Skip to main content
Log in

Are small RNAs a big help to plants?

  • Special Topic
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The discovery of RNA interference (RNAi) has augmented our knowledge of gene regulation and presents a fascinating technology that has a great potential for application in genetic analysis, disease therapy, plant protection, and many other areas. In this review, we will focus on the biological functions of RNAi and its application in agriculture with a brief introduction to the history of its discovery and molecular mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806–811 9486653, 1:CAS:528:DyaK1cXhtlCju74%3D, 10.1038/35888

    PubMed  CAS  Google Scholar 

  2. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2(4): 279–289 12354959, 1:CAS:528:DyaK3cXkvFalu7c%3D, 10.1105/tpc.2.4.279

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Brusslan J A, Karlin-Neumann G A, Huang L, et al. An Arabidopsis mutant with a reduced level of cab140 RNA is a result of cosuppression. Plant Cell, 1993, 5(6): 667–677 8329898, 1:CAS:528:DyaK2cXhtVahsbo%3D, 10.1105/tpc.5.6.667

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Carvalho D F, Gheysen G S K, et al. Suppression of beta-1, 3-glucanase transgene expression in homozygous plants. EMBO J, 1992, 11(7): 2595–2602 1378394

    PubMed Central  PubMed  Google Scholar 

  5. Angenent G C, Franken J, Busscher M, et al. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J, 1994, 5(1): 33–44 7907515, 1:CAS:528:DyaK2cXmsVOrsbY%3D, 10.1046/j.1365-313X.1994.5010033.x

    PubMed  CAS  Google Scholar 

  6. Waterhouse P M, Graham M W, Wang M B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA, 1998, 95(23): 13959–13964 9811908, 1:CAS:528:DyaK1cXnsVGhurk%3D, 10.1073/pnas.95.23.13959

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Lindbo J A, Dougherty W G. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology, 1992, 189(2): 725–733 1641986, 1:CAS:528:DyaK38Xls1Ort7o%3D, 10.1016/0042-6822(92)90595-G

    PubMed  CAS  Google Scholar 

  8. Dalmay T, Hamilton A, Mueller E, et al. Potato virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell, 2000, 12(3): 369–380 10715323, 1:CAS:528:DC%2BD3cXktFWju74%3D, 10.1105/tpc.12.3.369

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Angell S M, Baulcombe D C. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J., 1997, 16: 3675–3684 9218808, 1:CAS:528:DyaK2sXktlCgu78%3D, 10.1093/emboj/16.12.3675

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Li H W, Li W X, Ding S W. Induction and suppression of RNA silencing by an animal virus. Science, 2002, 296(5571): 1319–1321 12016316, 1:CAS:528:DC%2BD38Xjsl2qurg%3D, 10.1126/science.1070948

    PubMed  CAS  Google Scholar 

  11. Hamilton A J, Baulcombe D C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286(5441): 950–952 10542148, 1:CAS:528:DyaK1MXntFaktbY%3D, 10.1126/science.286.5441.950

    PubMed  CAS  Google Scholar 

  12. Meins F Jr, Si-Ammour A, Blevins T. RNA silencing systems and their relevance to plant development. Annu Rev Cell and Dev Biol, 2005, 21(1): 297–318 1:CAS:528:DC%2BD2MXhtlektbrK, 10.1146/annurev.cellbio.21.122303.114706

    CAS  Google Scholar 

  13. Bartel D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297 14744438, 1:CAS:528:DC%2BD2cXhtVals7o%3D, 10.1016/S0092-8674(04)00045-5

    PubMed  CAS  Google Scholar 

  14. Kanno T, Huettel B, Mette M F, et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet, 2005, 37(7): 761–765 15924141, 1:CAS:528:DC%2BD2MXlslWhsrc%3D, 10.1038/ng1580

    PubMed  CAS  Google Scholar 

  15. Matzke M A, Birchler J A. RNAi-mediated pathways in the nucleus. Nat Rev Genet, 2005, 6(1): 24–35 15630419, 1:CAS:528:DC%2BD2MXlvVGh, 10.1038/nrg1500

    PubMed  CAS  Google Scholar 

  16. Almeida R, Allshire R C. RNA silencing and genome regulation. Tren Cell Biol, 2005, 15(5): 251–258 1:CAS:528:DC%2BD2MXjslKhsb4%3D, 10.1016/j.tcb.2005.03.006

    CAS  Google Scholar 

  17. Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA, 2006, 103(47): 18002–18007 17071740, 1:CAS:528:DC%2BD28Xht1Kmsr%2FL, 10.1073/pnas.0608258103

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Henz S R, Cumbie J S, Kasschau K D, et al. Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol, 2007, 144(3): 1247–1255 17496106, 1:CAS:528:DC%2BD2sXot1Olsrg%3D, 10.1104/pp.107.100396

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Wu F, Yu L, Cao W, et al. The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Plant Cell, 2007, 19(3): 914–925 17337628, 1:CAS:528:DC%2BD2sXltFyqurY%3D, 10.1105/tpc.106.048637

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Allen E, Xie Z, Gustafson A M, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121(2): 207–221 15851028, 1:CAS:528:DC%2BD2MXjvV2jtb4%3D, 10.1016/j.cell.2005.04.004

    PubMed  CAS  Google Scholar 

  21. Girard A, Sachidanandam R, Hannon G J, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 2006, 442(7099): 199–202 16751776

    PubMed  Google Scholar 

  22. Aravin A, Gaidatzis D, Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006, 442(7099): 203–207 16751777, 1:CAS:528:DC%2BD28XmvFahurk%3D

    PubMed  CAS  Google Scholar 

  23. Katiyar-Agarwal S, Gao S, Vivian-Smith A, et al. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev, 2007, 21(23): 3123–3134 18003861, 1:CAS:528:DC%2BD2sXhsVaht7vL, 10.1101/gad.1595107

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Baulcombe D. RNA silencing in plants. Nature, 2004, 431(7006): 356–363 15372043, 1:CAS:528:DC%2BD2cXnsFaiu7c%3D, 10.1038/nature02874

    PubMed  CAS  Google Scholar 

  25. Elbashir S M, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev, 2001, 15(2): 188–200 11157775, 1:CAS:528:DC%2BD3MXhvVOjtbg%3D, 10.1101/gad.862301

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843–854 8252621, 1:CAS:528:DyaK2cXpslGqtA%3D%3D, 10.1016/0092-8674(93)90529-Y

    PubMed  CAS  Google Scholar 

  27. Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes Dev, 2002, 16(13): 1616–1626 12101121, 1:CAS:528:DC%2BD38XlsVSmt7c%3D, 10.1101/gad.1004402

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Lee R C, Ambros V. An Extensive class of small RNAs in Caenorhabditis elegans. Science, 2001, 294(5543): 862–864 11679672, 1:CAS:528:DC%2BD3MXotVChu70%3D, 10.1126/science.1065329

    PubMed  CAS  Google Scholar 

  29. Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543): 858–862 11679671, 1:CAS:528:DC%2BD3MXotVChurw%3D, 10.1126/science.1065062

    PubMed  CAS  Google Scholar 

  30. Xie Z X, Johansen L K, Gustafson A M, et al. Genetic and functional diversification of small RNA pathways in Plants. PLoS Biology, 2004, 2(5): e104 15024409, 10.1371/journal.pbio.0020104

    PubMed Central  PubMed  Google Scholar 

  31. Beclin C, Boutet S, Waterhouse P, et al. A branched pathway for transgene-induced RNA silencing in plants. Curr Biol, 2002, 12(8): 684–688 11967158, 1:CAS:528:DC%2BD38XjtVehsr0%3D, 10.1016/S0960-9822(02)00792-3

    PubMed  CAS  Google Scholar 

  32. Dalmay T, Hamilton A, Rudd S, et al. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a Virus. Cell, 2000, 101(5): 543–553 10850496, 1:CAS:528:DC%2BD3cXjvFWntLY%3D, 10.1016/S0092-8674(00)80864-8

    PubMed  CAS  Google Scholar 

  33. Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA, 2004, 101(34): 12753–12758 15314213, 1:CAS:528:DC%2BD2cXnsVentLs%3D, 10.1073/pnas.0403115101

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Hannon G J. RNA interference. Nature, 2002, 418(6894): 244–251 12110901, 1:CAS:528:DC%2BD38XltFGmu7Y%3D, 10.1038/418244a

    PubMed  CAS  Google Scholar 

  35. Chan S W L, Zilberman D, Xie Z, et al. RNA silencing genes control de novo DNA methylation. Science, 2004, 303(5662): 1336 14988555, 1:CAS:528:DC%2BD2cXhslCru70%3D, 10.1126/science.1095989

    PubMed  CAS  Google Scholar 

  36. Schauer S E, Jacobsen S E, Meinke D W, et al. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci, 2002, 7(11): 487–491 12417148, 1:CAS:528:DC%2BD38XotlyltLs%3D, 10.1016/S1360-1385(02)02355-5

    PubMed  CAS  Google Scholar 

  37. Ding S W, Voinnet O. Antiviral immunity directed by small RNAs. Cell, 2007, 130: 413–426 17693253, 1:CAS:528:DC%2BD2sXptlyntLY%3D, 10.1016/j.cell.2007.07.039

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Carmell M A, Xuan Z, Zhang M Q, et al. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 2002, 16(21): 2733–2742 12414724, 1:CAS:528:DC%2BD38Xos1Sju70%3D, 10.1101/gad.1026102

    PubMed  CAS  Google Scholar 

  39. Song J J, Joshua-Tor L. Argonaute and RNA — getting into the groove. Curr Opin Struct Biol, 2006, 16(1): 5–11 16434185, 1:CAS:528:DC%2BD28XhsFOjs7s%3D, 10.1016/j.sbi.2006.01.010

    PubMed  CAS  Google Scholar 

  40. Song J J, Liu J d, Tolia N H, et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Mol Biol, 2003, 10(12): 1026–1032 1:CAS:528:DC%2BD3sXptFOmsbo%3D, 10.1038/nsb1016

    CAS  Google Scholar 

  41. Lingel A, Simon B, Izaurralde E, et al. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature, 2003, 426(6965): 465–469 14615801, 1:CAS:528:DC%2BD3sXpt1Gls7c%3D, 10.1038/nature02123

    PubMed  CAS  Google Scholar 

  42. Song J J, Smith S K, Hannon G J, et al. Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 2004, 305(5689): 1434–1437 15284453, 1:CAS:528:DC%2BD2cXntFartLs%3D, 10.1126/science.1102514

    PubMed  CAS  Google Scholar 

  43. Zilberman D, Cao X, Jacobsen S E. ARGONAUTE4 control of Locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003, 299(5607): 716–719 12522258, 1:CAS:528:DC%2BD3sXntFWhsg%3D%3D, 10.1126/science.1079695

    PubMed  CAS  Google Scholar 

  44. Qi Y J, He X Y, Wang X J, et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature, 2006, 443(7114): 1008–1012 16998468, 10.1038/nature05198

    PubMed  Google Scholar 

  45. Zheng X W, Zhu J H, Kapoor A, et al. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J, 2007, 26: 1691–1701 17332757, 1:CAS:528:DC%2BD2sXjt1WksbY%3D, 10.1038/sj.emboj.7601603

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 2004, 16(1): 69–79 15469823, 1:CAS:528:DC%2BD2cXptVKqtr4%3D, 10.1016/j.molcel.2004.09.028

    PubMed  CAS  Google Scholar 

  47. Fahlgren N, Montgomery T A, Howell M D, et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol, 2006, 16(9): 939–944 16682356, 1:CAS:528:DC%2BD28XksFamu7s%3D, 10.1016/j.cub.2006.03.065

    PubMed  CAS  Google Scholar 

  48. Mi S J, Cai T, Hu Y G, et al. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5’ terminal nucleotide. Cell, 2008, 133(1): 116–127 18342361, 1:CAS:528:DC%2BD1cXkslOksrg%3D, 10.1016/j.cell.2008.02.034

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Chen X m, Liu J, Cheng Y l, et al. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development, 2002, 129(5): 1085–1094 11874905, 1:CAS:528:DC%2BD38XisVWrtbk%3D

    PubMed  CAS  Google Scholar 

  50. Bollman K M, Aukerman M J, Park M-Y, et al. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development, 2003, 130(8): 1493–1504 12620976, 1:CAS:528:DC%2BD3sXjtlOlurw%3D, 10.1242/dev.00362

    PubMed  CAS  Google Scholar 

  51. Palauqui J C, Elmayan T, de Borne F D, et al. Frequencies, timing, and spatial patterns of co-suppression of nitrate reductase and nitrite reductase in transgenic tobacco plants. Plant Physiol, 1996, 112(4): 1447–1456 12226457, 1:CAS:528:DyaK2sXks1Kk

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Palauqui J C, Vaucheret H. Field trial analysis of nitrate reductase co-suppression: a comparative study of 38 combinations of transgene loci. Plant Mol Biol, 1995, 29(1): 149–159 7579160, 1:CAS:528:DyaK2MXovVeksb4%3D, 10.1007/BF00019126

    PubMed  CAS  Google Scholar 

  53. Dunoyer P, Himber C, Voinnet O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet, 2005, 37(12): 1356–1360 16273107, 1:CAS:528:DC%2BD2MXht1Ggsr%2FJ, 10.1038/ng1675

    PubMed  CAS  Google Scholar 

  54. Voinnet O, Baulcombe D C. Systemic signalling in gene silencing. Nature, 1997, 389(6651): 553–553 9335491, 1:CAS:528:DyaK2sXmslWgtr8%3D, 10.1038/39215

    PubMed  CAS  Google Scholar 

  55. Patrice C, Sabrina L, Victor A I, et al. Graft transmission of induced and spontaneous post-transcriptional silencing of chitinase genes. Plant J, 2001, 28(5): 493–501. 10.1046/j.1365-313X.2001.01171.x

    Google Scholar 

  56. Voinnet O, Vain P, Angell S et al. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell, 1998, 95(2): 177–187 9790525, 1:CAS:528:DyaK1cXntVSmu7o%3D, 10.1016/S0092-8674(00)81749-3

    PubMed  CAS  Google Scholar 

  57. Dunoyer P, Himber C, Ruiz-Ferrer V, et al. Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat Genet, 2007, 39(7): 848–856 17558406, 1:CAS:528:DC%2BD2sXmvFKlsLk%3D, 10.1038/ng2081

    PubMed  CAS  Google Scholar 

  58. Brosnan C A, Mitter N, Christie M, et al. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104(37): 14741–14746 17785412, 1:CAS:528:DC%2BD2sXhtVOns7jE, 10.1073/pnas.0706701104

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Smith L M, Pontes O, Searle I, et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell, 2007, 19(5): 1507–1521 17526749, 1:CAS:528:DC%2BD2sXnvVWqtL8%3D, 10.1105/tpc.107.051540

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Timmons L, Fire A. Specific interference by ingested dsRNA. Nature, 1998, 395(6705): 854 9804418, 1:CAS:528:DyaK1cXntlKjsLc%3D, 10.1038/27579

    PubMed  CAS  Google Scholar 

  61. Tabara H, Grishok A, Mello C C. RNAi in C. elegans: soaking in the genome sequence. Science, 1998, 282(5388): 430–431 9841401, 1:CAS:528:DyaK1cXmslaqt7s%3D, 10.1126/science.282.5388.430

    PubMed  CAS  Google Scholar 

  62. Winston W M, Molodowitch C, Hunter C P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science, 2002, 295(5564): 2456–2459 11834782, 1:CAS:528:DC%2BD38XisFSksrc%3D, 10.1126/science.1068836

    PubMed  CAS  Google Scholar 

  63. Saleh M C, van Rij R P, Hekele A, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol, 2006, 8(8): 793–802 16862146, 1:CAS:528:DC%2BD28XnsFWqtbc%3D, 10.1038/ncb1439

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Winston W M, Sutherlin M, Wright A J, et al. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci USA, 2007, 104(25): 10565–10570 17563372, 1:CAS:528:DC%2BD2sXnt1Kkur8%3D, 10.1073/pnas.0611282104

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Sijen T, Steiner F A, Thijssen K L, et al. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science, 2007, 315(5809): 244–247 17158288, 1:CAS:528:DC%2BD2sXivFOjtA%3D%3D, 10.1126/science.1136699

    PubMed  CAS  Google Scholar 

  66. Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001, 107(4): 465–476 11719187, 1:CAS:528:DC%2BD3MXovVCns7k%3D, 10.1016/S0092-8674(01)00576-1

    PubMed  CAS  Google Scholar 

  67. Smardon A, Spoerke J M, Stacey S C, et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol, 2000, 10(4): 169–178 10704412, 1:CAS:528:DC%2BD3cXhsFyhu7g%3D, 10.1016/S0960-9822(00)00323-7

    PubMed  CAS  Google Scholar 

  68. Tomoyasu Y, Miller S, Tomita S, et al. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol, 2008, 9(1): R10 18201385, 10.1186/gb-2008-9-1-r10, 1:CAS:528:DC%2BD1cXjvVWksbo%3D

    PubMed Central  PubMed  Google Scholar 

  69. Richards S, Gibbs R A, Weinstock G M, et al. The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452(7190): 949–955 18362917, 1:CAS:528:DC%2BD1cXltVGrtrc%3D, 10.1038/nature06784

    PubMed  CAS  Google Scholar 

  70. Brennecke J, Hipfner D R, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the pro-apoptotic gene hid in Drosophila. Cell, 2003, 113(1): 25–36 12679032, 1:CAS:528:DC%2BD3sXjtVWqsL0%3D, 10.1016/S0092-8674(03)00231-9

    PubMed  CAS  Google Scholar 

  71. Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57: 19–53 16669754, 1:CAS:528:DC%2BD28XosVKhsb0%3D, 10.1146/annurev.arplant.57.032905.105218

    PubMed  CAS  Google Scholar 

  72. Wang J W, Wang L J, Mao Y B, et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 2005, 17(8): 2204–2216 16006581, 1:CAS:528:DC%2BD2MXpsFGjs7c%3D, 10.1105/tpc.105.033076

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Li H, Xu L, Wang H, et al. The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell, 2005, 17(8): 2157–2171 16006579, 1:CAS:528:DC%2BD2MXpsFGjs7g%3D, 10.1105/tpc.105.033449

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Baurle I, Smith L, Baulcombe D C, et al. Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science, 2007, 318(5847): 109–112 17916737, 10.1126/science.1146565, 1:CAS:528:DC%2BD2sXhtFWitb%2FL

    PubMed  Google Scholar 

  75. Liu B, Chen Z, Song X, et al. Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell, 2007, 19(9): 2705–2718 17905898, 1:CAS:528:DC%2BD2sXhtlWhsr7O, 10.1105/tpc.107.052209

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Ding S W, Li H W, Lu R, et al. RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res, 2004, 102(1): 109–115 15068886, 1:CAS:528:DC%2BD2cXivVKmtL0%3D, 10.1016/j.virusres.2004.01.021

    PubMed  CAS  Google Scholar 

  77. Lindbo J A, Silva-Rosales L, Proebsting W M, et al. Induction of highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell, 1993, 5(12): 1749–1759 12271055, 1:CAS:528:DyaK2cXisVSgurg%3D, 10.1105/tpc.5.12.1749

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Waterhouse P M, Smith N A, Wang M B. Virus resistance and gene silencing: killing the messenger. Trends Plant Sci, 1999, 4(11): 452–457 10529827, 10.1016/S1360-1385(99)01493-4

    PubMed  Google Scholar 

  79. Pinto Y M, Kok R A, Baulcombe D C. Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nat Biotech, 1999, 17(7): 702–707 1:CAS:528:DyaK1MXksFehtrk%3D, 10.1038/10917

    CAS  Google Scholar 

  80. Qu F, Morris T J. Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Letters, 2005, 579(26): 5958–5964 16162340, 1:CAS:528:DC%2BD2MXhtFKmtbnI, 10.1016/j.febslet.2005.08.041

    PubMed  CAS  Google Scholar 

  81. Deleris A, Gallego-Bartolome J, Bao J, et al. Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science, 2006, 313(5783): 68–71 16741077, 1:CAS:528:DC%2BD28XmsFWisLo%3D, 10.1126/science.1128214

    PubMed  CAS  Google Scholar 

  82. Dunoyer P, Himber C, Voinnet O. Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet, 2006, 38(2): 258–263 16429161, 1:CAS:528:DC%2BD28XotlGksg%3D%3D, 10.1038/ng1722

    PubMed  CAS  Google Scholar 

  83. Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006, 312(5772): 436–439 16627744, 1:CAS:528:DC%2BD28XjslSktbw%3D, 10.1126/science.1126088

    PubMed  CAS  Google Scholar 

  84. Navarro L, Jay F, Nomura K, et al. Suppression of the microRNA pathway by bacterial effector proteins. Science, 2008, 321(5891): 964–967 18703740, 1:CAS:528:DC%2BD1cXpslWrurg%3D, 10.1126/science.1159505

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Hammond S M. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Letters, 2005, 579(26): 5822–5829 16214139, 1:CAS:528:DC%2BD2MXhtFKmtbvF, 10.1016/j.febslet.2005.08.079

    PubMed  CAS  Google Scholar 

  86. Pedersen I M, Cheng G, Wieland S, et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 2007, 449(7164): 919–922 17943132, 1:CAS:528:DC%2BD2sXhtFOjt7nK, 10.1038/nature06205

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 2001–2019 15258262, 1:CAS:528:DC%2BD2cXmvVansb0%3D, 10.1105/tpc.104.022830

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 2006, 18(8): 2051–2065 16861386, 1:CAS:528:DC%2BD28Xos1KjtLY%3D, 10.1105/tpc.106.041673

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Borsani O, Zhu J, Verslues P E, et al. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123(7): 1279–1291 16377568, 1:CAS:528:DC%2BD28XktlWitQ%3D%3D, 10.1016/j.cell.2005.11.035

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Wittstock U, Gershenzon J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol, 2002, 5(4): 300–307 12179963, 1:CAS:528:DC%2BD38Xls1ejtLw%3D, 10.1016/S1369-5266(02)00264-9

    PubMed  CAS  Google Scholar 

  91. Pandey S P, Shahi P, Gase K, et al. Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci USA, 2008, 105(12): 4559–4564 18339806, 1:CAS:528:DC%2BD1cXkt12qsr8%3D, 10.1073/pnas.0711363105

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Mao Y B, Cai W J, Wang J W, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotech, 2007, 25(11): 1307–1313 1:CAS:528:DC%2BD2sXht1Oru7zN, 10.1038/nbt1352

    CAS  Google Scholar 

  93. Baum J A, Bogaert T, Clinton W, et al. Control of coleopteran insect pests through RNA interference. Nat Biotech, 2007, 25(11): 1322–1326 1:CAS:528:DC%2BD2sXht1Oru7%2FE, 10.1038/nbt1359

    CAS  Google Scholar 

  94. Lu C, Tej S S, Luo S, et al. Elucidation of the small RNA component of the transcriptome. Science, 2005, 309(5740): 1567–1569 16141074, 1:CAS:528:DC%2BD2MXpsFWju7c%3D, 10.1126/science.1114112

    PubMed  CAS  Google Scholar 

  95. Wang J F, Zhou H, Chen Y Q, et al. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res, 2004, 32(5): 1688–1695 15020705, 1:CAS:528:DC%2BD2cXisF2ksrs%3D, 10.1093/nar/gkh332

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Liang R Q, Li W, Li Y, et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res, 2005, 33(2): e17 15684409, 10.1093/nar/gni019, 1:CAS:528:DC%2BD2MXhtV2qtb8%3D

    PubMed Central  PubMed  Google Scholar 

  97. Sunkar R, Zhou X F, Zheng Y, et al. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 2008, 8(1): 25 18312648, 10.1186/1471-2229-8-25, 1:CAS:528:DC%2BD1cXmslCmtro%3D

    PubMed Central  PubMed  Google Scholar 

  98. Wang L, Wang M B, Tu J X, et al. Cloning and characterization of microRNAs from Brassica napus. FEBS Lett, 2007, 581(20): 3848–3856 17659282, 1:CAS:528:DC%2BD2sXotlSlsr4%3D, 10.1016/j.febslet.2007.07.010

    PubMed  CAS  Google Scholar 

  99. He X F, Fang Y Y, Feng L, et al. Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett, 2008, 582(16): 2445–2452 18558089, 1:CAS:528:DC%2BD1cXnvVKns7g%3D, 10.1016/j.febslet.2008.06.011

    PubMed  CAS  Google Scholar 

  100. Clemens J C, Worby C A, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA, 2000, 97(12): 6499–6503 10823906, 1:CAS:528:DC%2BD3cXktFajt7w%3D, 10.1073/pnas.110149597

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Baulcombe D C. Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol, 1999, 2(2): 109–113 10322199, 1:CAS:528:DyaK1MXivVGlsL8%3D, 10.1016/S1369-5266(99)80022-3

    PubMed  CAS  Google Scholar 

  102. Tuttle J R, Idris A M, Brown J K, et al. Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol, 2008, 148(1): 41–50 18621976, 1:CAS:528:DC%2BD1cXhtFKnurnF, 10.1104/pp.108.123869

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Nagamatsu A, Masuta C, Senda M, et al. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotech J, 2007, 5(6): 778–790 1:CAS:528:DC%2BD2sXhtlWjs77N, 10.1111/j.1467-7652.2007.00288.x

    CAS  Google Scholar 

  104. Rajagopal R, Sivakumar S, Agrawal N, et al. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem, 2002, 277(49): 46849–46851 12377776, 1:CAS:528:DC%2BD38XptFSlu7s%3D, 10.1074/jbc.C200523200

    PubMed  CAS  Google Scholar 

  105. Torrie L S, Radford J C, Southall T D, et al. Resolution of the insect ouabain paradox. Proc Natl Acad Sci USA, 2004, 101(37): 13689–13693 15347816, 1:CAS:528:DC%2BD2cXnvFehsLo%3D, 10.1073/pnas.0403087101

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Zhao M, Soderhall I, Park J W, et al. A novel 43-kDa protein as a negative regulatory component of phenoloxidase-induced melanin synthesis. J Biol Chem, 2005, 280(26): 24744–24751 15857824, 1:CAS:528:DC%2BD2MXlsFyqs70%3D, 10.1074/jbc.M504173200

    PubMed  CAS  Google Scholar 

  107. Fraser A G, Kamath R S, Zipperlen P, et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 2000, 408(6810): 325–330 11099033, 1:CAS:528:DC%2BD3cXosVelsrc%3D, 10.1038/35042517

    PubMed  CAS  Google Scholar 

  108. Gonczy P, Echeverri C, Oegema K, et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 2000, 408(6810): 331–336 11099034, 1:CAS:528:DC%2BD3cXosVelur8%3D, 10.1038/35042526

    PubMed  CAS  Google Scholar 

  109. Kamath R S, Fraser A G, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003, 421(6920): 231–237 12529635, 1:CAS:528:DC%2BD3sXjsF2htg%3D%3D, 10.1038/nature01278

    PubMed  CAS  Google Scholar 

  110. Krubphachaya P, Jurícek M, Kertbundit S. Induction of RNA-mediated resistance to papaya ringspot virus type W. J Biochem Mol Biol, 2007, 40(3): 404–411 17562292, 1:CAS:528:DC%2BD2sXmslyhsrs%3D

    PubMed  CAS  Google Scholar 

  111. Niu Q W, Lin S S, Reyes J L, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol, 2006, 24(11): 1420–1428 17057702, 1:CAS:528:DC%2BD28XhtFyqtLzM, 10.1038/nbt1255

    PubMed  CAS  Google Scholar 

  112. Duan C G, Wang C H, Fang R X, et al. Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol, 2008, 82(22): 11084–11095 18768978, 1:CAS:528:DC%2BD1cXhtlKiu7rP, 10.1128/JVI.01377-08

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Bravo A, Gill S S, Soberon M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 2007, 49(4): 423–435 17198720, 1:CAS:528:DC%2BD2sXis1Cmsbs%3D, 10.1016/j.toxicon.2006.11.022

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Gahan L J, Gould F, Heckel D G. Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 2001, 293(5531): 857–860 11486086, 1:CAS:528:DC%2BD3MXlvVKktLo%3D, 10.1126/science.1060949

    PubMed  CAS  Google Scholar 

  115. Gordon K H, Waterhouse P M. RNAi for insect-proof plants. Nat Biotechnol, 2007, 25(11): 1231–1232 17989682, 1:CAS:528:DC%2BD2sXht1Oru73P, 10.1038/nbt1107-1231

    PubMed  CAS  Google Scholar 

  116. Ogita S, Uefuji H, Yamaguchi Y, et al. Producing decaffeinated coffee plants. Nature, 2003, 423(6942): 823 12815419, 1:CAS:528:DC%2BD3sXks1KmtLo%3D, 10.1038/423823a

    PubMed  CAS  Google Scholar 

  117. Sunilkumar G, Campbell L M, Puckhaber L, et al. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA, 2006, 103(48): 18054–18059 17110445, 1:CAS:528:DC%2BD28XhtlWjtrfN, 10.1073/pnas.0605389103

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Selbach M, Schwanhausser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(7209): 58–63 18668040, 1:CAS:528:DC%2BD1cXhtVKrsbnK, 10.1038/nature07228

    PubMed  CAS  Google Scholar 

  119. Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature, 2008, 455(7209): 64–71 18668037, 1:CAS:528:DC%2BD1cXhtVKrsbjF, 10.1038/nature07242

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYa Chen.

Additional information

Supported by National Natural Sciences of China (Grant No. 30630008) and National Key Basic Research and Development Program of China (Grant No. 2007CB108800).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Y., Xue, X. & Chen, X. Are small RNAs a big help to plants?. SCI CHINA SER C 52, 212–223 (2009). https://doi.org/10.1007/s11427-009-0034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0034-3

Keywords

Navigation