Skip to main content
Log in

Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006

  • Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Grassland covers approximately one-third of the area of China and plays an important role in the global terrestrial carbon (C) cycle. However, little is known about biomass C stocks and dynamics in these grasslands. During 2001–2005, we conducted five consecutive field sampling campaigns to investigate above-and below-ground biomass for northern China’s grasslands. Using measurements obtained from 341 sampling sites, together with a NDVI (normalized difference vegetation index) time series dataset over 1982–2006, we examined changes in biomass C stock during the past 25 years. Our results showed that biomass C stock in northern China’s grasslands was estimated at 557.5 Tg C (1 Tg=1012 g), with a mean density of 39.5 g C m−2 for above-ground biomass and 244.6 g C m−2 for below-ground biomass. An increasing rate of 0.2 Tg C yr−1 has been observed over the past 25 years, but grassland biomass has not experienced a significant change since the late 1980s. Seasonal rainfall (January–July) was the dominant factor driving temporal dynamics in biomass C stock; however, the responses of grassland biomass to climate variables differed among various grassland types. Biomass in arid grasslands (i.e., desert steppe and typical steppe) was significantly associated with precipitation, while biomass in humid grasslands (i.e., alpine meadow) was positively correlated with mean January-July temperatures. These results suggest that different grassland ecosystems in China may show diverse responses to future climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schlesinger W H. Carbon balance in terrestrial detritus. Ann Rev Ecol Syst, 1977, 8: 51–81, 10.1146/annurev.es.08.110177.000411, 1:CAS:528:DyaE1cXlt1Cl

    Article  CAS  Google Scholar 

  2. Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biol, 1998, 4: 185–198, 10.1046/j.1365-2486.1998.00125.x

    Article  Google Scholar 

  3. Turner D P, Ritts W D, Cohen W B, et al. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biol, 2005, 11: 666–684, 10.1111/j.1365-2486.2005.00936.x

    Article  Google Scholar 

  4. Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386: 698–702, 10.1038/386698a0, 1:CAS:528:DyaK2sXislOgurw%3D

    Article  CAS  Google Scholar 

  5. Schimel D S, Emanuel W, Rizzo B, et al. Continental scale variability in ecosystem processes: Models, data, and the role of disturbance. Ecol Monogr, 1997, 67: 251–271, 10.1890/0012-9615(1997)067[0251:CSVIEP]2.0.CO;2

    Article  Google Scholar 

  6. Hall D O, Scurlock J M O. Climate Change and Productivity of Natural Grasslands. Ann Bot-London, 1991, 67: 49–55

    Google Scholar 

  7. Scurlock J M O, Hall D O. The global carbon sink: a grassland perspective. Global Change Biol, 1998, 4: 229–233, 10.1046/j.1365-2486.1998.00151.x

    Article  Google Scholar 

  8. Sala O E, Lauenroth W K, Burke I. Carbon budgets of temperate grasslands and the effects of global change. In: Breymeyer A I, Hall D O, Melillo J M, et al. eds. Global Change: Effects on Coniferous Forests and Grasslands. New York: John Wildy & Sons Ltd, 1996

    Google Scholar 

  9. Scurlock J M O, Johnson K, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biol, 2002, 8: 736–753, 10.1046/j.1365-2486.2002.00512.x

    Article  Google Scholar 

  10. Parton W J, Scurlock J M O, Ojima D S, et al. Impact of climate-change on grassland production and soil carbon worldwide. Global Change Biol, 1995, 1: 13–22, 10.1111/j.1365-2486.1995.tb00002.x

    Article  Google Scholar 

  11. Piao S L, Fang J Y, Zhou L M, et al. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochem Cy, 2007, 21: 1–10

    Google Scholar 

  12. Jones M B, Donnelly A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol, 2004, 164: 423–439, 10.1111/j.1469-8137.2004.01201.x

    Article  Google Scholar 

  13. Department of Animal Husbandry and Veterinary Medicine, and General Station of Animal Husbandry and Veterinary Medicine of the Ministry of Agriculture of China. Rangeland resources of China (in Chinese). Beijing: China Agriculture Science and Technology Press, 1996

    Google Scholar 

  14. Bai Y F, Wu J G, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 2008, 89: 2140–2153, 10.1890/07-0992.1, 18724724

    Article  PubMed  Google Scholar 

  15. Ni J. Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Clim Change, 2001, 49: 339–358, 10.1023/A:1010728609701, 1:CAS:528:DC%2BD3MXktVamtbo%3D

    Article  CAS  Google Scholar 

  16. Ni J. Carbon storage in grasslands of China. J Arid Enviorns, 2002, 50: 205–218, 10.1006/jare.2001.0902

    Article  Google Scholar 

  17. Fang J Y, Liu G H, Xu S L. Carbon reservoir of terrestrial ecosystem in Chin. In: Wang G C, Wen Y P, eds. Monitoring and Relevant Process of Greenhouse Gas Concentration and Emission (in Chinese). Beijing: China Environmental Science Publishing House, 1996

    Google Scholar 

  18. Fan J W, Zhong H P, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim Change, 2008, 86: 375–396, 10.1007/s10584-007-9316-6, 1:CAS:528:DC%2BD2sXhsVKgsrbF

    Article  CAS  Google Scholar 

  19. Ma W H, Han M, Lin X, et al. Carbon storage in vegetation of grasslands in Inner Mongolia (in Chinese). J Arid Land Resour Environ, 2006, 20: 192–195

    Google Scholar 

  20. Ma W H, Yang Y H, He J S, et al. Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Sci China Ser C-Life Sci, 2008, 51: 263–270, 10.1007/s11427-008-0029-5

    Article  Google Scholar 

  21. Titlyanova A A, Romanova I P, Kosykh N P, et al. Pattern and process in above-ground and below-ground components of grassland ecosystems. J Veg Sci, 1999, 10: 307–320, 10.2307/3237060

    Article  Google Scholar 

  22. Editorial board of vegetation map of China, Chinese Academy of Sciences. Vegetation Atlas of China (1: 1,000,000 ) (in Chinese). Beijing: China Science and Technology Press, 2001

    Google Scholar 

  23. Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil, 1996, 187: 159–219, 10.1007/BF00017088, 1:CAS:528:DyaK2sXjt12qsLg%3D

    Article  CAS  Google Scholar 

  24. Tucker C J, Slayback D A, Pinzon J E, et al. Higher northern latitude Normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol, 2001, 45: 184–, 10.1007/s00484-001-0109-8, 1:STN:280:DC%2BD38%2Fktlantg%3D%3D, 11769318

    Article  PubMed  CAS  Google Scholar 

  25. Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res, 2001, 106(D17): 20069–20083, 10.1029/2000JD000115

    Article  Google Scholar 

  26. Holben B N. Characteristics of maximum value composite images from temporal AVHRR. Int J Remote Sens, 1986, 7: 1417–1434, 10.1080/01431168608948945

    Article  Google Scholar 

  27. Fang J Y, Piao S L, He J S, et al. 2004. Increasing terrestrial vegetation activity in China, 1982–1999. Sci China Ser C-Life Sci, 2004, 47: 229–240.

    Google Scholar 

  28. Lauenroth W K, Sala O E. Long-Term forage production of North-American shortgrass steppe. Ecol Appl, 1992, 2: 397–403, 10.2307/1941874

    Article  Google Scholar 

  29. Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181–184, 10.1038/nature02850, 1:CAS:528:DC%2BD2cXntlGks7w%3D, 15356630

    Article  PubMed  CAS  Google Scholar 

  30. Piao S L, Fang J Y, Zhou L M, et al. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J Geophys Res, 2003, 108, doi: 10.1029/2002JD002848

  31. Running S W, Nemani R R, Heinsch F A, et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 2004, 54: 547–560, 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2

    Article  Google Scholar 

  32. Turker C J, Sellers P J. Satellite remote sensing of primary production. Int J Remote Sens, 1986, 7: 1395–1416, 10.1080/01431168608948944

    Article  Google Scholar 

  33. Jobbàgy E G, Sala O E, Paruelo J M. Patterns and controls of primary production in the Patagonian steppe: A remote sensing approach. Ecology, 2002, 83: 307–319

    Google Scholar 

  34. Yang Y H, Fang J Y, Pan Y D, et al. Aboveground biomass in Tibetan grasslands. J Arid Enviorn, 2009, 73: 91–95, 10.1016/j.jaridenv.2008.09.027

    Article  Google Scholar 

  35. Mokany K, Raison R J, Prokushkin A S. Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biol, 2006, 11: 1–13

    Google Scholar 

  36. Yang Y H, Fang J Y, Ji C J, et al. Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci, 2009, 20: 177–184, 10.1111/j.1654-1103.2009.05566.x

    Article  Google Scholar 

  37. Wang L, Niu K, Yang Y H, et al. Patterns of above- and belowground biomass allocation in China’s grasslands: evidence from individual- level observations. Sci China Life Sci, 2010, 53: 851–857, 10.1007/s11427-010-4027-z, 20697874

    Article  PubMed  Google Scholar 

  38. Yang Y H, Fang J Y, Ma W H, et al. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecol Biogeogr, 2010, 19: 268–277, 10.1111/j.1466-8238.2009.00502.x

    Article  Google Scholar 

  39. Olson R J, Watts J A, Allison L J. Carbon in live vegetation of major world ecosystem. Oak Ridge National Laboratory, Oak Ridge, 1983, 50–51

    Google Scholar 

  40. Ma W H, Liu Z L, Wang Z H, et al. Climate change alters interannual variation of grassland aboveground productivity: evidence from a 22-year measurement series in the Inner Mongolian grassland. J Plant Res, DOI: 10.1007/s10265-009-0302-0

  41. Zhou H K, Zhou L, Zhao X Q, et al. Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Chinese Sci Bull, 2006, 51: 320–327, 10.1007/s11434-006-0320-4

    Article  Google Scholar 

  42. Fang J Y, Piao S L, Zhou L, et al. Precipitation patterns alter growth of temperate vegetation. Geophys Res Lett, 2005, 32, L21411, doi: 10.1029/2005GL024231, 10.1029/2005GL024231

    Article  Google Scholar 

  43. Yang Y H, Fang J Y, Ma W H, et al. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys Res Lett, 2008, 35, doi: 10.1029/2008GL035408

  44. Fang J Y, Yang Y H, Ma W H, et al. Biomass carbon and soil organic carbon stocks and their changes in China’s grasslands, Sci China Life Sci, 2010, 53: 757–765, 10.1007/s11427-010-4029-x, 1:CAS:528:DC%2BC3cXpvVyrur4%3D, 20697865

    Article  PubMed  CAS  Google Scholar 

  45. Briggs J M, Knapp A K. Interannual variability in primary production in tallgrass prairie-climate, soil-moisture, topographic position, and fire as determinants of aboveground biomass. Am J Bot, 1995, 82: 1024–1030, 10.2307/2446232

    Article  Google Scholar 

  46. Fang J Y, Piao S L, Tang Z Y, et al. Interannual variability in net primary production and precipitation. Science, 2001, 293: U1–U2, 10.1126/science.293.5536.1723a

    Article  Google Scholar 

  47. Knapp A K, Fay P A, Blair J M, et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 2002, 298: 2202–2205, 10.1126/science.1076347, 1:CAS:528:DC%2BD38XpsVSktLg%3D, 12481139

    Article  PubMed  CAS  Google Scholar 

  48. McCulley R L, Burke I C, Nelson J A, et al. Regional patterns in carbon cycling across the Great Plains of North America. Ecosystems, 2005, 8: 106–121, 10.1007/s10021-004-0117-8, 1:CAS:528:DC%2BD2MXhs1Oqur4%3D

    Article  CAS  Google Scholar 

  49. Lauenroth W K, Sala O E. Long-Term forage production of North-American shortgrass steppe. Ecol Appl, 1992, 2: 397–403, 10.2307/1941874

    Article  Google Scholar 

  50. Tucker C J, Slayback D A, Pinzon J E, et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol, 2001, 45: 184–19, 10.1007/s00484-001-0109-8, 1:STN:280:DC%2BD38%2Fktlantg%3D%3D, 11769318

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingYun Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Fang, J., Yang, Y. et al. Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci. China Life Sci. 53, 841–850 (2010). https://doi.org/10.1007/s11427-010-4020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4020-6

Keywords

Navigation