 JN131640 JN131693 JN131747 JN131801 

N. confusa J. Luo & W.Y. Zhuang HMAS 99197 JN131624 JN131677 JN131731 JN131785 

 HMAS 99198 JN131626 JN131679 JN131733 JN131787 

N. discophora var. discophora (Mont.) Mantiri & Samuels HMAS 98333 JN131619 JN131672 JN131726 JN131780 

 HMAS 98327 JN131621 JN131674 JN131728 JN131782 

N. ditissimopsis P. Zhao, J. Luo & W.Y. Zhuang HMAS 98328 JN131627 JN131680 JN131734 JN131788 

 HMAS 99206 JN131628 JN131681 JN131735 JN131789 

 HMAS 98329 JN131630 JN131683 JN131737 JN131791 

N. hubeinensis W.Y. Zhuang, Y. Nong & J. Luo HMAS 98331 JN131620 JN131673 JN131727 JN131781 

N. jungneri Henn. GJS 08-233 JN131607 JN131660 JN131714 JN131768 

N. major (Wollenw.) Castl. & Rossman HMAS 183184 JN131639 JN131692 JN131746 JN131800 

N. ramulariae Wollenw. CBS 182.36 JN131612 JN131665 JN131719 JN131773 

 CBS 151.29 JN131611 JN131664 JN131718 JN131772 

N. shennongjiana J. Luo & W.Y.Zhuang HMAS 183185 JN131659 JN131713 JN131767 JN131821 

N. sinensis J. Luo & W.Y. Zhuang HMAS 183186 JN131651 JN131705 JN131759 JN131813 

N. veuillotiana (Sacc. & Roum.) Mantiri & Samuels HMAS 98332 JN131623 JN131676 JN131730 JN131784 

 HMAS 99207 JN131633 JN131686 JN131740 JN131794 
 GJS 91-116 JN131650 JN131704 JN131758 JN131812 

Pseudonectria pachysandricola B.O. Dodge CBS 476.92 JN131616 JN131669 JN131723 JN131777 
 CBS 501.63 JN131617 JN131670 JN131724 JN131778 

P. rousseliana (Mont.) Wollenw. AR 2714 JN131613 JN131666 JN131720 JN131774 
 CBS 114049 JN131608 JN131661 JN131715 JN131769 

Rubrinectria olivacea (Seaver) Rossman & Samuels AR 4331 JN131614 JN131667 JN131721 JN131775 

a) CBS, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; GJS, G.J. Samuels; HMAS, Herbarium of Mycology, Institute of Microbiol-
ogy, Chinese Academy of Sciences, Beijing, China; AR, Amy Rossman.  
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products. The obtained amplicons were purified by PCR 
Product Purification Kit (Biocolor BioScience & Technol-
ogy Company) and sequenced in both directions, using the 
same primers used for PCR amplification, on an ABI 3730 
XL DNA Sequencer (SinoGenoMax Co., Ltd.). The se-
quencing reactions were performed according to the manu-
facturer’s protocol. 

The original forward and reverse sequences were assem-
bled manually, aligned using ClustalX [51], and edited to 
adjust the aligned sequences by BioEdit 7.0 [60]. The 
non-alignable sequences for Hsp90, AAC, and CDC48 gene 
fragments were removed to decrease the influence of large 
gaps. No gaps were found in the EF3 gene. 

1.5  Comparison of intra- and inter-specific divergences 

The aligned sequences were input into DNAstar 7.1.0 (La-
sergene, WI, USA) to calculate the similarity matrices. A 
visualization analysis tool, TaxonGap 2.4.1 [61], was used 
to illustrate the sequence divergences within and between 
species of the candidate markers for each of the 34 investi-
gated species.  

The intra- and inter-specific pairwise distances were cal-
culated using the K2P model in MEGA 4.1 [62]. The fre-
quency distributions of the intra- and inter-specific distanc-
es were analyzed to check the barcoding gap, i.e., the space 
between intra- and inter-specific distances [63], using Mi-
crosoft Office Excel. 

1.6  Success rates of test barcode sequence acquisition 

The success rates of PCR amplification and sequencing 
were evaluated. PCR amplification was considered as suc-
cessful when there was a single and clear band of the ex-
pected size on agarose gels. A high quality chromatogram 
counted as successful sequencing. The success rate of PCR 
amplification multiplied by that of sequencing determined 
the success rate of PCR amplification and sequencing.  

2  Results  

Thirty-one genomes of filamentous fungi were compared. 
Homologous sequences with E-values greater than 1030 
showed a high proportion of polymorphism, based on 
alignments using ClustalX [51]. Of the homologous se-
quences with E-values near or less than 10100, the Hsp90, 
AAC, CDC48, and EF3 genes were randomly selected as 
candidate markers to investigate their feasibility in the iden-
tification of the 34 nectriaceous species. This is the first 
time that these gene fragments have been selected as candi-
date markers for the purpose of fungal DNA barcoding. 

The designed primers are shown in Table 2. Degenerate 
primers were devised for the Hsp90, EF3, and CDC48 
genes because variable bases were found at some positions. 

PCR amplifications and sequencing were carried out suc-
cessfully for all the selected gene fragments. The sequence 
lengths were 557−589 base pairs (bp) for Hsp90 gene, 
551−607 bp for AAC gene, 420−454 bp for CDC48 gene, 
and 501 bp for EF3 gene.  

To judge the suitability of a DNA barcode marker, the 
intra- and inter-specific sequence divergence is a very im-
portant criterion. Comparisons of the four candidate mark-
ers for each of the 34 Nectriaceae species were performed 
by TaxonGap [61]. The results are summarized in Figure 1. 
For each species, sequence similarity of the same gene 
within the same species was high; therefore, the relevant 
intra-specific variation (shown as grey bars in Figure 1) was 
low. For the CDC48 and EF3 genes, the inter-specific vari-
ations were very similar, and are apparently higher than 
those for the Hsp90 and AAC genes, and there was a clear 
gap between the maximum intra-specific variations and the 
minimum inter-specific variations. In the case of the Hsp90 
gene, the intra-specific variation for Nectria cinnabarina 
was very close to the inter-specific variation between 
Haematonectria haematococca and H. ipomoeae. Similarly, 
the intra-specific variation for Albonectria rigidiuscula was 
almost the same as the inter-specific variation between 
Cosmospora henanensis and Neonectria confusa when the 
AAC gene was used, which indicates this gene may cause 
incorrect identification. 

The frequency distributions of the intra- and in-
ter-specific pairwise distances of the four candidates were 
analyzed to check the barcoding gap [63]. The results are 
shown in Figure 2. In the cases of the CDC48 and EF3 
genes, the genetic distances within any single species did 
not exceed those among species, and a distinct gap was 
present between the inter- and intra-specific distances. In 
contrast, overlapping occurred when using the Hsp90 and 
AAC genes, which indicated that they are not useful as bar-
code markers. 

The ease of PCR amplification and nucleotide sequence 
acquisition is also important in evaluating a DNA barcode 
marker. Three of the four candidate markers were readily 
amplified and sequenced, with high success rates (≥96.3%) 
(Table 3). However, for the CDC48 gene, additional pri-
mers were required.  

Table 2  Primers used in this study 

Primer name Primer sequence (5′→3′) 
Hsp90F 
Hsp90R 

CATCATCAACACHGTCTACTCC 
KGAGATRAACTCGGAGTGCTTC 

AACF 
AACR 

CCAACGTCATCCGTTACTT 
ACCCTTGAAGAGAGACTTGA 

CDCF 
CDCR 

GCCGTCAACGATGARAAC 
CGACKACYTTGAACTCTACT 

CDC1F 
CDC1R 

CGACTGCGATCCTCAAG 
CCCTCGCAGTGAATGAC 

EF3F 
EF3R 

GACCACCATTGACTGGACCA 
TTGGAGGTRCCAGGGTACT 
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Table 3  Success rates of PCR and sequencing of Hsp90, AAC, CDC48, and EF3 genes of 34 species of Nectriaceae 

Candidate barcode Hsp90 AAC CDC48 EF3 

Efficiency of PCR amplification 100% 97.5% (79/81) 87.7% (71/81) 96.3% (78/81) 

Success rates of sequencing 96.3% (78/81) 100% 95.8% (68/71) 100% 

Success rate of PCR and sequencing 96.3% 97.5% 84.0% 96.3% 

 

 

Figure 2  Comparisons of frequency distribution of intra- and inter-  
specific pairwise distances among Hsp90, AAC, CDC48, and EF3 genes 
for the nectriaceous fungi generated with MEGA and Excel. The intra- and  

inter-specific distances are shown as white and black bars, respectively. 

3  Discussion 

3.1  Selection of genes for DNA barcoding 

E-value is a parameter that describes the number of hits one 
can “expect” to see by chance when searching a database of 
a particular size [64]. Following the study by Fitzpatrick et 
al. [36], the top BLAST hits longer than 300 nucleotides 
were retained as putative open reading frames for further 
analysis. There has been some discussion concerning the 
statistical significance represented by E-value. Pertsemlidis 
and Fondon [65] and Zeng et al. [66] treated E-values less 
than 0.1 as a measure of statistical significance, while Pear-
son [67] suggested 0.02 as the boundary measurement. 
E-values below 10–5 are often considered to represent ho-

mology [42,6871]. In the present analysis, an E-value cut-
off of 0.1 was first chosen to identify significant hits. Our 
results indicated that a threshold of 10–5 is better than 0.1 
for searching for homologs among the fungi studied. Varia-
bility of the obtained homologous sequences was analyzed, 
based on alignment using ClustalX [51], to find the candi-
date markers. The result indicated that relatively conserved 
homologous sequences with E-values around or less than 
10100 may be suitable as candidate markers. As a result, 
four genes were selected as candidate markers. 

Non-coding regions, such as the ITS, often have insuffi-
cient phylogenetic information to unequivocally identify 
closely related species in some genera of Ascomycota 
[29,31,72,73]. In contrast, protein-coding genes have higher 
information contents [74]. Accordingly, protein-coding 
DNA sequences might represent better candidates for fungal 
DNA barcoding.  

3.2  Evaluation of the candidate DNA markers 

Many criteria have been used to determine an ideal DNA 
barcode, such as a short fragment, universally used, having 
adequate variations among species, and conserved within a 
species, exhibiting a high degree of species resolution 
[19,75]. Sequence variations, frequency distribution of in-
tra- and inter-specific pairwise distances, and easiness of 
sequence acquisition were treated as essential.  

The Hsp90, AAC, CDC48, and EF3 genes were tested for 
their feasibility as a DNA barcode for the nectriaceous fungi. 
The single copy gene EF3 encoding the elongation factor 3 
is a unique, essential, and soluble component of the transla-
tional system in fungi [7678]. Our study presents a strong 
case for the partial EF3 gene being the most promising 
DNA barcode for this group. First, it exhibits the smallest 
sequence divergence within an individual species and a 
maximal separation among species. As calculated by Ta- 
xonGap [61], all the inter-specific variations were greater 
than the intra-specific variations, and a clear gap existed 
between them (Figure 1). This was further substantiated by 
the frequency distribution of the intra- and inter-specific 
pairwise distances calculated using MEGA [62] and Mi-
crosoft Office Excel. Its smallest inter-specific distance was 
3.19%, and the largest intra-specific distance was 1.79%; 
thus, EF3 appeared to possess the appropriate intra- and 
inter-specific variations. No overlapping occurred between 
the intra- and inter-specific pairwise distances (Figure 2). 
Secondly, the partial EF3 gene lacks an intron and is rela-
tively easy to obtain. Its PCR amplification and sequencing 
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success rate reached 96.3%, which was slightly lower than 
that of the AAC gene (97.5%) (Table 3).  

The CDC48 gene exists as a single copy per haploid ge-
nome [79]. Its encoded protein plays an essential role in cell 
proliferation, cell cycle progression, and ATP-dependent 
fusion of endoplasmic reticular membranes [80,81]. Deter-
mination of genetic divergence using two different methods 
confirmed that the CDC48 region possesses a good se-
quence divergence within and among species, which is 
equally high as that shown by the EF3 gene. An obvious 
boundary occurred between the intra- and inter-specific 
pairwise distances (Figure 2). However, it had a lower PCR 
and sequencing success rate (84%, Table 3) when using a 
single pair of primers. Additional primers (CDC1F and 
CDC1R) were required to reach a higher success rate (Table 
2). The Hsp90 protein plays a key role in signal transduc-
tion, cell cycle control, protein folding, protein degradation, 
cell signaling, and morphological evolution [82]. The nu-
clear gene Hsp90 is a single-copy gene and usually contains 
multiple introns [83,84]. It is highly conserved and exten-
sively used in phylogenetic analyses [8587]. In this study, 
although it had a high PCR and sequencing success rate 
(96.3%) (Table 3), it cannot separate the intra- and in-
ter-specific variations adequately (Figure 1), which influ-
ences its function as a barcode.  

AAC occurs as a single copy in the genome [88]. The 
protein is located on the inner membrane of the mitochon-
dria and catalyses the exchange diffusion of ADP and ATP 
[89]. Our study showed that this gene had the highest PCR 
and sequencing success rate (97.5%) (Table 3). However, it 
showed a relatively low inter-specific variation leading to 
inaccurate identification of species (Figure 1).  

Our results indicate that the partial EF3 gene meets the 
requirements for a good DNA barcode. CDC48 gene pos-
sessed good sequence variations among species, but the 
PCR and sequencing success rate was relatively low. The 
Hsp90 and AAC genes had high PCR and sequencing suc-
cess rates, while overlapping occurred between the intra- 
and inter-specific distances, which may lead to misidentifi-
cation. Compared with β-tubulin, which was previously 
suggested as a possible DNA barcode for the nectriaceous 
fungi [29], the sequence acquisition of EF3 gene is easier.  

Recently, Robert et al. [44] devised an approach to locate 
potential barcode markers from fungal genomes. Lewis et al. 
[45] managed to identify a barcode gene using a taxono-
my-aware processing pipeline. Their results indicated that 
genome-mining has a potential use in fungal DNA barcod-
ing. Our study may represent the first step towards selecting 
DNA barcodes from fungal whole-genome comparisons. 
With the increasing availability of genome datasets, we be-
lieve that comparative genomics will play an essential role 
in DNA barcoding. 
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