Addendum to: Exotic structures arising from fake projective planes (Sci China Math, 2013, 56: 43-54)

YEUNG Sai-Kee
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
Email: yeung@math.purdue.edu

Received June 15, 2015; accepted August 20, 2015; published online September 10, 2015

$$
\begin{array}{ll}
\text { Citation: Yeung S-K. Addendum to: Exotic structures arising from fake projective planes (Sci China Math, 2013, } \\
& 56: 43-54) . \text { Sci China Math, 2015, 58: } 2473-2476 \text {, doi: } 10.1007 / \text { s11425-015-5072-7 }
\end{array}
$$

The goal of this addendum is to generalize the argument of the original article [5] to handle the case of Cartwright-Steger surface, and to correct misprints in the tables in [5].

It is known that 3 is the smallest Euler number achievable by a smooth surface of general type. Moreover, smooth surfaces of general type with $c_{2}=3$ are complex ball quotients $B_{\mathbb{C}}^{2} / \Pi$ consisting of 100 fake projective planes and 2 Cartwright-Steger surfaces. The list corresponds to 51 choices of Π, each of which gives rise to two non-biholomorphic complex structures. We refer the readers to $[3,4,6]$ for the above results. Natural examples of exotic

$$
p P_{\mathbb{C}}^{2} \# q \overline{P_{\mathbb{C}}^{2}}
$$

with some relatively small p and q are obtained from the list of fake projective planes with non-trivial automorphisms and are tabulated in [5]. Our first goal in this addendum is to complete the picture by showing that the Cartwright-Steger surface gives rise to some exotic manifold as well, albeit different from the examples in [5].

Theorem 1. Let M be a Cartwright-Steger surface. Let N be the quotient of M by its automorphism group. Let Y be the minimal resolution of singularities of N. Then Y gives rise to an exotic

$$
3 P_{\mathbb{C}}^{2} \# 17 \overline{P_{\mathbb{C}}^{2}}
$$

Here a manifold A is said to be an exotic B if A is homeomorphic but not diffeomorphic to B. We need the following lemma. From this point on, we denote by M the Cartwright-Steger surface.
Lemma 1. The Cartwright-Steger surface M has the following properties:
(a) The automorphism group of M,

$$
H:=\operatorname{Aut}(M)=\mathbb{Z}_{3},
$$

the cyclic group of order 3 .
(b) The fixed point set of H consists of 3 fixed points of type $\frac{1}{3}(1,1)$ and 6 fixed points of type $\frac{1}{3}(1,2)$.
(c) The quotient $N:=M / H$ is a simply-connected orbifold.

Proof. (a) follows from the work of [3], see [2, Theorem 2]. (b) follows from [2, Proposition 12], and is also known to Igor Dolgachev and Tim Steger. (c) is a consequence of the presentation of π given in the references above. In fact,

$$
N=B_{\mathbb{C}}^{2} / \mathcal{N}
$$

where \mathcal{N} is the normalizer of Π in the maximal arithmetic group $\bar{\Gamma}$ in the commensurable class of Π. In the notation of [2, Theorem 2], \mathcal{N} is generated by an element j of order 4 , and Π, the latter is generated by three elements a_{1}, a_{2}, a_{3} which are of finite order. Hence \mathcal{N} is generated by elements of finite order and the result follows from [1]. The author is indebted to Donald Cartwright for the presentation here.

Proof of Theorem 1. Recall that N as a quotient of M is an orbifold with isolated singularities. Let $\pi: Y \rightarrow N$ be a minimal resolution of singularities of N. The strategy is to compute the Euler number and index of Y so that the fundamental results in geometric topology can be applied to conclude the proof as in [5].

Since H acts with isolated singularities, the canonical line bundle K_{N} on N is Cartier with

$$
K_{N}^{2}=\frac{1}{3} K_{M}^{2}=3 .
$$

As M has Euler number 3 and there are 9 fixed points of order 3 under the action of H, the Euler number of N is

$$
e(N)=\frac{1}{3}(3-9)+9=7
$$

A singularity of type $\frac{1}{3}(1,1)$ is resolved to a (-3) curve on Y, and a singularity of type $\frac{1}{3}(1,2)$ gives rise to a chain of two (-2) curves on Y. Hence we have three (-3) curves $E_{i}, i=1,2,3$ and three separate two chains of (-2) curves $\left(F_{i 1}, F_{i 2}\right), i=1, \ldots, 6$, on Y. It follows that

$$
K_{Y}=\pi^{*} K_{N}+\sum_{i=1}^{3} a_{i} E_{i}+\sum_{j=1}^{6}\left(b_{j 1} F_{j 1}+b_{j 2} F_{j 2}\right)
$$

As E_{i} and $F_{j k}$ are rational curves of self-intersection (-3) and (-2 respectively, we obtain the following from taking intersection of K_{Y} with each curve $F_{j k}$:

$$
\begin{aligned}
& 0=K_{Y} \cdot F_{j 1}=b_{j 1}(-2)+b_{j 2}, \\
& 0=K_{Y} \cdot F_{j 2}=b_{j 1}+b_{j 2}(-2) .
\end{aligned}
$$

It follows that $b_{j k}=0$ for all j and k. Similarly from intersection with E_{i} and adjunction formula, we get

$$
1=K_{Y} \cdot E_{i}=a_{i}(-3)
$$

Hence,

$$
a_{i}=-\frac{1}{3}
$$

and

$$
K_{Y}=\pi^{*} K_{N}-\frac{1}{3} \sum_{i=1}^{3} E_{i}
$$

It follows that

$$
c_{1}(Y)^{2}=K_{Y} \cdot K_{Y}=3+\frac{1}{9}(3)(-3)=2 .
$$

Moreover, from Hurwitz formula,

$$
c_{2}(Y)=e(N)+3+2 \cdot 6=22
$$

Hence the index is given by

$$
\sigma(Y)=\frac{1}{3}\left(c_{1}^{2}-2 c_{2}\right)=-14
$$

As E_{1} has self-intersection -3 , the quadratic form Q_{Y} on $H^{2}(Y, \mathbb{Z})$ is odd. Hence Freedman's result as stated in [5, Theorem 2.1] implies that Y is homeomorphic to $p P_{\mathbb{C}}^{2} \# q \overline{P_{\mathbb{C}}^{2}}$ for some integers p and q. Since N and hence Y is simply connected from Lemma 1,

$$
b_{1}(Y)=b_{3}(Y)=0
$$

and we obtain

$$
\begin{aligned}
& p+q=c_{2}(Y)-2=20 \\
& p-q=\sigma(Y)=-14
\end{aligned}
$$

We conclude that

$$
p=3 \quad \text { and } \quad q=17
$$

Hence Y is homeomorphic to $3 P_{\mathbb{C}}^{2} \# 17 \overline{P_{\mathbb{C}}^{2}}$. On the other hand, from the result of Donaldson as stated in [5, Theorem 2.3], we conclude that any fourfold M diffeomorphic to $3 P_{\mathbb{C}}^{2} \# 17 \overline{P_{\mathbb{C}}^{2}}$ does not carry any complex structure. We conclude that Y is an exotic $3 P_{\mathbb{C}}^{2} \# 17 \overline{P_{\mathbb{C}}^{2}}$.

Here we correct some clerical errors from data entry in the two tables in [5]. No change is needed for the arguments there. We also tabulate the result for the Cartwright-Steger surface obtained in this addendum in Table 3.

Acknowledgements This work was supported by the National Science Foundation of USA (Grant No. DMS 1101149). It is a pleasure for the author to thank Donald Cartwright for helpful discussions involving the Cartwright-Steger surface.

Table 1 corrections: Fake projective planes with $k=\mathbb{Q}$

(k, ℓ, \mathcal{T})	Class	M	$\|H\|$	M / H	$\pi_{1}(M / H)$	Exotic
$(\mathbb{Q}, \mathbb{Q}(\sqrt{-1}),\{5\})$	$(a=1, p=5,\{2\})$	$\left(a=1, p=5,\{2\}, D_{3}\right)$	3	$(a=1, p=5,\{2\})$	\mathbb{Z}_{4}	$7 P_{\mathbb{C}}^{2} \# 27 \bar{P}_{\mathbb{C}}^{2}$
$(\mathbb{Q}, \mathbb{Q}(\sqrt{-2}),\{3\})$	$(a=2, p=3,\{2\})$	$\left(a=2, p=3,\{2\}, D_{3}\right)$	3	$(a=2, p=3,\{2\})$	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$7 P_{\mathbb{C}}^{2} \# 27 \bar{P}_{\mathbb{C}}^{2}$
$(\mathbb{Q}, \mathbb{Q}(\sqrt{-7}),\{2\})$	$(a=7, p=2, \emptyset)$	$\left(a=7, p=2, \emptyset, 7_{21}\right)$	N	N	N	N
		$\left(a=7, p=2, \emptyset, D_{3} X_{7}\right)$	3	$\left(a=7, p=2, X_{7}\right)$	$\mathbb{Z}_{2} \times \mathbb{Z}_{3}$	$11 P_{\mathbb{C}}^{2} \# 41 \bar{P}_{\mathbb{C}}^{2}$
	$(a=7, p=2,\{7\})$	$\left(a=7, p=2,\{7\}, D_{3} 2_{7}\right)$	3	$\left(a=7, p=2,\{7\}, 2_{7}\right)$	\mathbb{Z}_{2}	$3 P_{\mathbb{C}}^{2} \# 13 \bar{P}_{\mathbb{C}}^{2}$
			21	$(a=7, p=2,\{7\})$	$\{1\}$	$P_{\mathbb{C}}^{2} \# 9 \bar{P}_{\mathbb{C}}^{2}$
$(\mathbb{Q}, \mathbb{Q}(\sqrt{-7}),\{2,3\})$	$(a=7, p=2,\{3\})$	$\left(a=7, p=2,\{3\}, 3_{3}\right)$	N	N	N	N
$(\mathbb{Q}, \mathbb{Q}(\sqrt{-15}),\{2\})$	$(a=15, p=2,\{3\})$	$\left(a=15, p=2,\{3\},(D 3)_{3}\right)$	3	$(a=15, p=2,\{3\})$	$\mathbb{Z}_{2} \times \mathbb{Z}_{3}$	$11 P_{\mathbb{C}}^{2} \# 41 \bar{P}_{\mathbb{C}}^{2}$

Table 2 corrections: Fake projective planes with $\operatorname{deg}_{\mathbb{Q}} k=2$

(k, ℓ, \mathcal{T})	Class	M	$\|H\|$	M / H	$\pi_{1}(M / H)$	Exotic
$\left(\mathcal{C}_{10},\left\{v_{2}\right\}\right)$	$\left(\mathcal{C}_{10}, p=2,\{17-\}\right)$	$\left(\mathcal{C}_{10}, p=2,\{17-\}, D_{3}\right)$	3	$\left(\mathcal{C}_{10}, p=2,\{17-\}\right)$	$\{1\}$	$P_{\mathbb{C}}^{2} \# 6 \bar{P}_{\mathbb{C}}^{2}$
$\left(\mathcal{C}_{18},\left\{v_{3}\right\}\right)$	$\left(\mathcal{C}_{18}, p=3, \emptyset\right)$	$\left(\mathcal{C}_{18}, p=3, \emptyset, d_{3} D_{3}\right)$	9	$\left(\mathcal{C}_{18}, p=3, \emptyset\right)$	$\{1\}$	$P_{\mathbb{C}}^{2} \# 8 \bar{P}_{\mathbb{C}}^{2}$

Table 3 Cartwright-Steger surface

(k, ℓ)	$\|H\|$	$\pi_{1}(M / H)$	Exotic
$(\mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{3}, \sqrt{-1}))$	3	$\{1\}$	$3 P_{\mathbb{C}}^{2} \# 17 \overline{P_{\mathbb{C}}^{2}}$

References

1 Armstrong M A. The fundamental group of the orbit space of a discontinuous group. Math Proc Cambridge Philos Soc, 1968, 64: 299-301
2 Cartwright D, Koziarz V, Yeung S-K. On the Cartwright-Steger surface. ArXiv:1412.4137, 2014
3 Cartwright D, Steger T. Enumeration of the 50 fake projective planes. C R Math Acad Sci Paris, 2010, 348: 11-13
4 Prasad G, Yeung S-K. Fake projective planes. Invent Math, 2007, 168: 321-370; Addendum, Invent Math, 2010, 182: 213-227
5 Yeung S-K. Exotic structures arising from fake projective planes. Sci China Math, 2013, 56: 43-54
6 Yeung S-K. Classification of surfaces of general type with Euler number 3. J Reine Angew Math, 2013, 679: 1-22

