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Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play
central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis
have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis.
During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs.
In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic
acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids
analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on
existing challenges and further research development is provided.
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1 Introduction

Nucleic acids, deoxyribonucleic acid (DNA) and ribonucleic
acid (RNA), are natural biopolymers of nucleotides that
store, encode, transmit and express genetic information [1,2].
DNA is composed of a phosphate-deoxyribose sugar back-
bone and the nitrogenous bases adenine (A), cytosine (C),
guanine (G), and thymine (T), while RNA has a ribose sugar
backbone and another base uracil (U) instead of T. Single-
stranded nucleic acids can form double helix structures when
hybridizing to complementary sequences, following the
Watson-Crick base-pairing rules (A:T or A:U, G:C) [3]. Both
DNA sequences and RNA transcripts play crucial roles in
diverse biological events, which can be exploited to serve as
biomarkers for biological studies and clinical diagnosis.
Electrophoresis and blotting are the most widely used ana-
lytical techniques for analyzing nucleic acids, which remain
to be used to analyze the length or structure and sequence,
respectively. Their sensitivities, however, are limited to the
sub-microgram regime.
Inspired by intracellular DNA replication and RNA tran-

scription, in vitro nucleic acid amplification techniques have
been developed to improve signal response and detection
sensitivity. They can be in general classified into two cate-
gories, thermal-cycle amplification such as best-known
polymerase chain reaction (PCR) [4] and isothermal ampli-
fication [1,5,6]. The later one is especially useful for tem-
perature-sensitive targets such as live cells and proteins.
Bioanalysis at single-cell and even single-molecule levels
has been achieved by employing these methods [7–9].

Moreover, high-throughput detection techniques, including
microarray chip [10,11] and next-generation sequencing
(NGS) [12,13], have been developed for simultaneous de-
tection of thousands of and even more nucleic acid sequences
of interest. The NGS technique can also be expanded for
other biological and biomedical applications, including the
analysis of non-nucleic acid targets [14] and the rapid
screening of small-molecule drugs [15]. Several amplifica-
tion methods have been utilized to improve the quality of
sequencing library [16–18]. Furthermore, these nucleic acid
techniques play important roles in cellular and in vivo ap-
plications. Live-cell imaging analysis with high signal gain
has been realized by enzymatic or enzyme-free amplification
methods [19–25]. Single-molecule visualization of nucleic
acids or proteins in fixed cells or tissues has also been re-
ported based on in situ DNA amplification methods [26–29].
DNA or RNA oligonucleotides have been selected as re-

cognition probes such as aptamers and DNAzymes by the
systematic evolution of ligands by exponential enrichment
(SELEX) [30,31]. Most of these probes bind to target mo-
lecules (proteins, small molecules, ions, etc.) with equal or
even higher affinity and specificity than those of antibodies.
Innovative bioanalysis methods based on aptamers or
DNAzymes have been proposed to enhance detection per-
formance [32,33]. Unnatural nucleic acids, such as locked
nucleic acids (LNAs) and peptide nucleic acids (PNAs), have
been synthesized to improve the hybridization or binding
stability and nuclease resistance [34,35]. Nucleic acids also
work as basic elements in nanotechnology ascribed to their
programmable and scalable feature [2,36,37]. They are used
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to construct various nanostructures and dynamic devices
with diverse technological applications such as nanofabri-
cation, biosensing and nanomedicine. DNA nanostructures
have now been widely used to improve analysis perfor-
mance. Furthermore, above-mentioned nucleic acid techni-
ques are often integrated with portable or miniaturized
devices including thermocyclers, microfluidic chips, test
strips, and capillary platforms [38,39]. Commercial devices
and assay kits have been available for practical testing. The
applications of nucleic acids analysis have been expanded to
clinical translation, environmental analysis, food safety and
forensic analysis.
In the past two decades, explosive increase of research

interest in this area has been witnessed along with massive
publications. In this review, we summarize recent advances
in nucleic acids and nucleic acids-based analysis, as well as
device development and applications of nucleic acids ana-
lysis, and discuss the challenges and future prospects in this
booming field.

2 Analyzing nucleic acids

2.1 In-vitro analysis of nucleic acids

2.1.1 Target amplification-based approaches
With the development of biotechnology and analytical
technology, highly sensitive and selective approaches to
amplify nucleic acids signals have been proposed to over-
come the inherent defects of nucleic acids detection, such as
low sensitivity, low selectivity and ultralow concentration.
These methods include thermal cycling and isothermal am-
plification techniques. PCR is the most widely used thermal
cycling technique for DNA amplification. The isothermal
process includes enzymatic isothermal amplification reac-
tions and enzyme-free DNA circuit signal amplifications.
Enzymatic isothermal amplification reactions include strand
displace amplification (SDA), rolling circle amplification
(RCA), loop-mediated isothermal amplification (LAMP),
nucleic acid sequence-based amplification (NASBA) and
biological signal amplifications. Enzyme-free DNA circuit
signal amplifications include hybridization chain reaction
(HCR) and catalyzed hairpin assembly (CHA) (Figure 1).
PCR is the first developed nucleic acid amplification ap-

proach, which has been regarded as the “gold standard” to
amplify and detect specific nucleic acid sequences through
thermal cycling [40,41]. PCR technique was first con-
ceptualized by Kary Mullis in 1985 [42], and has been ra-
pidly developed as one of the most commonly used
amplification approaches with high sensitivity and rapidity
for in-vitro analysis of nucleic acids [43,44]. While the early
generations of PCR-based detection technology are time-
consuming and cannot be used to quantitatively detect target
nucleic acids, especially RNA samples, quantitative reverse

transcription PCR (qRT-PCR) has been engineered for sen-
sitive amplification and detection of target RNAs via dyna-
mically fluorescence monitoring [45–48]. qRT-PCR allows
the reverse transcription of target RNA to its complementary
DNA, which realizes the effective amplification and quan-
titative analysis of the target RNA [49]. In addition, to fur-
ther develop more sensitive and accurate PCR technology,
digital PCR (dPCR) was emerged to actualize the absolute
quantification for nucleic acid detection and nucleotide copy
number variant analysis [50]. With dPCR technique, the
absolute quantitative results can be calculated with higher
sensitivity through the statistical analysis of the target nu-
cleic acid signals [51]. By combining with microfluidic chips
[52] and droplet-based technology [53], many commercial
dPCR systems have been widely applied and significantly
broadened the applications of dPCR.
PCR remains to be the most widely used technique for

DNA amplification, which involves template strands to be
amplified, repeated cycles of heat denaturation, hybridiza-
tion with annealed primers to form duplex, extension by
DNA polymerase with the aid of dNTPs [42,54–56].
Nevertheless, PCR requires precisely controlled temperature
cycling, complex and time-consuming sample preparation,
which limits its applications in resource-limited conditions.
To circumvent this barricade, isothermal amplification
techniques were proposed. To detect target oligonucleotides,
enzymatic isothermal amplification reactions have come up.
SDA is based on polymerization and scission, adapting to
several sensitive DNA detection [57,58]. RCA refers to a
circular oligonucleotide as a template. DNA polymerase
replicates the template hundreds to thousands of times to
obtain a long single-stranded DNA product [59–61]. Another

Figure 1 Signal amplification strategies for nucleic acids detection, in-
cluding thermal cycling and isothermal methods. The isothermal methods
mainly include enzymatic isothermal amplification reactions and enzyme-
free DNA circuit signal amplification reactions (color online).
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technique, LAMP, which is based on 4 primers being used to
recognize the 6 regions on the template DNA to amplify
nucleic acids at the range of 65 oC, can amplify the amount of
DNA to 109–1010 in less than one hour [62,63]. In NASBA,
three enzymes are used to detect RNAs at constant tem-
perature of 41 oC [64,65]. These enzymatic isothermal am-
plification approaches proceed at constant temperature,
which spend less time than the thermal cycling approaches.
Although these methods can reach high selectivity and sen-
sitivity in the detection of oligonucleotides, they cannot
adapt to amplify proteins, enzymes and small molecules in
vitro. To detect these targets at low level, biological signal
amplification technology has been put forward. Biological
signal amplification techniques do not amplify targets in
vitro, but improve the signal intensity of biomarkers or the
amount of bioprobes to improve the sensitivity of detection.
Biological signal amplification techniques include reactions
based on nuclease nicking enzyme signal amplification [66–
69] and DNAzyme signal amplification [70,71]. These
methods are widely used in the detection of metal ions,
proteins and small molecules, and are dependent on enzymes
suffering from high price and strict reaction conditions, e.g.
certain temperature and buffer. To overcome this bottle-neck,
enzyme-free DNA circuit signal amplification techniques
have been proposed. HCR and CHA are the most widely
used methods. HCR is the first reported enzyme-free DNA
circuit signal amplified technique [72]. In HCR reaction, two

DNA hairpins are stable in the solution until a target initiates
the cascade of hybridization events to produce a liner, long
double-stranded DNA (dsDNA) copolymer [73–77]. In CHA
system, two stable DNA hairpins coexist in solution until a
target is introduced. In the presence of the target, one of the
hairpins hybridizes with target by toehold-mediated strand
displacement, exposing the sticky end of hairpin 1 (H1), then
hybridizing with the sticky end of hairpin 2 (H2) to form
target-H1-H2 duplex. The duplex is unstable and the target is
released to solution by H2 spontaneous disassembly to form
H1-H2 complex. The released target initiates the next cycle
to form the additional H1-H2 complex, then the target is used
to amplify the signal [78–81]. The most attractive feature of
enzyme-free DNA circuit signal amplification techniques is
that they are kinetic controlled reactions without requirement
of enzymes.

2.1.2 Hybridization-based approaches
Hybridization-based detection platforms with high selectiv-
ity and excellent sensitivity have been developed based on
Watson-Crick base-pairing rules. The most classic hy-
bridization-based in vitro analysis is implemented by the
hybridization of two complementary DNA strands (Figure 2
(a)). By labeling functional groups or introducing nanoma-
terials on DNA strands, numerous strategies have im-
plemented in the analysis of nucleic acids [82–85]. The
nucleic acid analogs (NAA), which are synthesized by

Figure 2 Representative DNA detection strategies based on nucleic acids hybridization. (a) The classic hybridization-based in vitro analysis strategy [83–
85], Copyright 2013 Wiley-VCH. (b) The NAA analysis approach [86–88], Copyright 2014 American Chemical Society. (c) MB detection system [89–93],
Copyright 2010 Royal Society of Chemistry. (d) The SDR detection strategy [94,95] , Copyright 2014 National Academy of Sciences of the United States of
America (color online).
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modifying inter-nucleoside linkages or interspersing natural
nucleobases with artificial nucleobases, also play important
role in the hybridization-based in vitro analysis for their high
selectivity and chemical stability (Figure 2(b)) [86–88]. In
order to increase the selectivity, molecular beacon (MB), a
single-stranded, stem-loop folded oligonucleotide chain
structure with a donor (fluorophore) and an acceptor
(quencher) conjugated to the opposite ends, is developed to
detect target nucleic acids based on the switch of the stem-
loop structure (Figure 2(c)) [89–93]. The MB is normally in
the “fluorescence off” or closed state in the absence of target
DNA. And it switches to the “fluorescence on” or open state
after hybridizing with target DNA. In the system of duplex
probes, the strand displacement reaction (SDR) can be used
for in vitro analysis with high sensitivity, high controllability,
and low interference (Figure 2(d)). Such an approach has
been demonstrated to implement multiplexed detection for
several classes of biomolecules [94,95].
The sandwich assay has been widely applied for the de-

tection of nucleic acids, since Hassell et al. [96] applied
“sandwich hybridization” to investigate viral RNA tran-
scripts in 1970s. Typically, it often involves a target of nu-
cleic acids inserting within two recognition probes [6]. To
complete this assay, a recognition probe is modified onto
surface to capture target nucleic acids from the solution via
hybridization, while a second probe, coupled with signal
reporter, such as radioactive isotopes, enzymes, fluorescein,
and redox tags, is hybridized to a second region of the target
nucleic acids. Upon the target nucleic acids binding to the
recognition probe, the signal probe produces a readily sen-
sitive measurable signal, enabling detection of the presence
and concentration of target nucleic acids. Owing to si-
multaneous binding of the recognition probes to the target
analyte, this method exhibits extremely high specificity [97].
More importantly, both surface bound probe and signal probe
do not interact with each other in the absence of target, re-
sulting in reduced noise and thereby ultimate low detection
limits [98,99].
Recent advances in the field of DNA nanotechnology have

opened new possibilities to develop novel sandwich assays
with impressive detection performance (Figure 3) [100–
102]. For example, Lin et al. [103] reported an E-DNA based
sandwich assay by folding the tetrahedral framework-mod-
ified capture probe into stem-loop structure to further reduce
the background signal and increase its detection sensitivity.
In the presence of nucleic acids target, the capture probe
opens its stem-loop structure, generating a new sticky-end to
hybridize to signal probe, and enabling this sensor detecting
microRNA (miRNA) with high specificity in the diverse
miRNA family members. Furthermore, Lu et al. [104] in-
troduced this E-DNA based sandwich assay into electro-
chemiluminescence resonance energy transfer (ECL-RET)
detection system with high sensitivity and specificity by

using Ru(bpy)3
2+-modified silica nanoparticles (RuSi NPs)

and hollow Au nanocages as ECL donor and acceptor, re-
spectively. In addition, Zuo et al. proposed a supersandwich
assay by extending signal probe with a “sticky end” to fur-
ther hybridize another target of nucleic acids [99,105].
Specifically, this hybridization of single signal probe be-
tween two target molecules results in the formation of su-
persandwich structure with multiple labels, enabling
impressive detection limit of this supersandwich assay.
Owing to the high stability, low cost, and convenient la-

beling, nanoparticles can also serve as signal probes for
DNA detection to further improve the performance of
sandwich assays [106–115]. For example, Zhang et al. [116]
reported a nanoparticle based “sandwich” detection strategy
by immobilizing gold nanoparticles (AuNPs) with reporter
probes that flank the target nucleic acids. Specifically, hun-
dreds of reporter DNA strands loaded on AuNPs enable a
significant amplification by concentrating electrochemical
signal of [Ru(NH3)6]

3+ proximal to the electrode surface,
significantly enhancing its sensitivity and selectivity. Simi-
larly, Liu et al. [100] further applied this AuNPs based
sandwich type strategy to detect exosomal miRNAs with
neutrally charged PNAs instead of DNAs to further improve
its sensitivity and specificity.
The development of framework nucleic acids (FNAs)

provides a platform for patterning biosensing interfaces, re-
sulting in uniform biorecognition layers to improve the hy-
bridization efficiency in sandwich assay. As an elegant
application, tetrahedral DNA frameworks (TDF) have been
used as rigid scaffolds for orientated immobilizing DNA
recognition probes. Fan et al. have shown that the DNA
hybridization kinetics and thermodynamics were profoundly
affected by tuning the size of TDF anchors. The hybridiza-
tion rate and hybridization efficiency can be increased for
20-fold and 5-fold with TDF anchors, respectively, com-
pared to the conventional single-stranded DNA anchors.
When TDFs were used to develop sandwich assay, a detec-
tion limit of 100 aM can be achieved, which excels most of
the existing sandwich assays [117–119]. In addition, the in-
trinsic low cost of TDFs meets well the low-cost requirement
of biosensor design because the TDFs can be assembled with
only four DNA strands [120–122]. More importantly, the
FNAs facilitated patterning of biosensing interfaces can be
integrated into various sensing devices such as microfluidic
devices and paper-fluidic devices [123,124], expanding its
applications in many important fields such as miniaturized
biosensors and integrated biosensors.

2.1.3 Sequencing-based approaches
Sequencing is probably one of the most sophisticated ap-
plications of analyzing nucleic acids [126]. Many conven-
tional analytical methods, such as electrophoresis separation
[127,128], laser-induced fluorescence [127], fluorescence
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microscopy [128], electrochemical sensing [129], micro-
fluidics [130], single-molecule detection [131], and the in-
tegration between some of these technologies, become the
technological foundation of various types of DNA se-
quencers. DNA sequencing also highly relied on the ad-
vances of the understanding and engineering of enzymatic
reactions, as well as the nucleic acid amplification techni-
ques [132] to convert the sequence information into mea-
surable optical or electrical signals [133,134]. The first drafts
of the human genome were published nearly two decades ago
[135], since then we have observed the explosion of genomic
data along with the revolutionized instrumental development
from the capillary electrophoresis-based Sanger sequencers
[136] to high-throughput next-generation sequencers [137–

140]. There have been many review articles that cover all
aspects of DNA sequencing and its applications in studying
genomic variations [141], transcriptomes [142], epigenomes
[143], higher-order chromatin structures [144], protein-nu-
cleic acid interactions [145], and diagnosis applications
[146,147]. Here we emphasize three major trends that il-
lustrate technological advances built upon analytical chem-
istry (Figure 4). First, long-read single molecule sequencing,
such as the nanopore sequencing [148], has been rapidly
developed and is catching the wave to provide solutions with
unique advantages including the detection of viral DNAs or
RNAs during outbreaks [149]. Although such approaches
still face great challenges on the raw accuracy [150], and will
not be able to replace prevalent NGS platforms in the near

Figure 3 DNA detection based on the sandwich strategy. (a) Scheme of the traditional electrochemical nucleic acid sandwich assays. (b) Scheme of
supersandwich assays for the nucleic acids detection. (c) Schematic of showing AuNPs amplified detection: DNA targets, detection probes loaded on AuNPs,
and capture probes anchored at the electrode surface form “sandwich” complexes in the presence of target DNA. (d) Scheme of the FNA based E-DNA sensor
with DNA tetrahedron. (e) Schematic illustration of miRNA detection using the PNA-miRNA-SNA (PMS) sandwich-based biosensor [95], Copyright 2019
American Chemical Society. (f) Schematic demonstration of structure and modification process of the FNA based ECL Biosensor for miRNA detection [125],
Copyright 2018 American Chemical Society (color online).
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term, direct long-read detection scheme has been increas-
ingly used as a synergetic tool to couple with short-read
sequencing approaches for acquisition of long-range geno-
mic information [151]. Second, large throughput sequencing
will still hold the major role in sequencing business and need
to be continuously evolved to reach higher throughput, lower
cost, higher accuracy, and longer read length. New concepts
of sequencing chemistry, such as error-correction code se-
quencing [13] and contiguity-preserving transposition se-
quencing [152,153], will greatly elevate the merits of high-
throughput sequencing and benefit majority of applications
with familiar experimental and analytical procedures. Third,
the capability to sequence low-input samples allows us to
explore nucleic acid information with higher spatial resolu-
tion. Single cell sequencing is becoming a routine process
when dissecting a complex biosystem [154], and it has been
highly depending on the advances of microfluidics
[155,156], development of amplification methods
[12,17,157], and the new functions of enzymes [158].
Meanwhile, spatial-resolved in situ sequencing will become
a new frontier in biology and medicine, providing an in-
tegrative landscape of both spatial distribution and genomic
variation at the single-cell level [159–161], or even finer
scales [162], in the context of tissues or organs. The advent
of new technologies in sequencing has shown great prospects
for deciphering the secrets of life, and will continuously shed
light on fundamental biology and medical applications.

2.1.4 Mass spectrometry-based approaches
Mass spectrometry (MS) has long played a significant role in
the characterization of constituents, modifications and se-
quences of nucleic acids due to its excellent performance in
identification of compounds [163]. The fast advances of MS-
based analytical methods make MS an increasing important
tool in nucleic acids research. Specially, liquid chromato-

graphy-electrospray ionization-tandem mass spectrometry
(LC-ESI-MS/MS) and matrix-assisted laser desorption/io-
nization mass spectrometry (MALDI/MS) are the most
widely employed platforms for analyzing nucleic acids.
Nucleic acids typically undergo hydrolysis, resulting in

formation of small compounds, such as nucleotides, nu-
cleosides, or nucleobases, followed by the determination of
these components with MS (Figure 5) [164]. The chroma-
tographic retention time, mass-to-charge ratios and frag-
mentation MS spectra could afford the identification
information of components from nucleic acids. Stable iso-
tope internal standards were commonly used in MS analysis
to improve quantification accuracy. Apart from the canonical
nucleic acids, a number of modifications that play critical
roles in regulating the structures and functions of nucleic
acids have been identified in both DNA and RNA [165]. The
analysis of these modifications shows great promise in
clinical diagnosis and prognostics of certain diseases
[166,167]. However, nucleic acid modifications generally
exist in low abundance, and thus cause challenges in the MS-
based analysis. In this respect, chemical labeling in combi-
nation with MS analysis has been proposed and proved to be
an attractive strategy to increase the detection sensitivities of
analytes (Figure 5) [168,169]. Along this line, a variety of
chemical labeling-MS-based methods have been developed
for the sensitive and accurate analysis of nucleic acid mod-
ifications with the detection sensitivities of nucleosides
being down to subfemtomole or even attomole levels [170–
175].
MS also plays an ever-widening role in determining se-

quence of oligodeoxynucleotides. The large nucleic acids
generally have to be cleaved to short fragments for sub-
sequent MS analysis (Figure 5). As for RNA, the nucleases
of RNase T1 and RNase A are typically utilized to digest
RNA to produce small oligonucleotide fragments followed
by MS analysis [176]. Electrospray ionization (ESI) and
matrix-assisted laser desorption ionization (MALDI) nor-
mally create protonated or deprotonated molecular ions in
the form of (M+nH)n+ and (M–nH)n+, respectively [177]. To
obtain the sequence information, the selected oligodeox-
ynucleotides need to be further fragmented. A typical frag-
ment ion spectrum of an oligodeoxynucleotide is composed
of a series of peaks. Starting from the 5’-terminus, a, b, c, and
d fragment ions, are created by fragmentation at different
positions of phosphodiester group in oligodeoxynucleotide
(Figure 5) [163]. Meanwhile, z, y, x, and w fragment ions are
produced from the 3’-terminus (Figure 5) [163]. The re-
sulting series of 5’-terminal and 3’-terminal ions have
characteristic mass differences, which are thereby employed
to deduce the sequence of oligodeoxynucleotide [178]. In
addition to the sequence information, the sites of modifica-
tions in oligodeoxynucleotides also can be obtained by MS/
MS analysis, which is very valuable for the detection and

Figure 4 Sequencing technology developing trends. Most improvements
have been observed in sequencing read length and accuracy (blue domain),
while the progress in increasing sample spatial resolution is relatively slow
(orange and green domains). No single technology excels in all three di-
mensions to date (color online).
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mapping of DNA adducts in oligodeoxynucleotides [179].
Moreover, the capability of MS for sequencing oligonu-
cleotides has also enabled the discovery and identification of
various modifications in different RNA species [180]. With
the development of advanced MS instruments, the mass re-
solution and detection sensitivity have been greatly im-
proved. We envision that MS will play increasing important
roles in analyzing nucleic acids.

2.2 Intracellular and in vivo analysis of nucleic acids

2.2.1 Fluorescence
Fluorescence analysis has been widely used for the detection
of nucleic acids of interest as a non-invasive analytical
method with high sensitivity and spatiotemporal resolution,
which would be beneficial to understand the progress of
physiology and pathology [181–184]. Using fluorescent
probes, the monitoring of nucleic acid molecules could be
realized at the cellular and in vivo level on a real time scale.
The fluorescent probes usually employ external fluor-
ochromes with unique properties such as highly separated
excitation/emission wavelengths, high quantum yield, long
fluorescence lifetime, high extinction coefficient, and
fluorescence anisotropy [185–188]. Furthermore, simulta-
neous detection of multiple targets can be achieved in the

same sample by using different fluorochromes that can be
spectrally resolved [189,190]. With these features, a variety
of strategies have been designed for imaging and detecting
nucleic acids with superb sensitivity, high selectivity and
good biocompatibility in living cells and in vivo [190–194].
Chen et al. have developed a new activatable NIR fluor-

escence nanoprobe (QD-Al-GFLX) for efficient detection of
dsDNA in aqueous solution and imaging of dsDNA in living
cancer cells. As shown in Figure 6(a), only the HeLa cells
incubated with QD-Al-GFLX produced strong intracellular
NIR fluorescence upon interaction with dsDNA in the nu-
cleus, indicating that QD-Al-GFLX was capable of fluores-
cence imaging of endogenous dsDNA in living cells [195].
Han and his coworkers reported an organelle-trappable DNA
sensor (SG-RB) for dual-color imaging of mitochondrial
DNA (mtDNA). As shown in Figure 6(b), SG-RB selectively
bound mtDNA in mitochondria, thereby giving rise to turn-
on green fluorescence [196]. Tang and his coworkers pre-
sented a multicolor nanoflares based novel nanoprobe that
can detect and image three kinds of tumor-related mRNAs in
living cells simultaneously. The fluorescent signals observed
under confocal laser scanning microscopy (CLSM) were
consistent with the levels of tumor-related mRNA gene ex-
pression, which revealed that this novel nanoprobe could be
used to discriminate cancer cells from normal ones (Figure 6

Figure 5 Schematic illustration of MS-based analysis of nucleic acids. Nucleic acids undergo hydrolysis to form nucleotides, nucleosides, or nucleobases
followed by determination of these compounds by LC-ESI-MS/MS. Chemical labeling in combination with MS analysis can increase the detection
sensitivities of these compounds. Nucleic acids also can be cleaved into short fragments and the sequence information of these oligodeoxynucleotides can be
obtained by MS/MS analysis (color online).
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(c)) [197]. In addition to the intracellular detection of nucleic
acids, the imaging and analysis of nucleic acids in vivo are
also reported and help decipher biology. Jiang et al. devel-
oped a novel tripartite DNA probe (Y-H1-H2-FAP) that en-
abled fluorescent RNA imaging in living mice via an in vivo
HCR circuit. The intense fluorescence signal observed for
the HeLa tumor-bearing mice (Figure 6(d)) and the fluor-
escence intensities (Figure 6(c)) in the tumor regions of in-
terest suggested the overexpression of microRNA-21 (miR-
21) in tumors [198]. Li and his coworkers developed a DNA
nanodevice (PBc-UN), permitting NIR light triggered, spa-
tiotemporally controlled miRNA imaging in living cells and
animals. Stronger fluorescence was shown by the PBc-UN
+NIR treated group at the tumor site than by the PBc-UN
treated group (Figure 6(f) and 6(g)), achieving remotely
activated miRNA imaging in tumors [199].

2.2.2 SERS
Raman spectroscopy has attracted wide attention due to its
prominent chemical specificity that provides fingerprint in-
formation of various molecules [200]. However, the in-
herently weak scattering characteristic limited its biological
application. Fleischmann et al. firstly reported the surface
enhanced Raman scattering (SERS) phenomenon at rough-
ened silver substrates. Up to date, SERS has been considered
as potential tools for analytical sciences and biomedical
applications because of its remarkable sensitivity of detec-

tion and undisturbed property to surrounding interference
factors [201]. SERS sensing are mainly based on two stra-
tegies, direct detection and indirect detection with Raman
tags. Direct detection of analytes is performed by monitoring
the characteristic fingerprint information of the analytes’
immediate vicinity by the enhanced substrates (such as noble
metal nanoparticles). The indirect determination of analytes
in biological samples depends on Raman tags that could
specifically respond to or combine with the analytes, which
is suitable for sensing analytes in complex samples [202].
Since Kneipp et al. firstly reported SERS applied in the

direct detection of biochemical components in a single cell in
2002, SERS has been blossomed into intracellular analysis
and in vivo imaging [203]. SERS can provide a wealth of
components and structural information, as well as structural
changes like mutations in DNA strands of the biological
samples. Therefore, various studies about label-free direct
detection of nucleic acids were reported [204,205]. For ex-
ample, Kneipp et al. [206] monitored the cellular SERS
signatures including nucleotides at different time points after
the uptake of AuNPs. Gold or silver nanoparticles also can
serve as specific SERS tags based on the surface-enhanced
Raman signature of an attached reporter molecule to high-
light cellular structures and indirect detection of the char-
acteristic analytes [207,208]. MiRNAs are a non-coding
small RNAs that are considered as diagnostic markers or
therapeutic targets of diseases [209]. Various nanostructure-

Figure 6 Intracellular and in vivo fluorescence analysis of nucleic acids. (a) Fluorescence imaging of dsDNA in living HeLa cells [195]. (b) “Turn-on”
fluorescence imaging of mtDNAwith SG-RB [196]. (c) Intracellular imaging of c-myc mRNA, TK1 mRNA, and GalNAc-T mRNA under CLSM [197]. (d)
In vivo fluorescence images of HeLa tumor-bearing with injection of physiological saline injection (1) and Y–H1–H2–FAP probe (3) and MCF-7 tumor-
bearing mice with injection of the Y–H1–H2–FAP probe (2) [198]. (e) Mean fluorescence intensities of the treated mice in (d). (f) Whole-body fluorescence
imaging of HeLa tumor-bearing mice after intravenous administration of PBc-UN with or without subsequent NIR illumination. Red circles indicate tumor
sites. (g) Quantification of the fluorescence intensity at the tumor sites in (f) [199] (color online).
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based SERS tags were developed to improve the detection
signals for sensitively and precisely determining miRNAs
[206,209–212]. For example, Kuang et al. developed real-
time in situ determination of the miRNA in living cells using
self-assembly nanorod dimers. Distinct intense SERS signals
were introduced by the self-assembly of plasmonic dimers
simultaneously caused by miRNA [212]. GO-Au nanos-
tructures were coupled with hybrid DNA linkers to detect
miR-21 and surface glycoprotein in living cells with great
selectivity and stability, in which the SERS signal would turn
off as the concentration of intracellular miR-21 increased
[210]. This research group also reported SERS and up-con-
version fluorescence imaging platform for quantitative de-
tection of the miR-21 and telomerase in living cells based on
DNA-programmed AuNP dimer-UCNP core-satellite as-
semblies, in which the complementary DNA fragments for
miR-21 were localized in the gaps of Raman tag-labeled
AuNP dimers, while the hybridization of the complementary
DNA fragment to miR-21 caused the AuNPs to separate,

resulting in SERS signal turn off [210]. Moreover, based on
the turn-on strategy for miR-21 detection, Liu et al. reported
a serious of methods, such as target triggered self-assembly
method and target-mediated nanoparticle dimerization
strategy. In detail, the authors designed dimeric AgNPs for
quantitatively monitoring miRNAs in single cells, which can
be controllably assembled to large aggregates for the for-
mation of hot-spots, thus significantly enhancing the
brightness of the Raman tags and achieving accurate detec-
tion of miRNAs at single-biomolecule level (Figure 7(a))
[213]. They also developed a target-mediated plasmonic
dimerization method for in situ imaging of miRNAs in living
cells based on the background-free Raman tags (alkyne,
C≡C; nitrile, C≡N), with single peaks in the Raman-silent
region and no overlap within the cellar fingerprint region.
With the strategy, the electromagnetic hot spots would be
built responsively to the target miRNAs, leading to sig-
nificant enhancement of Raman scattering, thus reducing the
interference of background signals (Figure 7(b)) [211].

Figure 7 SERS strategies for nucleic acid detection. (a) Quantitatively miRNA detection using dimeric AgNPs, which can be assembled to large aggregates
upon the presence of miRNA. Adapted with permission from Ref. [213], Copyright 2017 American Chemical Society. (b) In situ imaging of miRNAs in
living cells, based on hot spots building in the presence of miRNAs. Adapted with permission from Ref. [211], Copyright 2017 American Chemical Society.
(c) In vivo nucleic acid detection by implanted a SERS sensor in the skin of pig based on a SERS signal turn-on strategy. Adapted with permission from Ref.
[214], Copyright 2018 Springer-Verlag (color online).
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Up to now, SERS technology has been widely applied for
in vitro and cellular nucleic acid analysis [204]. However, in
vivo nucleic acid analysis based on SERS methods is still
extremely challenging. In vivo nucleic acid analysis is crucial
for monitoring health, predicting the occurrence and pro-
gression of disease, and revealing potential targets for
treatment. Tuan Vo-Dinh et al. reported in vivo nucleic acid
detection by implanting a SERS sensor in the skin of pig
based on a SERS signal turn-on strategy. The turn-on sensing
system consisted of a plasmonic nanostar modified with a
Raman tag-labeled DNA fragment and a complementary
DNA fragment. The SERS signal was kept on turn-off status
as the Raman label departed away from the nanostar surface,
and would be enhanced significantly (turn-on status) when
exposed to the target nucleic acids. The authors also de-
monstrated ex vivo SERS detection of target nucleic acid by
implanting the SERS sensors in the human skin grafts
(Figure 7(c)) [214], showing great potential for clinical
translation applications of SERS technology.

2.2.3 Electrochemistry
Electrochemical approaches can offer rapid, low-cost and
simple platform for the analysis of intracellular nucleic acids.
Up to date, many electrochemical techniques have been de-
veloped for the intracellular sensing of nucleic acids in the
diagnosis of human cancers [215–218], clinical and patho-
logical diagnosis of genetic or infectious diseases [219–225],
environmental monitoring, food analysis [226–230], and so
on. For example, an amplification-free electrochemical ap-
proach was proposed for the analysis of FAM134B mes-
senger RNA in tissues samples from patients with
oesophageal carcinomas using a screen-printed gold elec-
trode [217]. Such approach avoided the tedious fabrication
procedure of electrode and the analytical performance ac-
corded with a standard qRT-PCR analysis. Quantitative data
are normally necessary for genetically modified organisms in
foods to evaluate whether foods in trade are in compliance
with particular specifications legally established. Monitoring
of genetically modified organisms in food was achieved by
electrochemical detection of magnetically-entrapped DNA
sequences by multiplexed enzymatic labelling from complex
samples [226]. Generally, these methods need to lyse the cell
to extract the intracellular nucleic acids, which may prevent
the knowledge of prior or future states of the cells [231]. It is
still critical to observe the intracellular nucleic acids within
living cells. Except fluorescence imaging, electrochemical
technique has also been employed for intracellular sensing in
situ owing to the excellent analytical features. For example, a
switchable electrochemical sensor was designed for survivin
mRNA in living cells on the basis of the changes of electron
transfer efficiency between the electrode surface after reac-
tion with the mRNAs and ferrocene at the end of DNAs
[232].

In addition to the abovementioned potentiometric and
amperometric assays, ECL technique that combines the ad-
vantages of electrochemical and chemiluminescence meth-
ods is also increasingly used for intracellular sensing of
nucleic acids because of the advantages of high sensitivity,
low background, and good temporal and spatial resolution
[233]. For example, an ultrasensitive wireless ECL assay
was proposed for the detection of c-Myc mRNA in breast
cancer cells on an indium tin oxide bipolar electrode in a poly
(dimethylsiloxane) microchannel [234]. Such ECL biosensor
could accurately quantify c-Myc mRNA copy numbers in
living cells. ECL imaging of intracellular miR-21 in single
HeLa cells was achieved by EMCCD using H2O2 as co-
reactant and luminol as ECL active material [235]. To the
best of our knowledge, it is the first reported example to
employ the high resolution ECL-microscopy for imaging of
intracellular miR-21.

3 Nucleic acids-based analysis

In addition to the above-mentioned nucleic acids targets,
nucleic acid elements also enable the bioanalysis of non-
nucleic acid targets, including ions, metabolites, proteins,
and even cells. This feature contributes to the nucleic acid-
based molecular recognition elements such as aptamers and
DNAzyme, which can bind to their targets with strong affi-
nity and high specificity. Moreover, benefiting from their
programmable and scalable features, nucleic acids can be
constructed into DNA/RNA nanostructures, which can sig-
nificantly improve the analysis performance of probes. In
this section, these nucleic acid elements including aptamers,
DNAzymes and DNA/RNA nanostructures are first in-
troduced, then several strategies for their bioanalysis appli-
cations are discussed, and finally some representative
examples for the bioanalysis of various kinds of targets are
provided.

3.1 Nucleic acid elements for molecular recognition

3.1.1 Aptamers
Nucleic acid aptamers are oligonucleotide sequences of
DNA or RNA. The aptamer can achieve specific recognition
due to its spatial structure that matches the target molecule
[236]. Aptamers are usually obtained by SELEX screening
[237]. Specifically, nucleic acid libraries were incubated
with target molecules to obtain conjugates of aptamers and
target molecules [238,239]. Then the unbound sequences
were eluted. After multiple cycles of selection, aptamers
with high affinity can be obtained [240].
In recent years, nucleic acid aptamers have been widely

used in bioscience and biomedicine due to their high affinity,
specific binding ability and excellent programmability
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[30,241]. At present, researchers have synthesized and
screened a variety of nucleic acid aptamers that can speci-
fically bind to biomarkers such as antigens [242], biological
enzymes [243], cell surface receptors [244] and nucleic
acid molecules. For example, AS1411 is a star DNA aptamer
that binds nucleolin with high affinity, thereby inhibiting
cell proliferation and achieving the effect against cancer
[245].
In addition to using nucleic acid aptamers for recognition

analysis, some researchers have begun to introduce func-
tional groups into nucleic acid libraries to obtain chemically
modified aptamers [37]. Compared with traditional apta-
mers, chemically modified aptamers have a richer spatial
conformation, which increases the possibility of obtaining
suitable aptamers from nucleic acid libraries [37,246]. At the
same time, the introduction of chemical modification is ex-
pected to expand the function and application of chemically
modified aptamers [247]. An example is a chemically
modified aptamer containing 2-amino-3-nitropyridin-6-one
(denoted as Z) and imidazo[1,2-a]-1,3,5-triazin-4-(8H)-one
(denoted as P) bases. Many researchers have introduced Z
and P bases into nucleic acid libraries. The desired chemi-
cally modified aptamer is screened from the library (Figure
8) [248]. Currently, chemically modified aptamers have been
widely used to recognize and analyze more biomarkers due
to their high affinity and specificity.
Furthermore, chemically modified nucleic acids cannot be

recognized by traditional nucleases due to the introduction of
chemically modified nucleotides. As a result, the biological
stability of the nucleic acid sequence is greatly improved
[249]. There are also some chemically modified nucleotides
that can be complementary paired with traditional natural
nucleotides, which can further improve the stability of nu-
cleic acid aptamers based on “locking” the spatial structure
of the aptamers.
Numerous studies have shown that nucleic acid aptamers

are widely used as multifunctional tools for recognition,
analysis, drug delivery, cancer treatment and other fields
[30,250]. Among them, the introduction of functional groups
into nucleic acid aptamers is expected to further expand the
structure and function of aptamers. These studies will
provide new opportunities for future research and develop-

ment of excellent analysis equipment and disease treatment
drugs.

3.1.2 DNAzymes
With the discovery of ribozymes in the early 1980s, the
notion that all enzymes are proteins was changed. Ribo-
zymes can catalyze biochemical transformations in the ab-
sence of proteins. The use of ribozymes for sensing was less
explored due to the poor stability and high costs of RNA. In
1994, the first catalytic DNA (DNAzyme) was isolated with
the RNA cleavage activity (Figure 9(a)) [251], and its ac-
tivity requires Pb2+ as a cofactor while other metal ions
cannot catalyze the reaction [252]. The DNAzyme was ob-
tained by in vitro selection from a large random library
containing around 1015 DNA sequences, and the process was
quite similar to aptamer selection also including the isolation
of active sequences followed by PCR amplification.
Many DNAzymes require specific metal ions [253]. Tak-

ing advantage of it, Li and Lu reported a DNAzyme-based
biosensor for Pb2+ detection [254]. This sensor was com-
posed of an RNA containing substrate strand bearing a
fluorophore label hybridized to a quencher labeled enzyme
strand (Figure 9(e)). In the hybridized state, the fluorescence
was low. Upon cleavage of the substrate and release of the
fluorophore bearing fragment in the presence of Pb2+, a time-
dependent fluorescence increase was obtained [255]. Such
DNAzyme-based sensors are highly sensitive and selective.
Moreover, they solved the problem of detecting metal ions,
which is challenging for aptamers and antibodies. Later, in
vitro selections were intentionally carried out in the presence
of different metal ions such as UO2

2+ (Figure 9(b)) [256], Na+

(Figure 9(c)) [257], and lanthanides (Figure 9(d)) [258], and
all of them achieved highly selective sensors for the target
metal ions. By measuring catalytic activity, the problem of
non-specific DNA binding by metal ions can be largely
avoided to further increase specificity [259]. To further im-
prove the chemical diversity of DNAzymes, chemically
modified DNA was used such as phosphorothioate DNA
[260], modified DNA bases [261], and synthetic metal li-
gands [262].
The same selection method has also been applied to non-

metal targets. For example, an early DNAzyme reported by

Figure 8 Generation and selection of DNA aptamer containing chemically modified bases towards recognition, analysis, drug delivery, cancer treatment
application. An example is a chemically modified aptamer containing 2-amino-3-nitropyridin-6-one (denoted as Z) and imidazo[1,2-a]-1,3,5-triazin-4-(8H)-
one (denoted as P) bases (color online).
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the Breaker group [263] requires L-histindine for its activity
(Figure 9(f)). Later, the Li group [264,265] has isolated a
series of DNAzymes that can detect specific bacterial strains
by selecting against their crude extracellular matrix. In ad-
dition to the DNAzymes for RNA cleavage, another type of
commonly used DNAzyme has peroxidase-like activity
[266]. These DNAzymes often have a G-quadruplex binding
hemin as a cofactor (Figure 9(g)). They are attractive in
terms of replacing horseradish peroxidase in immunoassays
for signal amplification. Since DNAzymes are program-
mable in structure and can achieve site-selective labeling,
they are more versatile than protein-based enzymes for
sensor design.
DNAzymes with other types of activities have also been

used for analytical applications. For example, a sequence
named T30695 was recently discovered to catalyze por-
phyrin metalation in the presence of Pb2+ (Figure 9(h)). By
inserting Zn2+ into the porphyrin substrate, a red-to-orange
emission color change was observed [267]. DNAzymes for
oxidative and hydrolytic cleavage of DNA were developed
for measuring Cu2+ [268] and Zn2+ [269], respectively.
DNAzymes with phosphatase and ligase like activities are
also known and they can also be potentially used for sig-
naling or target recognition in sensors [270,271].

Overall, DNAzymes can be used for both target recogni-
tion and signal generation and amplification. Thus, they are
very useful molecules for designing biosensors, especially
for metal detection. DNAzymes are complementary to ap-
tamers in terms of target recognition, and they can also be
combined to obtain aptazymes to have the advantages of both
[272].

3.1.3 DNA/RNA nanostructures
The analysis aiming at targets with larger dimension or
higher complexity (e.g. protein, biochemistry pathway and
cell membrane) requests accordingly larger molecular ob-
jects to accommodate the geometric, procedural and affinity
demands. DNA/RNA nanostructures have exhibited the
corresponding properties and great potentials in the realm of
biochemical analysis.
Initiated by Nadrian Seeman in the 1980’s, the concept of

DNA nanotechnology [2,273] inspired scientists to design
nanoscale structures precisely assembled with program-
mable DNA oligonucleotides (Figure 10(a)). Different from
aptamer or ribozyme whose functions are embedded in the
sequence determined secondary structure of a single
(sometimes more than one) DNA/RNA strand, the con-
struction of DNA nanostructures requires less in sequence

Figure 9 DNAzymes for molecular recognition. (a) The first reported RNA-cleaving DNAzyme named GR5 specific for Pb2+. The secondary structures of
representative DNAzymes requiring (b) UO2

2+ (39E), (c) Na+ (NaA43), (d) lanthanide ions (Ce13d), or (f) L-histidine (HD2) as cofactors. (e) The cleavage-
induced fluorescent beacon based on RNA-cleaving DNAzymes. (g) The G-quadruplex DNAzyme/hemin complex with peroxidase-like activity catalyzing
the oxidation of ABTS in the presence of H2O2 into ABTS

·+. (h) T30695 can catalyze porphyrin metalation in the presence of Pb2+ and induce a red-to-orange
emission change upon inserting Zn2+ (color online).
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specificity, but more in geometrical rules (such as the dis-
tance between crossovers) to regulate the hybridized DNA
segments to form proper spatial arrangements. Simple DNA
nanostructures designed in the early days, commonly termed
“tiles”, are able to further assemble into larger structures (e.g.
1D tubes, 2D arrays and 3D crystals) with certain freedom in
1–3 directions to grow infinitely [274,275]. To fabricate
more specific structures, DNA origami [248,276] and Sin-
gle-Strand Tile (SST) [277,278] techniques have made great
progress in the last decade. They sequester hundreds of DNA
oligos recognizing and binding to a single-stranded DNA
scaffold or to each other to form the pre-designed structures
with very high fidelity and efficiency. Various geometrical
shapes across 1D to 3D (e.g. tubes, 2D patterns, bricks,
spheres, webs) have been realized with controllable para-
meters (e.g. distance, angle, curvature) in nanometer preci-
sion. Moreover, by employing dynamic DNA
nanotechnology [279–281], properly designed DNA struc-
tures can transform between two or more isomers mostly
through SDR that triggered by physical or chemical stimulus
(e.g. photons, pH changes, ions, DNA oligos). The above
progress in DNA nanotechnology suggests the unlimited
possibility of engineering arbitrary nanodevices for specific
tasks in both basic and applicable researches.
RNAmolecules, in principle, can be manipulated to fold or

assemble into various nanostructures just like DNA with a
few distinct parameters [282]. However, considering the
valuable cellular functions of RNA, which rely on their se-
quences and secondary structures, it makes less sense to
assemble a static RNA structure using dozens of commer-
cially synthesized RNA oligos with arbitrary sequences at
high cost. Thus, the field of RNA nanotechnology [283–285]

has been focusing on achieving higher order RNA structures
through natural RNA motifs and their association methods,
such as kissing loops and sticky ends (Figure 10(b)). Al-
though the architecture species and constructions are not as
impressive as the DNA nanostructure family, RNA nanos-
tructures preserve the outstanding ability of cellular ampli-
fication and in-vivo assembly [286,287]. Publications in
recent years indicate that the merging of DNA and RNA
nanotechnology as a current trend may eventually integrate
the structural programmability and the bio-functionality of
the two kinds of nucleic acids [288–290].
The three major advantages of DNA/RNA nanotechnology

(Figure 10(c)), including the abilities of multiple components
arrangement, precise spatial positioning and dynamic struc-
ture regulation, can improve analysis performance in many
ways. First of all, the readout fluorophores (or other mole-
cules) can be easily introduced into DNA/RNA nanos-
tructures with multiple species and copies, which
significantly increase the number of detecting channels, and
enhance the signal intensities [291,292]. Second, the DNA/
RNA nanostructures possess numerous sites on surface with
controllable distance to display multiple recognition motifs
(e.g. aptamers, antibodies) that enhance the cooperative
binding affinity for the target biological analytes [293,294].
Third, employing DNA/RNA nanostructures as frameworks,
other nanomaterials (e.g. carbon nanotubes, metal nano-
particles, quantum dots) and biomolecules (e.g. peptide,
enzyme, antibody, lipid) can be recruited and rearranged to
establish novel analytical platforms with inherited properties
(e.g. chirality, surface plasmonic resonance, catalytic activ-
ity) [295]. Moreover, DNA/RNA nanostructures are capable
of generating motions or investigating dynamic molecular

Figure 10 Schematic illustration of DNA/RNA nanostructures. (a) Nanostructures constructed by DNA in two and three dimension. (b) Motifs, binding/
folding principles and 2D/3D nanostructures based on RNA molecules. (c) DNA/RNA nanostructures can be precisely functionalized and manipulated for
senescing and many other purposes (color online).
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behaviors [296,297]. Last but not least, recent studies in
DNA nanostructure induced cell uptake and in-situ meta-
bolism tracing suggest a huge potential of using DNA/RNA
nanotechnology to facilitate in vivo investigation and nano-
medicine discoveries [298–300]. In summary, DNA/RNA
nanotechnology offers analytical chemists a convenient
toolbox to choose or build up devices for better target de-
tection, signal extraction and sample examination.

3.2 Strategies for bioanalysis

Utilizing nucleic acid elements for the analysis of nucleic
acid targets and non-nucleic acid targets, such as ions, me-
tabolites, proteins, virus, cells and tissues, originates from
their abilities in accurate recognition and transduction of
target signals as well as versatile reporting methods of output
signals. With the help of molecular engineering, different
functional nucleic acid probes have been generated for target
recognition. Meanwhile, detailed understanding of intra-and
inter-molecular interactions between nucleic acids and their
targets encouraged further development of nucleic acid-
based signal transduction strategies. Furthermore, combined
with optical, electrical, magnetic and acoustic technologies,
nucleic acid-based bioanalytical strategies can be reported in
versatile outputs and applied to different application sce-
narios. Herein, we will briefly discuss strategies for bioa-
nalysis using nucleic acids in the context of signal
recognition, transduction and reporting (Figure 11).

3.2.1 Signal recognition and transduction strategies
As discussed in the previous sections, functional nucleic
acids such as aptamers, DNAzymes and DNA nanostructures
can be used for recognizing targets, either by intramolecular
allosteric or intermolecular interactions that can induce

changes for signal propagations. Herein, we briefly divide
the signal recognition and transduction strategies for nucleic
acid-based bioanalysis into two categories: integrated and
unintegrated methods.
The integrated method involves single molecule or module

that integrates the functions of both target recognition and
signal transduction. For instance, the Tan group [301] has
reported an aptamer-based molecular probe with in-
tramolecular signal transduction ability. The aptamer binding
to its target molecule will disturb the intramolecular DNA
hybridization and induce signal transduction for reporting
output. Similar design has been adapted by Wilson et al.
[302] with tunable control of the thermodynamic and kinetic
properties of the aptamer switches for a series of targets. This
integrated strategy can ensure the fast activation and quick
reporting for bioanalysis due to the two-in-one configuration
but may suffer from the disadvantages of less sensitivity
owing to no module for signal amplification.
The unintegrated method mainly involves multiple mole-

cules or modules in the nucleic acid-based analysis. For in-
stance, a change induced by the recognition module can
propagate to the subsequent module for signal transduction.
This strategy allows the enrollment of more functions such as
signal amplification and information processing in the
bioanalysis, therefore is greatly adopted in different config-
urations. For example, the Lu group [303] reported a method
of using aptamers and DNAzymes as recognition modules
and the CRISPR-Cas systems for signal transduction mod-
ules with signal amplification ability. Combination of these
two modules enables the quick and sensitive detection on a
broad range of targets. Han et al. [304] developed a DNA
displacement reaction-based dynamic system with an apta-
mer in which the nanostructure can be transformed in re-
sponse to the epithelial cell adhesion molecule (EpCAM) on

Figure 11 Strategies for nucleic acid-based bioanalysis. The basic modules include signal recognition, transduction and reporting. In the signal recognition
and transduction modules, we focused on introducing integrated and unintegrated methods. In the reporting module, optical, electrochemical and magnetic
methods for bioanalysis were discussed (color online).
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live cell membranes and propagate signals through DNA-
based signal amplification reactions. Overall, the unin-
tegrated method that involves multiple molecules for signal
recognition and transduction is more utilized due to its high
flexibility in designing and engineering for different appli-
cation scenarios.

3.2.2 Signal reporting strategies
As the mostly used methods for detection, optical methods
are playing important roles in bioanalysis of various targets.
Detection techniques, including fluorescence, colorimetric,
and SERS are typical examples. Because nucleic acids can
be easily modified with a variety of organic dyes, quantum
dots and other fluorescent materials, the fluorophore-based
detection methods have been widely demonstrated. For in-
stance, targets such as ions, metabolites, and proteins can be
detected by fluorescence due to the binding-induced fluor-
escence restoration either from proximity change of the
fluorophore and quencher pairs or molecular environmental
changes of the fluorophores. This strategy has been further
expanded to complex biological samples including cells and
tissues. You et al. [305] used a pair of orthogonal fluorogenic
RNA aptamers to quantify the metabolites in live cells. To
further fulfill the requirement of deep optical penetration to
tissues for in vivo probing, nucleic acid probes with Near
Infrared (NIR) fluorescence have been developed with the
employment of long emission wavelength fluorophores and
carbon nanomaterials [306,307]. Until now, the fluorescent
reporting strategies still play major roles in nucleic acid-
based bioanalysis, especially in the biological and biomedi-
cal applications.
In addition, colorimetric and SERS techniques are sup-

plementing the dominant fluorescence-based methods and
providing unique advantages for different application sce-
narios. For example, point of care detection requires readings
with either naked eyes or portable equipment, which presents
opportunities for colorimetric detection methods. As a kind
of indicator, AuNPs can generate colored signals from red to
blue on their different aggregation status, which enables
convenient colorimetric signal readouts [308]. Similar to the
AuNPs, some chemicals and nanomaterials with UV-vis
absorption changes upon specific inducement can also be
engineered for colorimetric readouts. By coupling functional
nucleic acids to these indicators, colorimetric biosensors
with different functions and features can be made and ap-
plied for quick and convenient bioanalysis [309]. With the
distinct advantages of low background, insensitivity to
photobleaching or quenching, single-molecule sensitivity
and fingerprint-like spectra, together with the controllable
assembly of nanoparticles with functional nucleic acids,
SERS can also be used for detection methods in nucleic acid-
based bioanalysis. Examples include quantifications of metal
ions and proteins in vitro as well as tumor markers and

metabolites in situ [310,311]. Overall, with the development
of various technological platforms, the optical reporting
strategies will continually play important roles in nucleic
acid-based bioanalysis.
Other signal reporting strategies for nucleic acid-based

bioanalysis include electrochemical, magnetic and acoustic
techniques. Compared to optical-based sensing devices,
electrochemical bioanalysis platforms offer the advantages
of low cost, simplicity, and the capability of being minia-
turized. By integration with electronic devices, the electro-
chemical nucleic acid-based bioanalysis can provide the
possibility of analyzing samples sensitively within short time
frames [120]. In addition, more and more magnetic and
acoustic techniques have been designed towards the clinical
applications due to their intrinsic advantages such as high
sensitivity and deep tissue penetration [312,313]. Because
nucleic acids can be conjugated to different materials with
various properties, they can be used to fabricate different
biosensing platforms towards more biological and biomedi-
cal applications.

3.3 Representative examples of non-nucleic acid target
analysis

Taking advantages of the analysis strategies based on nucleic
acid elements, lots of biosensors for various targets have
been developed. Herein, several representative examples
based on DNA-driven arrangement of nanomaterials are
introduced. DNA-driven arrangement of nanomaterials is
one effective way to construct functional assemblies, in
which nanomaterials can be arranged into specific config-
urations with strong inter-particle interaction. By choosing
different nanomaterials (including AuNPs, gold nanorods
(AuNRs), quantum dots, upconversion nanoparticles
(UCNPs), AgNPs) as building blocks, a large number of
functional assemblies have been fabricated, such as dimers,
trimers, pyramids, core-satellites, and other assembles. Since
these DNA driven assemblies possess striking optical fea-
tures, they can serve as good candidates for fabricating ul-
trasensitive sensing platforms to detect many significant
analytes, such as ions, proteins, DNAs, RNAs, cells, and so
on [314].
Many biosensors with circular dichroism (CD), SERS or

fluorescent signal have been fabricated based on the DNA-
driven nanostructures. For example, using dopamine aptamer
as the linkage, the Au@Ag core-shell nanorod dimers with
strong SERS activity were developed for ultrasensitive do-
pamine detection [315]. In addition, DNA-driven chiral na-
nostructures were used as chiral biosensors. A chiral AuNP
dimer-based sensor for detecting silver ions was developed
by Xu’s group [316]. Through metal ion-mediated base pairs
(cytosine-Ag+-cytosine), chiral dimers were assembled by
two different-sized AuNPs. The intensity of the plasmonic
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CD signal was related to the concentrations of the silver ions.
Also based on chiral AuNP dimers, a chiroplasmonic sensing
platform was applied for detecting adenosine-5’-tripho-
sphate (ATP) [317]. Using DNA aptamers of prostate-spe-
cific antigen (PSA), the chiral Au@Ag core-shell nanorod
dimers were prepared and used for ultrasensitive PSA de-
tection [318]. Moreover, using metal-ion specific DNAzyme,
DNA-bridged chiral core-satellites probe was used for
multiple metal ions detection in living cells [22,319,320].
Besides single-mode signal detection, some DNA-driven

superstructures can be used for dual-signal detection of some
important analytes. For example, the DNA-driven gold-up-
conversion nanoparticle (AuNP-UCNP) pyramids were used
for chiral and fluorescent detection of microRNA-21 (miR-
21) in living cells [321]. The Au-UCNP pyramids were
composed of two AuNPs and two UCNPs, showing intense
plasmonic CD response at 521 nm and strong upconversion
luminescence (UCL) signal in the range of 500–600 nm. The
Au-UCNP pyramids disassembled in the presence of miR-
21, leading to an increase in the luminescence signal and a
decrease in the CD signal. In another representative example,
a two-signal platform based upon CD and UCL signals, was
developed for ultrasensitive DNA detection. Through the
DNA-driven self-assemble strategy, three AuNRs and one
UCNP were assembled into the propeller-like structure. In
the presence of target DNA, the AuNR-UCNP assemblies
were destroyed, leading to the decrease of both the CD and
UCL signals [322]. Significantly, miRNA-directed in-
tracellular side-by-side self-assembly of AuNR dimers was
used for the detection of miRNA in living cells. The more
miRNAs existed, the more AuNR dimers formed. The CD
response and SERS intensity were proportional to the
amount of target miRNAs. The linear range of the CD signal
was 0.11–42.23 fmol/10µg RNA, with a LOD of 0.081 fmol/
10 μg RNA, while the SERS activity showed the same de-
tection range with a LOD of 1.12 fmol/10 μg RNA [212].
It is a great challenge for simultaneous detection of dif-

ferent types of biomolecules (i.e., nucleic acids and pro-
teins). With ingenious design of DNA structure, a unique and
universal strategy based on dual-model optical sensor (SERS
and UCL) was proposed for the quantification of miR-21 and
telomerase in living cells [323]. In the presence of miR-21
and telomerase, the hybridization of miR-21 with a MB
causes the separation of 3,3’-diethylthiocarbamyl cyanine
iodide-modified AuNR dimers, resulting in a decrease in
SERS signal. At the same time, the target telomerase elon-
gates the telomerase primer strands, which is followed by
substitutional hybridization and release of UCNPs, resulting
in an increase in UCL signal (Figure 12(a)). In another ex-
ample, the AuNP-graphene oxide (GO) assemblies were
applied for simultaneously sensing surface glycoprotein
(epithelial cell-adhesion molecule, EpCAM) and miR-21 in
living cells [210]. The AuNP-GO nanostructures are driven

through DNA hybridization, in which the AuNPs are as-
sembled onto the GO surface, forming the hybrid GO-AuNP
assemblies with intense CD response and SERS activity. In
the presence of targets, the hybridization of miR-21 with the
probe causes the separation of 6-fluorescein-phosphor-
amidite-modified Au NPs from GO, leading to a decrease in
the SERS signal, while EpCAM recognition causes the de-
crease of CD signal (Figure 12(b)). In a word, DNA directed
nanostructure affords powerful tools for bioanalysis in vivo
or in vitro.

4 Device development for nucleic acid analysis

As an essential biological molecule, nucleic acids participate
in many physiological and pathological processes [324].
Aberrant expression and mutations of nucleic acid sequences
may lead to occurrence of various diseases, such as cancer
[325,326]. Thus, highly efficient detection and analysis of
target nucleic acids are of great importance. One of the key
demands for accurate nucleic acid analysis is to develop
highly sensitive and precise analytical devices that can pro-
vide valid information and guidance for molecular diagnosis
and disease treatments [327]. Different from bulk and large-
scale instruments, miniaturized and portable devices with
low cost, easy operation, high-throughput and multiplex
performance are rather desirable to practical use, especially
for clinical applications [328]. Aiming at these advantages, a
wide range of devices have been extensively exploited as the
promising tools for efficient nucleic acid analysis [329,330].
In this section, we highlight various miniaturized devices
used for nucleic acid analysis and detection in vitro, in-
cluding PCR detection systems, microfluidics, handheld in-
struments, and paper-based systems.

4.1 PCR device

PCR is a molecular biology technique used to amplify spe-
cific DNA fragments [331]. Benefiting from the unique
properties of high sensitivity, versatility, rapidity and easy to
manipulate, PCR has been widely applied for molecular di-
agnosis of genetic disease, pathogens and oncogene, espe-
cially for the field of nucleic acid analysis [332–334]. To
meet the rapid advances of PCR technique and molecular
analysis, various automated and functional PCR-based de-
vices have been gradually developed for different analytical
requirements [335,336]. Conventional PCR thermal cyclers
generally focus on the temperature control and nucleic acid
duplication during amplification processes [337]. The
drawbacks of large instrument size with tedious operation
time and high-power consumption hamper their practical
applications. With the rapid development of automation and
integration technology, more intelligent, miniaturized and
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precise PCR devices have been extensively exploited
[338,339]. For instance, Helb et al. [340] used a simple
cartridge system with real-time PCR, named Cepheid Gen-
eXpert System, to detect Mycobacterium tuberculosis and
rifampin resistance. The limit of detection of the Myco-
bacterium tuberculosis DNA was 4.5 genomes per reaction.
Hatch et al. [341] reported a low power, high-throughput and
portable qPCR device with continuous flow thermal cycling
manners that could be used for multiple analyte detections

(Figure 13(a)). Only 0.1–10 μL droplet samples were needed
to realize the high PCR amplification efficiency and sensitive
fluorescence detection. The PCR efficiency of this device
could be reached within the range of 90%–110%, and the
limit of detection was 10 copies per reaction. Li et al. [342]
developed a photonic-PCR system that integrated Fe3O4

nanoclusters for effective photothermal cycle modulation
with a battery-powered device for successful data transfer
(Figure 13(b)). The system was energy efficient and easy

Figure 12 Representative examples of non-nucleic acid target analysis. (a) Schematic of Au NR dimer-UCNP core-satellite nanostructures used for the
simultaneous analysis of intracellular miR-21 and telomerase [323], Copyright 2017 American Chemical Society. (b) GO-Au assembly strategy for EpCAM
(probe Ep) and miR-21 detection (probe mR) [210], Copyright 2017 WILEY-VCH (color online).
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establishment, which efficaciously applied for the detection
of defective mtDNA in mitochondrial diseases with low in-
itial template concentration (50 pg–500 ng) and highly rea-
sonable linearity. Despite the significant improvements of
PCR devices, the highly sensitive reaction condition and the
rigorous temperature calibration still remain big obstacles for
more precise and controllable PCR-based diagnosis. Based
on this circumstance, Adams et al. [343] constructed a pro-
totype adaptive PCR instrument focusing on dynamically
sensing the hybridization state during the PCR process in-
stead of the temperature monitoring (Figure 13(c)). This
system has been proved more robust and simpler, and it
could overcome the limitation of strict temperature calibra-
tion in some traditional PCR instruments. Additionally, the
occurrence of dPCR with absolute quantification also largely
promotes the advance of PCR devices [344–346]. Gou et al.
[347] constructed a handheld smartphone-based dPCR de-
vice for the detection of the plasmid DNA with the human
18S ribosomal RNA gene fragment. The device functions
could be automatically controlled by a custom software, and
the accurate detection could reach down to 10 copies.
Moreover, Zhou et al. [348] developed a highly integrated
real-time dPCR device that constructed based on off-the-
shelf electronics and 3D printing technology. This dPCR
device was successfully applied to the plasmid DNA targets
with enhanced accuracy and could overcome the mis-
classification of positive partitions in some classical dPCR

devices. Overall, PCR is still a promising development di-
rection in the application of nucleic acid analysis. By com-
bining with advanced microanalysis technology and
molecular biotechnology, more integrated and smarter PCR
devices with higher accuracy and sensitivity will be widely
exploited and applied.

4.2 Microfluidic device

Microfluidics featuring at reduced sample consumption and
shortened reaction time has been extensively studied for
nucleic acid analysis, because of its capability to integrate
different operation units, such as sample pretreatment, nu-
cleic acid extraction and amplification, and signal detection
into a single microfluidic device [349–352]. A microfluidic
cassette was designed for nucleic acid detection of Zika
Virus [353]. The sensitivity of this platform was less than 5
plaque-forming units (PFU) per sample and the total detec-
tion time was less than 40 min. A self-powered integrated
microfluidic chip was reported for rapid digital detection of
nucleic acids from human blood sample (Figure 14(a)) [354].
This microfluidic chip powered by a vacuum battery was
prepatterned with the amplification initiator MgOAC. After
mixing with reagents, the blood sample was introduced into
microfluidic chip and then separated autonomously into
microwells for isothermal recombinase polymerase ampli-
fication (RPA) reaction. This microfluidic chip enabled de-

Figure 13 PCR devices for nucleic acid analysis. (a) Schematic illustration of the portable real-time PCR device with continuous flow thermal cycling for
multiple DNA sample analysis [341], Copyright 2014 Royal Society of Chemistry. (b) Schematic illustration of the handheld qPCR device integrated with
magnetic nanoparticles for effective target DNA detection [342], Copyright 2016 Nature Publishing Group. (c) Schematic illustration of the adaptive PCR
device to dynamically control and monitor the DNA replication processes [343], Copyright 2017 American Chemical Society (color online).
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tection of methicillin-resistant Staphylococcus aureus DNA
(10 to 105 copies per microliter) within 30 min. In a recent
work, a hand-powered centrifugal microfluidic platform was
developed for sample-to-answer detection of pathogens
(Figure 14(b)) [355]. Through a simple pull-out operation of
the customized centrifuge, the pathogen sample was rapidly
mixed with the preloaded reagents inside the microfluidic
disc. After on-disc LAMP at 65 °C heated by pocket war-
mers, the presence of target pathogens can be observed by
visible fluorescence. This microfluidic platform allowed for
simultaneous detection of six pathogens with the sensitivity
of 2×102 cells per μL. For diagnostics of miRNA in serum, a
CRISPR/Cas13a-based electrochemical microfluidic bio-
sensor was designed (Figure 14(c)) [356]. This amplifica-
tion-free platform showed a limit of detection of 10 pM, and
the total process time was less than 4 h. A centrifugal mi-
crofluidic platform with all reagents prestored was reported
for nucleic acid analysis of pathogen by qRT-PCR [357]. The
whole detection procedure was carried out within a 2 kg
portable instrumentation and the total time was less than
3.5 h. Self-contained microfluidic platforms integrated with
a variety of operations and functions, show great potential
for nucleic acid diagnostics in POC formats.

4.3 Handheld device

Many commercial and handheld devices, such as glucometer,
pressuremeter, thermometer and pH meter, are successfully

available to the public with easy use and excellent sensitivity.
Recently, by combining these handheld devices with biolo-
gical recognition and amplifying transducer components,
portable biosensors for various targets detection with high
sensitivity have been exploited, such as nucleic acids [358].
Glucometer was the first portable device being used for non-
glucose target detection [359,360]. As shown in Figure 15
(a), Xu et al. [361] used DNA sandwich hybridization hap-
pened between the HIV target DNA and the capture probes
as well as the signal probes to introduce multi-invertase
conjugated nanoparticles to the surface, which can en-
zymatically convert sucrose to glucose for signal amplifi-
cation and glucometer monitoring. Si et al. [362] reported an
oligonucleotide cross-linked hydrogel for recognition and
quantification of miRNAwith glucometer. In their work, the
target miRNA was the essential component to form DNA-
zyme that can cleave the crosslinkers of hydrogel to destroy
hydrogel and release encapsulated amylase, which can fur-
ther catalyze the hydrolysis of amylose to produce a large
amount of glucose for glucometer readout. The dual ampli-
fication by DNAzyme and amylase resulted in high sensi-
tivity that as low as 0.325 fmol miRNA can be portably
detected by glucometer. Pressuremeter is another user-
friendly and portable device with wide dynamic range
(0–3000 kPa) and low detection sensitivity (0.01 kPa) [363].
Shi et al. [364] designed target miRNA induced cyclic strand
displacement to enrich platinum nanoparticles onto the sur-
face of magnetic beads, which can catalytically decompose

Figure 14 Microfluidic devices for nucleic acid analysis. (a) Self-powered integrated microfluidic chip for RPA-based quantitative detection of DNA (Yeh
et al. [354], 2017), Copyright 2017 American Association for the Advancement of Science. (b) Schematic illustration of sample-to-answer nucleic acid
detection by the hand-powered centrifugal microfluidic platform [355], Copyright 2018 Royal Society of Chemistry. (c) CRISPR/Cas13a-powered elec-
trochemical microfluidic platform for miRNA diagnostics (Bruch et al. [356], 2019), Copyright 2019 Wiley-VCH (color online).
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H2O2 for the generation of O2 to induce pressure change with
pressuremeter readout (Figure 15(b)). Toumazou et al. [365]
has found out that the released hydrogen ions during nu-
cleotide incorporated DNA amplification can be directly
measured to quantify target sequence. Using this strategy,
Yuan and coworkers [366] simply used the pH meter to
measure the hydrogen ions generated by loop mediated
isothermal amplification for the facile and sensitive detection
of Nosema bombycis genomic DNA (Figure 15(c)). Re-
cently, Li group [367] reported the use of a common ther-
mometer for visual and quantitative genetic detection. As
shown in Figure 15(d), single-stranded DNA on AuNPs
would be deprived because of the hybridization with target
DNA, resulting in AuNP aggregation upon the addition of
salt. While being irradiated by NIR laser, the temperature
was obviously elevated in the aggregated AuNP suspension.
As high as 18 °C temperature change can be readout by
thermometer and the detection limit of 0.28 nM was
achieved without amplification. Besides, other handheld
devices such as electronic balance [368], digital multimeter
[369], uric acid meter [370], could also be used for nucleic
acid analysis with appropriate signal transduction and signal
amplification mechanism. The use of these handheld devices
that are widely applied in daily life, opens a new door for
simple, cost-effective, user-friendly and portable POC test-
ing of nucleic acids with high specificity and sensitivity and
without external bulky instrumentation.

4.4 Paper-based device

Traditionally, paper has been extensively used for printing

and writing owing to its low price and high yield. Beyond
that, because of the fibrous and porous structure, high sur-
face-to-volume ratio and hydrophilicity [371], paper has
been also exploited as a substrate material for metal detection
[372], paper chromatography [373] and bioanalysis system
[373–379]. Using printing techniques, such as inkjet printing
[380], wax printing [381] and screen printing [382], paper
has been used to construct different analytical devices by
modifying with small molecules, nucleic acid, antibodies or
other proteins (Figure 16) [377,380,383]. Thus, paper-based
analytical devices (PADs) as promising technologies provide
alternative platforms to develop low-cost, portable, rapid and
disposable biosensors for POC diagnostic [384–388]. With
the development of nucleic acid technology, a broad spec-
trum of nucleic acid-based PADs has been exploited to detect
a wide variety of analysts by electrochemical, colorimetric,
chemiluminescent or fluorimetric readouts.
Electrochemical PAD biosensors are constructed often

through wax-printing or screen printing [378,379,389–391].
In 2009, the first electrochemical PAD was developed by
Dungchai et al. [392]. Since then, electrochemical PADs
aroused wide interest because of easy use, uncomplicated
equipment, cost-efficient and rapid analysis, portable po-
tentiostats, renewable sensing interface and well-known
electrochemical signaling methods [393]. The fabrication
processes are divided into three steps roughly: Firstly, sui-
table electrodes were chosen as reference electrode, working
electrode and counter electrode, respectively. Secondly,
electrodes are printed onto paper by using printing techni-
ques. Thirdly, nucleic acids are modified on working elec-
trodes through chemical reaction, generating sensing

Figure 15 (a) Schematic presentation for sensitive POC detection of HIV DNA fragments using glucometer [361], Copyright 2012 Royal Society of
Chemistry. (b) Schematic illustration of gas pressure-based POC assay for sensitive detection of miRNAwith pressuremeter [364], Copyright 2018 American
Chemical Society. (c) Schematic illustration of the amplified detection of target DNA based on pH meter [366], Copyright 2014 Royal Society of Chemistry.
(d) Schematic illustration of AuNP aggregation-induced photothermal biosensing of target DNA using thermometer [367], Copyright 2020 American
Chemical Society (color online).
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interface. Until now, a wide range of electrochemical nucleic
acid-based PADs have been developed [394].
Benefiting from the simplicity, sensitivity and low cost,

colorimetry detection technique is considered to be suitable
for integrating with PADs [395]. Colorimetric assays in
PADs are accomplished usually depending on the aggrega-
tion of noble nanoparticles [395,396] or the oxidation of
chromogenic substrate [396–400]. The target-stimuli signal,
color change, can be visualized by naked eyes and the de-
tection zone images can collected by camera phone or por-
table scanner and then transformed into quantitative
information by software [394,401–403]. On account of the
optical properties [404] and easy modification with bio-re-
cognition elements [405,406], gold nanoparticle becomes
one of the most popular nanoparticles in colorimetric assays.
For instance, a colorimetric assay was performed on paper-
based analytical device for the detection of prostate specific
antigen in human serum taking advantages of AuNPs mod-
ified with nucleic acid and horseradish peroxidase capable of
oxidizing TMB with the assistance of hydrogen peroxide

[400].
Based on fluorimetic/chemiluminescent molecules and

nanoparticles (e.g., fluorophores and quantum dots), paper-
based DNA biosensors also are often constructed for the
detection of different analysts, such as metal ions, DNAs and
cancer cells [407–412]. For example, Wang and partners
[412] developed a chemiluminescent PADs to distinguish
target DNA from single-mismatched one by employing
carbon dots dotted nanoporous gold as amplification signal
label. In addition, dual output signals (e.g., electrochemical/
colorimetric signals) paper-based biosensors are also pro-
posed [123,410,413,414].
Various nucleic acid-mediated reactions have been

exploited in PADs, including simple DNA hybridization
[378,379,389,395,409] and complex reactions, such as PCR
[415], RPA [398,416], RCA [396,399,417], and SDA
[418,419]. The sensing interfaces are composed of oligo-
nucleotide monolayers [379,412,420], composite multilayer
[378,409] and 3D nucleic acid materials [399,410] or oli-
gonucleotide-containing heterogeneous nanostructures

Figure 16 The schematic diagram of paper-based devices. (a) Paper-based chemiluminescent or fluorescent devices based on signaling nanoparticles (e.g.,
fluorophores and quantum dots) and auxiliary molecules. (b) Paper-based colorimetric device via utilizing the aggregation of noble nanoparticles (such as
gold nanoparticle) or the oxidation of chromogenic substrates. (c) Paper-based electrochemistry devices by printing working electrodes with nucleic acids on
paper. (d) Paper-based devices with dual output signals (e.g., fluorescent/colorimetric signals) (color online).
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[123]. The analysts include small molecules [375,421],
miRNAs [378], DNA strands [123,379,412,420], proteins
[375,379,391,422], exosomes [409], cancer cells [422], pa-
pillomavirus [389], pathogens [408] and so on, implying the
great potential of nucleic acid-based PADs in enormous ap-
plications.

5 Applications of nucleic acid analysis

Over the past decades, nucleic acid analysis has experienced
rapid advances with new analysis techniques, devices and
kits. Owing to its merits of sensitivity and specificity, it has
been widely applied in clinical translation, environmental
analysis, food safety, forensic analysis and so on.

5.1 Clinical translation

Nucleic acid-based molecular diagnostics is a collection of
techniques used to analyze nucleic acid markers of diseases,
promoting the development of personalized medicine [423].
It has been widely applied in clinical practice for the
screening, diagnosis, risk assessment, and treatment gui-
dance of diseases, including cancer, congenital anomaly and
infectious disease. Thereinto, many techniques have
achieved clinical translation with commercial devices and
assay kits [424]. For precision diagnosis and therapy of
cancer, the detection of DNA mutation, DNA methylation,
and miRNA, as well as the expression analysis of key genes
from tumor-biopsy specimens has been performed, such as
epidermal growth factor receptor (EGFR) mutation, human
epidermal growth factor receptor 2 (HER2) amplification.

[425–427]. For prenatal testing, nucleic acids analysis of
fetal cells from amniocentesis and chorionic villus sampling
enables to detect problems such as chromosome abnormal-
ities and gene mutations, serving as a powerful method to
control genetic diseases and birth defect [428]. More im-
portantly, the rapid advance of PCR techniques and NGS
together with liquid biopsy allows sensitive and reliable
molecular diagnosis of tumor/fetal-derived circulating tar-
gets, including circulating tumor/fetal cells (Figure 17(a)),
cell free circulating DNA (Figure 17(b)), circulating miR-
NAs, extracellular vesicles, tumor-educated platelets. [429–
435]. These approaches offer comprehensive and timely in-
formation for personalized anti-cancer therapy and non-
invasive prenatal testing (NIPT).
Pathogen infection is a common health problem world-

wide. Especially, the pandemic of corona virus-based
COVID-19 since the end of 2019 poses great threats to the
public health. Thus, it is critically important to develop rapid,
sensitive, and reliable methods to detect and identify pa-
thogens for adopting effective therapy and controlling epi-
demic. Nucleic acid analysis is popularly utilized for
infection diagnosis clinically, and also serves as a gold
standard method for pathogen identification [436]. Nucleic
acid amplification analysis with exquisite sensitivity and
specificity allows for rapid and accurate detection of pa-
thogens, free of time-consuming culture (Figure 17(c))
[437]. Multiplex PCR and various hybridization-based bio-
sensors afford multiplex pathogen analysis [438,439]. Be-
sides, high-throughput sequencing enables the identification
of unknown pathogens and determination of drug resistance-
related genes or gene mutations [440]. Moreover, sequence
data can be used to reconstruct the evolution of pathogens

Figure 17 Clinical translation of nucleic acid analysis. (a) Gene mutation analysis of circulating tumor cells [434], Copyright 2016 American Chemical
Society. (b) Gene analysis of circulating fetal cells for NIPT [435], Copyright 2018 The Royal Society of Chemistry. (c) Paper-based sensors to detect RNA
genome of the Zika virus [437], Copyright 2016 Elsevier (color online).
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and predict future spread for better intervention [441].
Considering that pathogen infection is still the leading causes
of death in low-income countries, more efforts should be
devoted into the development and clinical translation of re-
agents and instruments of nucleic acid-based point-of-care
testing (POCT).
Besides taking nucleic acids as analysis targets, functional

nucleic acids can be utilized as recognition tools and drugs
for clinical diagnosis and therapy [442,443]. For example,
numerous aptamer-based biosensors have been developed
for sensitive detection of disease biomarkers and pathogens
[444]. Pegaptanib, as a pegylated anti-vascular endothelial
growth factor (VEGF) aptamer, was approved by U.S. Food
and Drug Administration (FDA) in 2004 for the treatment of
age-related macular degeneration [445]. Very recently, sev-
eral aptamers targeting proteins of 2019-nCoV have been
reported [446–448].

5.2 Environmental analysis

Earth’s biodiversity is undergoing continuous decline, which
represents a major environmental crisis. Coupled with se-
quencing technique, environmental DNA, defined as genetic
material from environmental samples, is considered as po-
tential candidate for biodiversity monitoring (Figure 18(a))
[449]. Thereinto, environmental microbiology attracts the
most attention due to the vital role of microorganisms in
regulating ecosystem system. Metagenomics sequencing and
16S rRNA gene sequencing are capable of characterizing the
diversity and abundance of microbial communities
[450,451]. Thus, influence factors on microbial communities
can be evaluated for pollution abatement and ecosystem
management, such as environmental pollution, climate
change, introduced species and human activities [452]. Ad-
ditionally, nucleic acid analysis techniques facilitate the
identification and isolation of microorganisms with specific
phenotypes, such as mercury resistant bacteria in con-

taminated environments [453]. Therefore, nucleic acid ana-
lysis is acting as a powerful means in environmental
monitoring and management.
The increasing presence of harmful pollutants in the en-

vironment affects human health, and calls for analytical
methods for pollution monitoring. Nucleic acid-based bio-
sensors with merits of miniaturization, portability and in-
tegration open new avenues for the detection of
environmental pollution and toxicity (Figure 18(b)). On the
one hand, taking target nucleic acid sequences as analytes,
hybridization-based biosensors enable to detect pathogens,
harmful algae and genetically-modified plants in environ-
mental samples [454]. On the other hand, taking functional
nucleic acids as recognition elements, including aptamer,
DNAzyme and allosteric DNAzyme, numerous biosensors
have been developed for convenient and rapid detection of
metal ions, chemical residue, etc. [455,456]. Besides, DNA
damage caused by pollutants (e.g., heavy metals, pesticide
residue) could be detected with electrochemical DNA-based
biosensors, allowing for toxicity screening and environ-
mental monitoring [457].

5.3 Food analysis

Food analysis is of great significance to prevent foodborne
diseases which are mainly originated from foodborne con-
taminants including chemical and biological hazards. The
above-mentioned nucleic acid-based pathogen analysis
techniques are also widely used to detect and identify
foodborne pathogens and to study food microbial ecology
[458,459]. Functional nucleic acids, coupled with novel
transducers and nanoprobes, offer a variety of biosensors for
foodborne contaminant detection [460–462]. These bio-
sensors have achieved rapid and sensitive detection of pa-
thogens (Figure 19(a)) [463], mycotoxins (Figure 19(b))
[464,465], allergens [468], pesticides [467], heavy metal
ions [468] and illegal additives [469], with a great applica-

Figure 18 Nucleic acid-based environmental analysis. (a) The overall workflow for environmental DNA analysis [446], Copyright 2015 Elsevier. (b)
Nucleic acid-based biosensors for the detection of environmental pollution and toxicity (color online).
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tion potential in POCT. In the future, the development of
low-cost, rapid and miniaturized analytical technologies will
still be the important mainstream in this field.

5.4 Forensic analysis

DNA typing has become an indispensable tool for individual
identification in forensic analysis, including homicides,
sexual assaults, missing persons and parental testing. Short
tandem repeat (STR) sequences are most widely utilized for
forensic human identification [470]. The genetic markers
located on the Y chromosome can provide male specific
information for investigating sexual assault and un-
established paternity [471]. As for degraded or low template
samples, single nucleotide polymorphisms (SNPs) and
mtDNA could provide additional genetic information to
augment forensic analysis. Additionally, mRNA signatures
have been widely applied in many forensic laboratories for
body fluid identification [472]. The RNA decay analysis
facilitates the determination of the post-mortem interval and
the age of biological stains [473]. MiRNA is more stable and
has greater discriminatory potential than mRNA, and its
profiling is attracting more attention in forensic science
[474]. Additionally, sequencing-based microbial forensics
contributes to human identification, geolocation, post-
mortem interval estimation and bioterrorism defense [475].
Notably, microfluidic devices have been designed for for-
ensic analysis with merits of reduced risk of contamination,
shortened analysis time and supporting POCT [476].

5.5 Security

Information security is one of the vital issues in modern
society, which requires cryptography schemes to protect
messages for secure communication. With the advantages of
vast storage density and massive parallelism capacity, nu-

cleic acid molecules have attracted considerable attention in
the field of information security [477,478]. DNA crypto-
graphy is emerged for encryption, authentication and sig-
nature by harnessing nucleic acids as informational and
computational carriers [479,480]. DNA with high memory
density makes it possible for one-time-pads (OTP) cipher
cryptosystem which is considered as the most secure strategy
of private key encryption. Many DNA-based encryption
methods have been designed for OTP, and PCR and DNA
chip techniques are the most prominent choices [481,482].
DNA chip techniques enable to encrypt both textual data and
two-dimension images [483]. Besides sequence information,
structural patterns of DNA nanostructures provide an alter-
native strategy for cryptography (Figure 20) [484]. Nucleic
acid-based information steganography can hide secret in-
formation as nucleic acid strands for transmission in various
carriers, such as DNA microdots, genetic codon and living
organisms [480,485]. Although significant and promising,
nucleic acid-based information security still stay in a theo-
retical stage, and intensive efforts should be made in this
field to improve the accuracy, efficiency and robustness.

6 Conclusions and perspective

Nucleic acids analysis holds great promise as a bioanalytical
paradigm for various applications in biology, chemistry and
clinics. Recent developments on the analysis of nucleic acids
including in-vitro analysis based on hybridization, target
amplification and sequencing have led to applications for
intracellular and in-vivo analysis. The use of nucleic acids as
recognition elements (e.g., aptamers, DNAzymes) and en-
gineering tools (e.g., DNA/RNA nanostructures) in bioana-
lysis is also of particular focus to bring nucleic acids into the
analysis of a broad spectrum of targets including ions, me-
tabolites, proteins, exosomes, even whole cells. Furthermore,

Figure 19 Nucleic acid-based biosensors for food analysis. (a) Aptamer-based allosteric probes for the detection of foodborne pathogens using clustered
regularly interspaced short palindromic repeats (CRISPR)-Cas13a [463], Copyright 2020 Nature Publishing Group. (b) Target-responsive aptamer hydrogel
for portable visual quantitative detection of aflatoxin B1 using a distance-readout microfluidic chip [465], Copyright 2016 The Royal Society of Chemistry
(color online).
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the incorporation of nucleic acids analysis in electronic/
mechanic devices opens new opportunities for translating
laboratory techniques to real-world applications. Especially,
applications of nucleic acids analysis and nucleic acids-
based analysis in clinical diagnostics, food analysis, en-
vironmental analysis, forensic analysis and homeland se-
curity have shown great potential. We envision that the field
of nucleic acids analysis will continue to grow benefiting
from coupling of integrated and miniaturized biosensing
devices, which can expand the application of nucleic acids-
based sensors to enable the real-time study of biological
process and to minimize the invasion for biomedical appli-
cations. The improvement of the aptamer selection strategy
will expand the range of detectable targets with high speci-
ficity and selectivity. Novel signal transduction and signal
amplification strategies may improve the detection sensi-
tivity down to single cells, single particles and single mo-
lecules. The development of the high-throughput of
biosensors will further increase the capability of biosensors
to be coupled with big data analysis to accelerate the de-
velopment of precision medicine.
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