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Although much has been known about how humans psychologically perform data-driven scientific discovery, less has been 
known about its brain mechanism. The number series completion is a typical data-driven scientific discovery task, and has 
been demonstrated to possess the priming effect, which is attributed to the regularity identification and its subsequent extrapo-
lation. In order to reduce the heterogeneities and make the experimental task proper for a brain imaging study, the number 
magnitude and arithmetic operation involved in number series completion tasks are further restricted. Behavioral performance 
in Experiment 1 shows the reliable priming effect for targets as expected. Then, a factorial design (the priming effect: prime vs. 
target; the period length: simple vs. complex) of event-related functional magnetic resonance imaging (fMRI) is used in Ex-
periment 2 to examine the neural basis of data-driven scientific discovery. The fMRI results reveal a double dissociation of the 
left DLPFC (dorsolateral prefrontal cortex) and the left APFC (anterior prefrontal cortex) between the simple (period length=1) 
and the complex (period length=2) number series completion task. The priming effect in the left DLPFC is more significant for 
the simple task than for the complex task, while the priming effect in the left APFC is more significant for the complex task 
than for the simple task. The reliable double dissociation may suggest the different roles of the left DLPFC and left APFC in 
data-driven scientific discovery. The left DLPFC (BA 46) may play a crucial role in rule identification, while the left APFC 
(BA 10) may be related to mental set maintenance needed during rule identification and extrapolation.  
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Scientific experiments yield data which are usually repre-
sented as numbers, and the rules underlying the data are 
required to be exploited. For the knowledge-rich scientific 
domains, some prior knowledge is available to help people 
to analyze the experimental data and model-based methods 
are often used. For the knowledge-lean scientific domains, 

however, the data-driven method is needed. Data-driven 
scientific discovery [1] can be depicted as a process of rule 
induction directly from collected experimental data. As a 
topic of intense scrutiny and speculation for hundreds of 
years, data-driven scientific discovery has been extensively 
studied in multiple disciplines, such as artificial intelligence 
(AI) and cognitive psychology [1–7].  

The cognitive processes underlying data-driven scientific 
discovery have been actively investigated using behavioural 
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experiments, verbal protocols analysis, computer simulation, 
and analysis of particular scientific discovery cases [2–5]. 
For example, Wason et al. [2] treated a key component of 
scientific discovery as the test of hypotheses using a “2-4-6” 
task. Simon et al. [3–6] conceived scientific discovery as a 
form of problem solving. They provided participants (and 
computer programs), the data to which a scientist had ac-
cessed, and asked them to rediscover scientific laws. Along 
this line, Haverty et al. [7] identified three fundamental 
stages of data-driven scientific discovery in quadratic-func-    
tion-finding tasks based on concurrent verbal protocols: 
data gathering, pattern finding, and hypothesis generation. 
Overall, these studies have provided detailed psychological 
analyses of different aspects of data-driven scientific dis-
covery; however, its neural mechanism has been less inves-
tigated and understood. 

Number series completion, e.g., predicting the next 
number in the sequence {2, 4, 6, 8, 10}, is a classical task 
which has been widely used in data-driven scientific dis-
covery. Studies indicate that four basic cognitive compo-
nents are involved in solving number series completion 
problems [8,9]. The first component is the encoding of 
number series. The second component, identification, con-
tains three sub-components: (i) Relation detection that re-
quires scanning the series and generating a hypothesis with 
respect to the relation among adjacent elements. Relations 
among elements may be simple or complex, which is de-
termined by the type of arithmetic operation (e.g., addi-
tion/subtraction and multiplication/division) and the magni-
tude of the numbers that the operation works on. (ii) Dis-
covery of periodicity that involves the detection of period 
boundary and structure. A simple series has the period 
length of one (such as {1, 3, 5, 7, 9}, period length=1, rule 
+2), while a complex series has longer period length (such 
as {2, 4, 3, 5, 4, 6}, period length=2, rule +2, −1). (iii) 
Completion of the pattern description that involves identi-
fying the relations among the elements composing a cycle, 
and then formulating a rule that accounts for the sequence. 
The third component, extrapolation, consists of three 
sub-components: (i) detection of the answer position; (ii) 
isolation of the related part of the rule; and (iii) application 
of this part of the rule in computing the answer. The last 
component is answer production. The period length is criti-
cal in determining the processing requirements to solve a 
number series. A simple number series (period length=1) is 
solved with a lower working load when performing the 
sub-component of discovery of periodicity in the second 
component, and the sub-components of detection of the 
answer position and isolation of the related part of the rule 
in the third component are not needed.  

Delazer et al. [10–12] have validated the reliable priming 
effect in number series completion tasks in their serial behav-
ioural and neuropsychological studies. The priming effect 
generally refers to the facilitation of a piece of information 
such as a word/object/concept (prime) to its subsequent proc-

essing (target) [13]. The priming effect existing among num-
ber series completion tasks opens a window to explore the 
neural mechanism of data-driven scientific discovery. How-
ever, there are also some insufficiencies in previous studies. 
Firstly, some results are not convergent. For example, two 
behavioural studies in Girelli et al. [10] show no identical ef-
fect of priming for the error rates: The priming effect in their 
Experiment 1 is significant while is not significant in their 
Experiment 2. Secondly, previous studies adopt four kinds of 
arithmetic operations (addition, subtraction, multiplication and 
division) in their design. Multiplication and division may 
cause different priming effects than addition and subtraction. 
Thirdly, the number magnitude is not explicitly considered. 
These problems may introduce heterogeneities.  

In order to overcome these insufficiencies, some con-
straints have been set in this study, including the range of 
number magnitude (0–99) and arithmetic operations (only 
addition and subtraction are used). These constraints also 
make the task proper for a functional magnetic resonance 
imaging (fMRI) experiment. Experiment 1, a behaviour study, 
is designed to observe if the effects in previous studies will be 
kept. Our hypothesis for Experiment 1 is that significant ef-
fects of the period length and the priming effect may be 
shown as measured by the reaction time (RT) and percent of 
correctness. We have no assumption with respect to the in-
teraction effect between the period length and the priming 
effect. Experiment 2, an fMRI experiment, is designed to 
explore the neural mechanism of data-driven scientific dis-
covery in human brain using the number series completion 
task. The same priming effect paradigm is used to function-
ally segregate the related brain areas involved. Based on pre-
vious studies [14−18], we hypothesize that the left dorso-
lateral prefrontal cortex (DLPFC) and the left anterior pre-
frontal cortex (APFC) may be both recruited in the priming 
effect of number series completion tasks, i.e., they may show 
a more significantly reduced activation for the target task than 
for the prime task, and they may play different roles. 

1  Experiment 1 

1.1  Subjects 

Thirty paid healthy students (15 males and 15 females, aged 
23.9±2.4, right-handed, normal or corrected-to-normal vi-
sion) from Beijing University of Technology participated in 
the experiment. The Institutional Review Board of the Bei-
jing University of Technology approved all experimental 
procedures, and written informed consent was obtained 
from each participant.  

1.2  Tasks 

This study adopted a 2×2 factorial design (the priming ef-
fect: prime vs. target; the period length: 1 vs. 2). The prime 
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task and the corresponding target task were designed to 
share the same underlying regularity to be discovered by the 
participants, while differing in both constituent elements 
and correct answers. All numbers including answers ranged 
from 0 to 99, and only addition and subtraction were used in 
the design of number series completion tasks. Numbers used 
in a target number series task were different from that in the 
corresponding prime task. The answer for the target task was 
also different from that for the prime task. For example, the 
prime and target had different magnitudes of numbers (e.g., 
{27, 30, 33, 36, 39} vs. {8, 11, 14, 17, 20}), and required 
different operands for extrapolation (prime, 39+3; target, 
20+3) and different answers (prime, 42; target, 23). 

The period length was used to define the simple (L=1, 
e.g., {1, 4, 7, 10, 13} with rule +3) and the complex (L=2, 
e.g., {1, 3, 6, 8, 11} with rule +2, +3) number series tasks. 
For the simple task, the common difference values were set 
to 3, 4, 6, 7, 8, 9, 12, and 13 (they were chosen as the result 
of a trade-off between the number of tasks and the experi-
mental time). For the complex task (e.g., rule ±a, ±b), we 
had 0<a<10 and 0<b<10. Totally 72 tasks (16 simple prime 
tasks, 16 simple target tasks, 16 complex prime tasks, 16 
complex target tasks, and eight interferential tasks (e.g., {1, 
3, 22, 17, 9})) were tested. 

Data-driven scientific discovery was mainly a process of 
inductive reasoning. For simplicity, the experimental tasks (as 
shown in Table 1) were named SIP (simple induction prime), 
SIT (simple induction target), CIP (complex induction prime), 
and CIT (complex induction target), respectively. 

Table 1  Experimental tasks 

Task Prime Target 

Simple induction 1, 4, 7, 10, 13 22, 25, 28, 31, 34 

Complex induction 2, 3, 6, 7, 10 14, 15, 18, 19, 22 

1.3  Stimulus presentation 

A number series was presented on the computer screen in 
white digits in 36 size font against the black background. As 
shown in Figure 1, stimuli were preceded by a cue for the 
task type, and followed by a blank. The five numbers in a 
number series were shown one by one, and the number se-
ries would be kept on the screen until a button-pressing re-
sponse was made. Participants were instructed to press a 
button as quickly as possible after attaining the value fol-
lowing. A fixation of “+” and a blank were followed. An 
option of answers (e.g., “A. 16 B. 17”) was then presented. 
Participants were required to make the choice between “A” 
and “B” by pressing buttons as exactly as possible. Then a 
random inter-trial interval (ITI) of 2–4 s was followed. It 
would move to the next trial if the stimuli of the next trial 
advanced before the participants could respond. 

The filler between the prime task and the target task was 
one. The number series with different rules acted as fillers 
for each other, or some interferential tasks were used as 
fillers. Participants reviewed example stimuli from each 
condition prior to being tested to ensure that they under-
stood the task. All tasks were pseudo-randomly presented in 
two sessions. Button-pressing responses were balanced 
among participants. 

1.4  Results 

Both the mean RT for the correct trials and the percent of 
correctness are shown in Figure 2. Failure to answer a prime 
determined the elimination of the corresponding target and 
vice versa. One participant was eliminated for the low cor-
rectness (<50% for all kinds of tasks). A repeated measure 
was performed on the RT and correctness respectively, with 
the priming effect (prime vs. target) and the period length 
(simple vs. complex) as within-subject factors. The P-value  

 

 
Figure 1  Procedure of stimuli presentation. 

 
Figure 2  The mean RT (A) and percent of correctness (B). SIP, simple induction prime; SIT, simple induction target; CIP, complex induction prime; CIT, 

complex induction target. 
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was corrected using the Greenhouse-Geisser method. 
For the RT, the main effect of the period length (F(1, 28) = 

44.718, P<0.001) and the priming effect (F(1, 28)=22.173, 
P<0.001) were highly significant. As expected, for the mean 
RT, the target was significantly faster (3962.45 ms) than the 
prime (4450.05 ms), and the simple task was evidently 
faster (3721.64 ms) than the complex task (4690.86 ms). 
The interaction effect was also significant (F(1, 28)=4.974, 
P<0.05), and pair-wise comparisons revealed that the facili-
tation in the simple task (717.43 ms) was much stronger 
than that in the complex task (257.77 ms). 

For the correctness, the main effect of the period length 
(F(1, 28)=7.410, P<0.05) and the priming effect (F(1, 28)= 
11.118, P<0.05) were significant. It was not surprising that 
more errors would be made for the complex task (15%) than 
the simple task (10%) and for the prime (15%) than the tar-
get (10%). The interaction effect was not significant. 

1.5  Discussion 

This experiment was performed with relatively low hetero-
geneities, for the number magnitude (0–99) and arithmetic 
operations (addition and subtraction) were constrained. Our 
experimental results show reliable main effects of the prim-
ing effect and the period length in number series completion 
tasks: The target was answered faster and more accurately 
than the prime; the simple task was solved more quickly and 
relatively correctly than the complex task. These results 
which were congruent with Girelli et al. [10] supported our 
assumptions.  

The interaction effect between the priming effect and the 
period length in this study was different from the previous 
studies [10]. The interaction effect for the RT was signifi-
cant in this study while not significant in Girelli et al.’s 
study [10]. Additionally, the interaction effect for the cor-
rectness in this experiment was not significant while sig-
nificant or near to be significant in Girelli et al.’s study [10]. 
These differences might be explained by the following two 
reasons. First, this study made some restrictions as contrast 
to previous studies. Second, the ceiling effect in the simple 
task would confound the interaction effect.  

The priming effect in number series completion tasks 
opens a new window for us to observe the neural mecha-
nism of data-driven scientific discovery. At the same time, 
the inclusion of the simple task (period length=1) and the 
complex task (period length=2) allows us to further differ-
entiate among processing stages potentially contributing to 
the priming effect. Thus, a functional MRI experiment 
would be performed.  

2  Experiment 2 

2.1  Subjects 

Fourteen paid healthy students (male, aged 22.9±2.1, 

right-handed, normal or corrected-to-normal vision) from 
Beijing University of Technology participated in the ex-
periment. The Institutional Review Board of the Beijing 
University of Technology approved all experimental pro-
cedures, and written informed consent was obtained from 
each participant.  

2.2  Tasks 

The experimental tasks used in the fMRI experiment were 
the same as those in Experiment 1.  

2.3  Stimulus presentation 

The stimulus presentation paradigm was identical to Ex-
periment 1, except the constant 6 s ITI and 11 s duration 
after the presentation of the fifth number. Additionally, all 
tasks were evenly and pseudo-randomly distributed in six 
sessions, which was also different from Experiment 1. 

2.4  fMRI recording 

Scanning was performed on a Siemens Magnetom Trio Tim 
3.0 T system using a standard whole-head coil. Functional 
data were acquired using a gradient echo planar pulse se-
quence (TR=2 s, TE=31 ms, 30 axial slices, 3.75 mm×3.75 
mm×4 mm voxels, 0.8 mm inter-slice gap, 90° flip angle, 
64×64 matrix size in 240 mm×240 mm field of view). The 
imaging sequence was optimized for the detection of the 
blood oxygen level dependent (BOLD) effect including 
local shimming and 10 s of scanning prior to data collection 
to allow the MR signal to reach equilibrium. To minimize 
head motion, bi-temporal pressure pads were employed. 
The scanner was synchronized with the stimulus presenta-
tion of every trial in each session. 

2.5  Data processing of fMRI 

fMRI data were analyzed using SPM2 (http://www.fil.ion. 
ucl.ac.uk/spm). The first two images were discarded. Im-
ages were corrected for differences in timing of slice acqui-
sition, followed by rigid body motion correction to the me-
dian image. The data were realigned and normalized to the 
standard SPM2 EPI template. The registration of the EPI 
data to the template was checked for each individual subject. 
Head movement was less than 2 mm in all cases. The fMRI 
data were then smoothed with an 8 mm FWHM isotropic 
Gaussian kernel. 

The hemodynamic response was modeled with the ca-
nonical hemodynamic response function and its time de-
rivative employed in SPM2. No scaling was implemented 
for global effects. The resulting time series across each 
voxel was high-pass filtered with a cut-off of 1/128 Hz to 
remove section-specific low frequency drifts in the BOLD 
signal. An auto-regression AR(1) was used to exclude the 
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variance explained by the previous scan. The contrast im-
ages for each subject were then used in a random effect 
analysis to determine what regions were the most consis-
tently activated across subjects using a one-sample t-test. 
The activations reported survived an uncorrected voxel-     
level intensity threshold of P<0.01 with a minimum cluster 
size of 10 contiguous voxels. 

The functional ROI (spheres with a radius of 12 mm) 
was defined to best capture the peaks of activation in the 
group activation map. For each participant, a mean 
time-course, which represents the average intensity of the 
ROI, was computed across activated voxels in each ROI. 
The BOLD response intensity for each scan in each trial 
was the percent change of the recorded BOLD effect value 
for this scan relative to the baseline which was the mean 
value of the recorded BOLD effects of the first two scans 
and the last two scans of the current trial. 

2.6  Results 

The mean RT for correct trials and percent of correctness 
are shown in Figure 3. A two-factor ANOVA (the period 
length: simple vs. complex; the priming effect: prime vs. 
target) was also conducted on the behavior data. For RT, the 
main effects of the period length (F(1, 13)=20.534, P<0.05) 
and the priming effect (F(1, 13)=31.180, P<0.05) were sig-
nificant, while the interaction effect between the period 
length and the priming effect was not significant. For the 
correctness, the main effect of the period length (F(1, 
13)=5.029, P<0.05) and the interaction effect between the 
period length and the priming effect (F(1, 13)=4.882, 
P<0.05) were significant, and the main effect of the priming 
effect (F(1, 13)=3.460, P=0.086) seemed marginally sig-
nificant. Pair-wise comparisons revealed that the accuracy 
gain for the target applied to the complex task only (95.5% 
vs. 97.8% for the complex trial, and 98.2% vs. 98.2% for 
the simple trial). It might be attributed to the ceiling effect 
of the simple task. 

The exploratory analysis of the fMRI BOLD effect 
mainly shows the activation of the left DLPFC (BA 46) and 
the left APFC (BA 10) for IP (induction prime) vs. IT (in-
duction target), as shown in Figure 4A. The contrast of SIP 
vs. SIT activated an extensive neural network, including the 

left DLPFC, the left APFC, the right prefrontal cortex 
(PFC), the left parietal cortex and the bilateral occipital 
cortex, as shown in Figure 4B. The contrast of CIP vs. CIT 
only shows the activation of the left APFC as shown in Fig-
ure 4C.  

The functional ROIs of the left DLPFC and the left 
APFC were defined based on the group activation map. 
Figure 5 shows the percent change measures for the two 
functional ROIs: the left DLPFC and the left APFC. For 
each participant, the values of percent change in BOLD 
response of each ROI used in statistical analysis were aver-
aged from three scans around the peak, respectively. The 
mean values of BOLD signal change of the ROI were then 
used in a two-factor ANOVA. For the left DLPFC, the main 
effect of the period length (F(1, 13)=9.936, P<0.05), the 
priming effect (F(1, 13)=5.363, P<0.05), and the interaction 
effect between the period length and the priming effect (F(1, 
13)=5.409, P<0.05) were all significant. Pair-wise com-
parisons reveal that the facilitation for the simple task is 
larger than that for the complex task. For the left APFC, the 
main effect of the priming effect (F(1, 13)=31.254, P<0.05) 
was significant. Although the main effect of the period 
length and the interaction between the period length and the 
priming effect did not attain significance, 10 of 14 partici-
pants showed more intense facilitation of the priming effect 
for the complex task than that for the simple task. This ef-
fect is reliable, for we observed the same effect when we 
extended the values of percent change in BOLD response 
used in ROI statistical analysis from the averaged data of 
three scans around the peak to five, seven, and nine scans 
around the peak. Furthermore, binomial test (non-parameter 
test) showed that the gain for the complex task was larger 
than that for the simple task, with the probability of 80%. 
Together, the double dissociation between the left DLPFC 
and the left APFC can be observed from Figure 6. 

3  Discussion 

The behavioral performances have revealed the evident 
priming effect for the number series completion task. fMRI 
exploratory analyses indicate that the left DLPFC and the 
left APFC show a reduced activation in IP vs. IT. All of  

 
 

 

Figure 3  Behavioral data during the fMRI experiment, including the RT (A) and percent of correctness (B). 



 Zhong N, et al.   Sci China Life Sci   May (2011) Vol.54 No.5 471 

 

 

Figure 4  Brain localization of the priming effect of the number series 
completion task. A, Reduced activation for IP vs. IT. The maximum of 
BOLD response is as follows: MNI coordinate, −48, 30, 26; BA 46. B, 
Reduced activation for SIP vs. SIT. C, Reduced activation for CIP vs. CIT. 
The maximum of BOLD response is as follows: MNI coordinate, −40, 40, 
−6; BA 10. All results survive the thresholds with uncorrected P<0.01 and 
a minimum cluster size of 10 contiguous voxels. IP, induction prime; IT,  

induction target. 

these facts are consistent with our hypothesis. The experi-
mental design in this study allows us to exclude the facilita-
tion of perceptual processes, arithmetic fact retrieval, and 
verbal output as sources of potential facilitation in answer-
ing the target. Thus, the priming effect in this study, ob-
served from both behavioral performance and BOLD signal, 
may be attributed to the identification of the underlying 
regularity and its subsequent extrapolation, the core com-
ponents of data-driven scientific discovery. Furthermore, 
the double dissociation found in the priming effect allows 
us to functionally segregate the roles of the left DLPFC and 
the left APFC in data-driven scientific discovery. 

We observe that the left DLPFC is with more significant 
priming effect for the simple task, while the left APFC is 
with more significant priming effect for the complex task, 

as shown in Figure 4, although we do not find the signifi-
cant interaction effect between the period length and the 
priming effect for the RT. ROI analysis as shown in Figure 
6 demonstrates this effect. This double dissociation of the 
left DLPFC and the left APFC in the priming effect may 
suggest the different neural substrates for the simple and 
complex task. This is congruent with the different cognitive 
components involved in the simple and the complex task as 
aforementioned.  

The first question is how to understand the more signifi- 
cant priming effect in the left DLPFC for the simple task  
than for the complex task, and what the functional role of  
the left DLPFC is. The percent change of BOLD response  
in the left DLPFC for the simple and the complex task are  
both intense, which may suggest the important role of the  
left DLPFC in data-driven scientific discovery. Compared  
with the complex task, the simple task does not contain the  
following components: discovery of periodicity, detection  
of answer position, and isolation of part of the rule. These  
components in the complex task may overlap and interact  
with the other components [10]. The experimental design in  
this study allows us to exclude the facilitation of perceptual  
processes, arithmetic fact retrieval, and verbal output as  
sources of potential facilitation in answering the target.  
Thus, the role of the left DLPFC in data-driven scientific  
discovery may be further focused on rule identification, for  
the simple arithmetic involved in the application of the sim- 
ple rule in computing the answer (such as 39+3) will not  
make contributions to the prime effect. This inference is  
also consistent with many previous studies which have re- 
ported the critical role of the left DLPFC in human  
inductive reasoning, such as monitoring of each processing  
steps and answer generation [17], recollection of rule  
knowledge [19], access of world knowledge in the process  
of hypothesis formation and validation [15,20], and the  
implementation of control [16].  

The second question is how to explain the more signifi-
cant priming effect in the left APFC for the complex task 
than the simple task, and what the functional role of the left  

 

 

Figure 5  BOLD signal change of the left DLPFC (A) is centered at (MNI coordinate: −48, 30, 26; BA 46) and the left APFC (B) is centered at (MNI coor-
dinate: −40, 40, −6; BA 10). The two figures have revealed the double dissociation from the percent change of BOLD responses between the left DLPFC and  

the left APFC on number series completion tasks. 
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Figure 6  ROI analysis of the BOLD signal change in the left DLPFC (A) and the left APFC (B), and the facilitation from the percent change of BOLD 
response for the simple (SIP-SIT) and the complex task (CIP-CIT) in the left DLPFC ROI (C) and the left APFC ROI (D). For each participant, the values of  

percent change in BOLD response of each ROI used in ROI analysis were averaged from three scans around the peak. 

APFC is. The reduced activation of the left APFC in the 
target task cannot be attributed only to discovery of perio-
dicity, detection of answer position, and isolation of part of 
the rule, for we also observe the significant priming effect 
in this area for the simple task. Then, the more evident fa-
cilitation of the left APFC for the complex task may be as-
cribed to mental operations underlying the interaction of the 
components including discovery of periodicity, detection of 
answer position, and isolation of part of the rule (as contrast to 
the complex task, these components are not contained in the 
simple task) with the other components. Further, consistent 
with Christoff et al. [21] and Sakai et al.’s studies [22], we 
consider the role of the left APFC as mental set maintaining 
underlying rule identification and extrapolation based on 
our experimental tasks and results. 

The reliable double dissociation between the left DLPFC 
and the left APFC for the priming effect of the number se-
ries completion task helps us to disentangle the different 
functional roles of the left DLPFC and the left APFC in 
data-driven scientific discovery. The left DLPFC (BA 46) 
may play a crucial role in data-driven scientific discovery, 
and its role is further associated to rule identification, while 
the left APFC may be related to mental set maintaining re-
quired in rule identification and extrapolation. Our inference 
of the roles of the left DLPFC and the left APFC is also 
consistent with the three-stage model of the anatomical or-
ganization of the left PFC [23,24]. The three-stage model 
postulates a topographical organization of lateral prefrontal 
regions, including DLPFC and APFC, according to the level 
of abstraction in representational content. It is postulated 

that concrete content representations correspond to posterior 
prefrontal regions, and representations at an increasing level 
of abstraction are related to progressively anterior regions.  

To our knowledge, this is the first study to explore the 
neural substrates of data-driven scientific discovery using 
functional MRI. However, data-driven scientific discovery, 
which needs to observe and detect the relationship among 
data, may be a dynamic process implemented by a distrib-
uted network that involves closely interacting regions. Hence, 
we also look forward to future studies that further detail the 
other complementary brain regions and the interaction 
among the left DLPFC, the left APFC and these related re-
gions, in order to construct the dynamic spatiotemporal 
process of data-driven scientific discovery in human brain. 
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