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Abstract
Purpose  The use of alternative matrices in toxicological analyses has been on the rise in clinical and forensic settings. Speci-
mens alternative to blood and urine are useful in providing additional information regarding drug exposure and analytical 
benefits. The goal of this paper is to present a critical review on the most recent literature regarding the application of six 
common alternative matrices, i.e., oral fluid, hair, sweat, meconium, breast milk and vitreous humor in forensic toxicology.
Methods  The recent literature have been searched and reviewed for the characteristics, advantages and limitations of oral 
fluid, hair, sweat, meconium, breast milk and vitreous humor and its applications in the analysis of traditional drugs of abuse 
and novel psychoactive substances (NPS).
Results  This paper outlines the properties of six biological matrices that have been used in forensic analyses, as alternatives 
to whole blood and urine specimens. Each of this matrix has benefits in regards to sampling, extraction, detection window, 
typical drug levels and other aspects. However, theses matrices have also limitations such as limited incorporation of drugs 
(according to physical–chemical properties), impossibility to correlate the concentrations for effects, low levels of xenobiotics 
and ultimately the need for more sensitive analysis. For more traditional drugs of abuse (e.g., cocaine and amphetamines), 
there are already data available on the detection in alternative matrices. However, data on the determination of emerging 
drugs such as the NPS in alternative biological matrices are more limited.
Conclusions  Alternative biological fluids are important specimens in forensic toxicology. These matrices have been increas-
ingly reported over the years, and this dynamic will probably continue in the future, especially considering their inherent 
advantages and the possibility to be used when blood or urine are unavailable. However, one should be aware that these 
matrices have limitations and particular properties, and the findings obtained from the analysis of these specimens may vary 
according to the type of matrix. As a potential perspective in forensic toxicology, the topic of alternative matrices will be 
continuously explored, especially emphasizing NPS.
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Introduction

One of the goals of forensic toxicology is to apply 
approaches of analytical chemistry, toxicology and phar-
macology for investigating compounds of forensic interest 
in samples collected in casework including death investi-
gations, driving under the influence of substances, doping 
control, drug-facilitated crimes and more. For this reason, 
it is of paramount importance to investigate the presence 
of a given drug in biological fluids collected from the indi-
vidual in a suspected-intoxication case, since this would be 
important evidence of drug intake. Drug testing in forensic 
toxicology has been historically and traditionally performed 
in whole blood, plasma, serum and urine specimens, which 
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are considered conventional or traditional biological fluids 
[1, 2]. Since many years ago, alternative biological matri-
ces have been explored in toxicological testing, especially 
due to their advantages over conventional matrices [2–4]. 
In general, these advantages include easier and less invasive 
specimen collection and in some cases, larger detection win-
dows [3]. In addition, these matrices can be used when blood 
specimens are not available, degraded, potentially affected 
by postmortem redistribution or delayed collection after 
drug intake [5]. However, due to inherent characteristics and 
toxicokinetics, drug levels in some of these matrices may 
be reduced in comparison to blood or urine. For this reason, 
modern advancements in instrument’s technology have made 
possible the exploration and analysis of alternative matrices; 
modern and sensitive instruments are enabling the detection 
of lower concentrations of drugs and poisons in some of 
these alternative specimens [1]. Some of these samples such 
as oral fluid and hair are already well established and have 
been implemented in drug testing by several laboratories.

The goal of this paper is to discuss common alternative 
matrices, i.e., oral fluid, hair, sweat, meconium, breast milk 
and vitreous humor, considering their properties, advan-
tages and limitations in drug testing. In addition, some of 
the recent studies based on the application of these matri-
ces in the analysis of classic drugs and novel psychoactive 
substances (NPS) will be reviewed. Other less frequently 
reported biological specimens are also briefly discussed.

Oral fluid

Oral fluid is an exocrine secretion produced mainly by the 
three pairs of major salivary glands (parotis, submandibu-
laris and sublingualis) at a rate of 0.5–1.5 L per day [6, 7]. 
It consists mainly of water (approximately 99%), proteins, 
epithelial cells, bacteria, food debris and traces of drugs, 
composition that differs the oral fluid from the saliva [7–9].

The oral fluid is considered a direct filtering of blood 
because the salivary glands are highly perfused with blood 
[10]. The main mechanisms by which drugs pass from blood 
into the oral fluid are the passive diffusion (hydrophobic 
compounds) and ultrafiltration (low molecular hydrophilic 
substances) [11]. Drugs are usually present in their free frac-
tion form since the bounded drug may not infiltrate through 
the salivary tissues [9]. Additionally, because oral fluid is 
slightly acidic relative to blood (pH 5.8–6.8), weak basic 
drugs tends to be ionized and, consequently, to be present 
in higher concentrations in this matrix (referred as ion trap-
ping) [12, 13]. It is important to mention that many psycho-
active drugs have such a characteristic, including cocaine 
and amphetamines [13].

The interest in using oral fluid for forensic and toxicologi-
cal purposes has grown significantly in the recent years due 

to the advantages of this matrix, and also due to the improve-
ment in extraction and analysis procedures. In this sense, as 
compared to the conventional matrices, the collection of oral 
fluid is simpler, easier, safer (both for patients and collection 
staff), painless (noninvasive) and avoids privacy issues [14, 
15]. For instance, blood sampling is invasive and requires a 
trained health professional, while urine collection in many 
cases demands supervision to avoid sample adulteration [16, 
17]. Both issues are overcome when sampling oral fluid. 
In addition, this matrix is simpler, presenting less interfer-
ence as compared to blood and urine; consequently, the drug 
analysis can be performed more accurately [14–16, 18, 19]. 
Finally, oral fluid is ideal for drug online monitoring, as the 
drug levels in this biological matrix are thought to reflect 
the free drug plasma concentration, which may also reflects 
the drug activity [9].

Regarding of disadvantages of this matrix, oral fluid com-
position is influenced by several factors, such as the circa-
dian rhythm, healthy status, age, gender, therapeutics, diet, 
and smoking habits [6, 9, 20]. With this respect, the inter-
pretation of the analysis of drugs that are inhaled or smoked 
(such as cocaine, nicotine and heroin) may be impaired due 
to oral cavity contamination [9]. Additionally, the oral fluid 
volume for testing is limited (about 1 mL), and the analytes 
may be present in very low amounts, requiring very sensitive 
detection methods. However, the improvement in sample 
preparation methods (such as microextraction techniques), 
and the advances of analysis procedures (including gas 
chromatography coupled to mass spectrometry (GC–MS) 
or liquid chromatography coupled to mass spectrometry 
(LC–MS)) are efficient in reducing the impact of the last 
issues [8]. Finally, caution must be taken with the choice of 
the oral fluid sampling device, since it may directly influence 
the analytical result, and it is a very important variable when 
standardizing a method and when comparing the results of 
different laboratories [15]. For detailed description of the 
oral fluid collection devices, refer to [15, 20, 21].

For all the advantages over conventional matrices cited 
previously, the oral fluid is currently the most suitable alter-
native matrix for the assessment of recent exposure of psy-
choactive drugs [12]. One of the main applications is the 
oral fluid analysis of individuals suspected of driving under 
the influence of drugs, where this matrix is usually screened 
for cocaine, cannabinoids, amphetamines, benzodiazepines, 
opiates and ethanol [12, 22–26]. With this respect, oral fluid 
is a good alternative to breathalyzer assessment, because it 
provides simultaneous identification of alcohol and other 
psychoactive drugs, and also allows the sample to be stored 
and reanalyzed if there is a judicial request [16].

Another application of oral fluid is the on-site (real time) 
monitoring for doping purposes, as Bessonneau et al. [27] 
collected oral fluid to monitor in vivo 49 prohibited sub-
stances in sports, including psychoactive drugs, such as 
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cannabidiol (CBD) and cannabinol (CBN), heroin, metha-
done, fentanyl, and strychnine. In addition, there are several 
studies that use this matrix for the analysis of drugs of abuse 
for clinical and forensic purposes, such as cannabinoids [28, 
29], amphetamines [30, 31], cocaine [32, 33], opioids [34, 
35], and benzodiazepines [36]. Finally, the analysis and 
identification of NPS is a hot topic in Forensic Toxicology, 
and oral fluid is one of the main matrices used for the assess-
ment of these substances. With this regard, the recent studies 
are usually focused in analyze different classes of NPS using 
small volumes of oral fluid [37–39].

Hair

Hair is a filamentous structure constituted of keratin 
(65–95%), water (15–35%), lipids (1–9%) and some min-
erals (0.25–0.95%). The average hair growth rate is about 
0.35 mm per day or 1–1.5 cm per month, depending on 
anatomical region, ethnic origin, gender and age. When the 
scalp hair is not sufficient or absent to perform an analysis, 
the hair can be collected from other anatomical regions, such 
as the pubis, arms, armpits or face (beard) [3].

Hair analysis can be used to determine the concentration 
of many licit or illicit drugs in their parent or metabolized 
form such as nicotine, the biomarker of tobacco exposure 
[40–42]; ethyl glucuronides (EtG) and total fatty acid ethyl 
esters (FAEEs), which are biomarkers of ethanol intake 
[43–46]; cannabis [47–50]; cocaine [51–54]; amphetamines 
[55–57]; and NPS, including phenethylamines, piperazines, 
synthetic cathinones and synthetic cannabinoids [58, 59].

The accurate mechanisms involved in the incorporation 
of drugs into hair are still unclear. The most accepted model 
assumes that drugs and their metabolites are incorporated 
in hair by passive diffusion through blood capillaries to the 
cells of the growing matrix, at the base of the hair follicle. 
As the cells elongate and age, they die and coalesce, forming 
the hair fiber carrying the drug incorporated in the matrix. 
Other possible mechanisms are diffusion from sweat (sweat 
glands) or sebum to the hair as well as environmental con-
tamination (smoke, dust or physical transfer from contami-
nated hands) [60].

The deposition of drugs in hair can be influenced by 
hair’s melanin content (hair color) and ethnic origin; and 
lipophilicity, polarity and basicity of the parent drug or its 
metabolites. Generally, dark pigmented hair tends to bind to 
greater amounts of drug than less pigmented hair, because 
the analytes are believed to bind more efficiently to the mela-
nin found in colored hair [61]. Melanin has a hydrophobic 
and acidic nature, which makes this pigment responsible for 
the affinity of hair to alkaline drugs such as cocaine, codeine 
and ketamine. Lipophilic and basic molecules are more 
incorporated than polar analytes [60, 62]. Other parameters 

that can change the concentration of drugs in the hair are 
the difference of hair growth rate among various anatomic 
body sites, such as head, pubic, axillary, face and chest hair 
[63], the washing procedure used before hair analysis and 
the use of cosmetic and heat hair treatments. The products 
used for bleaching, perming, dyeing or relaxation contain 
strong bases, which may affect the stability or the amount of 
drug present in the hair matrix. These treatments, associated 
with continuous exposure to natural factors such as sunlight, 
weather and pollution can contribute to increase the damage 
in the hair cuticle [64]. In particular, photodegradation of 
drugs through the formation of free radicals or photosen-
sitization reactions by intermolecular energy transfer can 
occur when the hair is exposed to sunlight or artificial light 
for many hours per day [65].

The advantages of hair analysis over other conventional 
biological samples are: easy and noninvasive collection (it 
does not require any specialized training neither violate indi-
vidual’s privacy); easy transportation and storage (a solid 
and durable structure assure long stability); negligible risk 
of infection; and assessment of retrospective and cumulative 
drug exposure from months to years (since drugs incorpo-
rating into hair have a large window of detection). Further-
more, it is possible to evaluate chronic drug use through 
segmental analysis, in which hair is cut into smaller pieces 
and analyzed separately [66–68], and also to locate and 
characterize drugs on a single hair sample, using matrix-
assisted laser desorption/ionization (MALDI) combined 
with imaging mass spectrometry [69, 70]. In postmortem 
cases, when investigating the presence of drugs consumed 
by the deceased a long time after death, a hair sample might 
be the only biological matrix available for the analysis.

Hair testing also has some limitations. The detection of 
recent drug use (within 7 days) is not possible. Accurate 
and sensitive methods are necessary to detect very low drug 
concentrations and the cost of analysis is higher than that of 
other biological samples. Immunoassay tests alone do not 
provide reliable results and the use of a confirmatory tech-
nique such as GC–MS or LC–MS [62] is needed. Interpreta-
tion of analytical findings is more complex, considering the 
complexity and variability of the incorporation of the drugs 
into hair matrix [71]. There is no consensus on “the most 
accurate and sensitive” method for hair analysis (washing, 
extraction and identification steps), which can lead to mis-
interpretation of very low drug concentrations. Considering 
this issue, the Society for Hair Testing (SOHT) provides 
guidelines that regulate information about collection, testing, 
cut-offs and reporting of confirmed results [72].

Hair analysis is of great interest in forensic, clinical and 
analytical sciences and the most common applications in 
routine analysis include workplace drug testing, drug-facil-
itated crime, child custody, in utero drug exposure, monitor-
ing abstinence to drugs and/or ethanol and others [71, 73]. 
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Therefore, hair is an alternative biological sample of large 
importance in forensic toxicology that allows an evaluation 
of historic drug use/exposure, depending on the hair length.

Sweat

Sweat is the fluid produced by the eccrine and apocrine 
sweat glands. When sweat is generated on the surface of the 
epidermis, it evaporates slowly, fulfilling its role in the main-
tenance of body temperature. This fluid is mainly composed 
by water (around 99%) and electrolytes, carbohydrates, 
amino acids, urea, lactate and other organic compounds. 
Sweat has low tonicity and a slightly acidic nature, display-
ing mean pH of 6.3. However, factors such as gender, age 
and physical exercise, may alter this value (which can range 
from 5.2 to 6.9). It is believed that the volume of sweat per-
spired daily by the whole body of an individual can amount 
to between 300 and 700 mL, under normal environmental 
conditions [74–76]. Depending on how sweat sample is col-
lected, it can also include secretions generated by the seba-
ceous glands. While hydrophilic composition represents the 
largest portion of this fluid, hydrophobic content may con-
sist of less than 1% of sweat fraction, being mainly derived 
from sebum and apocrine secretion [77]. Within the organic 
portion of sweat, there are endogenous and exogenous sub-
stances excreted by the organism [78]. Mechanisms of trans-
portation of substances, such as drugs, to sweat remain not 
fully elucidated. However, it is believed that the primary 
mechanism involved in the delivery of substances from 
bloodstream to sweat occurs through passive diffusion, from 
adjacent capillaries to the sweat glands. Substances could 
also reach skin’s surface by migrating through skin layers 
(transdermal migration). Factors governing the excretion 
of substances into sweat are lipophilicity, molecular mass, 
protein binding and pKa of the molecule [79].

A series of advantages lead us to the use of sweat as bio-
logical matrix for the investigation of compounds of interest. 
Sweat collection is noninvasive and can be performed in 
simple and safe manner. In addition, samples present less 
complex composition, are easier to be handled and offer less 
risks of pathogen transmission. Additionally, sweat samples 
can represent a cumulative record of substances excreted by 
an individual within a given timeframe. This fluid occasion-
ally provides a greater window of detection for the identifi-
cation of substances in comparison to blood: xenobiotics can 
be detected in sweat up to 14 days after exposure [80]. Some 
of the disadvantages include the rather low concentration 
of analytes, demanding the use of more sensitive analytical 
techniques to enable proper determination of targets in this 
matrix. In addition, there is a lack of information regarding 
the possibility of environmental contamination and reab-
sorption of substances by skin [81]. Volume of collected 

sample is also dependent on both internal (inter- and intra-
variability in sweat production) and external factors (physi-
cal exercise, room temperature, etc.) [79].

Sweat can be collected by wiping the skin with gauze, 
cotton, filter paper or plastic materials [82]. For special-
ized collection of sweat there are proper devices available 
commercially, named PharmChek® patches (PharmChem, 
Inc, Fort Worth, TX, USA). Basically, these devices consist 
of an absorbent cellulose patch (where the substances are 
deposited), which is adhered to the skin by an adjacent adhe-
sive. The device is hypoallergenic and waterproof; besides 
that, each device has an imprinted individual code and once 
removed cannot be re-attached to the skin—such characteris-
tics aid the maintenance of chain of custody; the latter refers 
to the chronological documentation of the sample from the 
time of collection until the receivement by the laboratory 
[83], recording the sequence of custody, control, analysis 
and disposal of materials such as biological samples, used 
in analyses of forensic interest that prevent sample tamper-
ing [84]. The adhesive polyurethane layer protects the patch 
from external contaminations, while allows gas exchanges 
(CO2, O2, water vapor) with the environment to occur, pre-
venting the skin from being harmed. In this way, the device 
can stay attached to the skin up to 2 weeks [79, 81]. Prior 
application, the skin is usually cleaned with a swab soaked in 
70% isopropanol, to remove previously existing substances 
from external environment [85]. Although being less com-
mon for drug monitoring applications, Macroduct® Sweat 
Analysis (ELITECH Wescor® Inc., South Logan, UT, USA) 
is another device dedicated to the collection of sweat. The 
system comprises a sweat inducer and collector, being origi-
nally designed for cystic fibrosis diagnosis through measure-
ment of chloride ions in sweat. The device is composed of a 
29 mm diameter disk equipped with a capillary plastic coil, 
responsible for the collection of fluid. Sweating induction is 
achieved by pilocarpine iontophoresis. Generally, the device 
in placed on subject’s forearm and 60 µL of sample can be 
obtained within 30 min. Since iontophoresis is based on the 
application of electrical current to the skin, the process may 
be uncomfortable. On the other hand, this method allows 
prompt collection of sweat and standard sample volumes 
can be used for the following analysis [77].

Parent drugs—which can more easily cross physiologi-
cal barriers—are expected to be detected in the sweat at 
greater concentrations than their corresponding hydro-
philic metabolites. In addition, because sweat pH is more 
acidic than blood, basic drugs tend to accumulate in this 
fluid rather than acid substances [78]. Sweat volume nor-
malization remains as a pending issue. Most of the existing 
approaches involves the use of sodium and potassium ions 
as internal reference for determination of sweating rate 
[86, 87]. Sweat sample preparation for detection of drugs 
commonly involves a liquid-liquid extraction (LLE), using 
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aqueous phosphate buffer or organic solvents (e.g., metha-
nol). Then, the preliminary extract is subjected to clean-up 
to promote analyte pre-concentration. In this step, solid-
phase extraction (SPE) is frequently used. Sweat analysis 
is generally carried out using GC–MS or LC–MS. How-
ever, direct immunoassays such as radioimmune analysis 
and enzyme-linked immunosorbent assay (ELISA) can 
also be performed in this matrix [76], although confirma-
tory analysis relying on traditional techniques may be 
required. On-site sweat testing can be performed using 
Drugwipe® (Securetec Detektions-Systeme AG, Neu-
biberg, Germany). This is a pen-size device which allows 
to screen controlled substances such as cocaine, opiates, 
cannabinoids, benzodiazepines and amphetamines/meth-
amphetamines in saliva and skin/sweat. The system has 
a collector site, which transfers the sample to strips con-
taining drug-specific antibodies by lateral flow. Once the 
test strip is immersed in water, results can be obtained 
within 3–8 min. This device has been mainly used by law 
enforcement for roadside screening for driving under the 
influence of drugs [88].

Sweat analysis has important applications in both foren-
sic and clinical toxicology. Due to the noninvasive speci-
men’s collection, cumulative register of substances, wider 
detection window and easy storage, sweat testing has been 
applied in the context of criminal justice system, to verify 
drug intake by subjects in parole/probation programs. Sweat 
can also be tested for drug monitoring in psychiatric out-
patient service and recovering drug addicts. Additionally, 
sweat analysis can be used to evaluate occupational exposure 
to substances in the workplace, as well as to assess worker’s 
exposure to prescribed substances [80, 89].

Several drugs of abuse have been determined in sweat 
specimens, such as cocaine, amphetamines and cannabinoids 
[3, 78]. However, the literature on NPS testing in sweat spec-
imens remains scarcely explored. A study on sweat analysis 
followed by a controlled oral administration of methamphet-
amine, showed that this drug was available in the matrix 
2 h after dosing [90]. Doses at low and high concentrations 
implied in average concentrations of 63 and 307 ng/patch for 
methamphetamine, and 15 and 53.8 ng/patch for ampheta-
mine [90]. Another study involving the controlled intake of 
3,4-methylenedioxymethamphetamine (MDMA) indicated 
that the parent drug was the main detected analyte, positive 
in 59.7% of the samples, at < 3007 ng/patch. 3,4-methylen-
edioxyamphetamine (MDA) was found in 29.4% of the sam-
ples, at < 172 ng/patch [91]. A review on amphetamines and 
methylenedioxy derivatives showed that limits of quantita-
tion for these analytes ranged from 1.4 to 5 ng/patch. Con-
sidering that a cut-off of 25 ng/patch is required to confirm 
the presence of such substances, the abovementioned meth-
odologies seem to be suitable for sweat analysis in forensic 
practice [92].

Cocaine and codeine were the primary analytes found 
in sweat, after oral administration [82]. Peak concentra-
tions were detected 4.5–24 h after drug intake [82]. Both 
analytes were identified 48 h after dosing. Concentrations 
of cocaine and codeine at elimination peak ranged from 
33 to 3579 ng/patch and from 11 to 1123 ng/patch—for 
sweat collected from hand; and 22–1463 ng/patch and 
12–360 ng/patch—for sweat collected from torso [82]. 
The developed method presented limits of quantitation 
ranging from 1.25 to 2.5 ng/patch, for all analytes [82]. 
Use of crack among drug users was also evaluated using 
hand fast patches; cocaine was found in 92% of samples, 
comparable to a rate of 91% of positive cases according 
to immunoassay urinalysis. In 54% of the samples, crack 
metabolites could also be identified, and anhydroecgonine 
methyl ester was the substance that was most present in 
the sample [93].

Paired analysis of cannabinoids was performed on hair, 
urine and sweat [94]. As results, Δ9-tetrahydrocannabinol 
(THC) and 11-nor-9-carboxy-THC (THC-COOH) were 
found in all urine and hair samples [94]. THC was detected 
in all sweat samples, with concentrations ranging from 
0.4 to 2.0  ng/patch. Still regarding sweat, cannabinol 
(0.4–0.5 ng/patch) was found in 50% of cases and CBD 
(0.4–0.6  ng/patch) detected in 25% of samples, while 
THC-COOH could not be assessed in this matrix [95]. 
After oral administration of THC (14.8 mg/day), no daily 
or weekly patches presented concentrations superior to the 
limit of detection (0.4 ng/patch), suggesting that sweat 
analysis is not the most sensitive approach to investigate 
THC exposure [94].

Cocaine and heroin were the main analytes detected in 
sweat after administration of these substances by intra-
nasal and intravenous routes [96]. Lower concentrations 
of ecgonine methyl ester and benzoylecgonine were also 
detected after 2–48 h and 8 h from cocaine administration, 
respectively [96]. The metabolite 6-monoacetylmorphine 
(6-MAM) was rapidly detected after heroin administration 
and its concentration continued to increase with time as 
heroin levels decreased, indicating heroin hydrolysis in the 
collection patch [96]. Estimated limit of quantitation for 
heroin and metabolites was 2.5 ng/patch [96]. Among drug 
users, heroin and 6-MAM were found in concentrations up 
to 400 and 441.1 ng/patch, respectively [96]. In another 
study, heroin and its metabolites were confirmed in 78.1% 
of sweat samples using GC–MS. The same samples were 
tested by ELISA analysis and correspondence was found 
in 90.6% of cases. Comparing ELISA analysis in sweat 
with enzyme multiplied immunoassay technique (EMIT) 
urinalysis, calculated sensitivity and specificity for sweat 
results on opiates were 68.6 and 86.1%, respectively [97].
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Meconium

Meconium is the first stool excreted by newborn. More 
than 98% of term infants pass their meconium within 
48 h after birth [98]. However, delayed passage of meco-
nium may occur in preterm infants and may cause intes-
tinal obstruction [99, 100]. Other uncommon situation is 
the meconium passage in utero as a signal of fetal stress 
(hypoxia) or a signal of advanced gastrointestinal matura-
tion (postterm infant) [101].

Unlike feces, meconium is characterized as thick, sticky, 
greenish-black in color and lack of odor usually inherent to 
regular feces [100, 102]. It is a highly complex matrix con-
sisting mainly of water (70–75% of total wet weight) with 
additional components such as lipids, plasma proteins, tis-
sue debris, enzymes, ions, hemoglobin metabolites (biliru-
bin and porphyrins), steroids, bile acids, sterols and mucus 
glycoproteins. The contents of meconium are derived from 
swallowed amniotic fluid, secretions of the fetal alimen-
tary tract (bile, pancreatic and intestinal secretions) and 
desquamation of cells from mouth, skin, alimentary tract, 
vernix and lanugo hair [103]. Illicit and licit drugs, used 
by mother during pregnancy, cross the placenta mainly by 
passive diffusion and, then, are accumulated in meconium 
by deposition via bile and the swallowed amniotic fluid 
[104]. Because meconium begins to form around 11–12th 
week of gestation (when a fetus begins swallowing amni-
otic fluid) and accumulates thereafter until birth [102, 
105], it has been used as alternative matrix for assessing 
prenatal exposure to drugs (theoretically along the sec-
ond and third trimesters of pregnancy) [102, 106, 107]. 
In general, the frequent and chronic exposure to drugs, 
especially during third trimester of pregnancy, are required 
to produce positive results for drug(s) in meconium [108]. 
Different patterns or proportional concentrations of the 
drug or metabolite in meconium may occur among new-
borns with similar exposure and, even between dizygotic 
twins. The mismatches may be explained by differences 
in fetal metabolism and placental differences [109, 110].

The main advantage of meconium as biological matrix 
is its wide detection window of in utero drug use. Others 
advantages of meconium include: noninvasive and easy 
sampling (meconium is collected from the diapers); a large 
amount of sample is available for collection (total amount 
range 20–60 g), and a small amount of sample is required 
for analysis (less than 1 g) [102, 111]. On the other hand, 
meconium testing has some limitations. It does not provide 
information about fetal drug exposure in the first trimester 
of pregnancy; meconium can be contaminated by urine or 
traditional feces (milk stool); usually it is not readily avail-
able for collection; meconium may be lost if is excreted 
in utero; it is not an homogenous sample (inhomogeneous 

distribution of drugs in meconium); irregular accumula-
tion of meconium in the fetal gut (nearly 1 g of meconium 
accumulates until 23–26 weeks of pregnancy, 5 g until 
27–32 weeks and 80% of meconium accumulates after 
38 weeks); drugs administered during labor and delivery 
may be detect as well as drugs administered to newborn 
before meconium collection [111–114].

Drugs may be screened in meconium using immunoas-
say techniques (e.g. ELISA, EMIT, biochip microarray) 
[115], then confirmed and quantified using GC–MS or liq-
uid chromatography–tandem mass spectrometry (LC–MS/
MS) techniques [113]. As all complex matrices, meconium 
requires extensive pre-analytical processing to minimize 
matrix interferences and improve the detection potential for 
the analytes of interest. These processing involves sample 
homogenization (with water or organic solvents) and further 
extraction using, mainly, LLE followed by SPE, accelerated 
solvent extraction or headspace solid-phase microextraction 
(SPME) [114, 116].

Several licit and illicit drugs of forensic interest have been 
determined in meconium specimens. Assessment of fetal 
alcohol exposure can be performed via quantification of non-
oxidative metabolites in meconium: EtG or FAEEs, repre-
sented by 9 compounds. Unlike EtG, FAEEs from mother 
do not across the placenta and thus FAEEs in meconium are 
produced by the fetus from ethanol that crossed the placenta, 
reflecting the true fetal alcohol exposure [117]. On the other 
hand, EtG in meconium is more stable at room temperature 
and its levels in meconium have been better correlated with 
EtG levels in maternal hair and with maternal self-report 
than FAEEs in meconium [118]. Himes et al. [119] con-
cluded that maternal alcohol consumption at 19 weeks or 
more was better represented by meconium EtG levels equal 
to or higher than 30 ng/g rather than currently used FAEE 
cut-offs.

Others biomarkers in meconium have been determined for 
identification of fetal exposure to tobacco (nicotine and coti-
nine); cocaine, hydroxybenzoylecgonine, benzoylecgonine, 
ecgonine methyl ester and anhydroecgonine methyl ester); 
cannabis (THC-COOH); amphetamine, p-hydroxyamphet-
amine; methamphetamine p-hydroxymethamphetamine); 
heroin (6-MAM, morphine and codeine) [107, 108, 110]. 
In regards to NPS, in the literature, there are only a few 
reports on analytical method development and detection in 
authentic specimens (e.g., synthetic cathinones [120–122]).

Meconium drug testing has some limitations that should 
be considered in the interpretation of the results. A false 
negative result may be due to instability of some analytes 
in meconium (e.g., FAEEs, 6-MAM); inappropriately 
high cut-off concentration; delayed meconium collec-
tion (collected sample is transition stool or milk stool); 
inappropriate analytical targets (analytes not common in 
urine can improve detection of drug in meconium, e.g., 
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m-hydroxybenzoylecgonine and p-hydroxymethampheta-
mine) [110, 123]. A false positive result for FAEEs may be 
due to delayed meconium collection because of contamina-
tion of meconium with dietary components of stool pro-
duced after birth and ethanol-producing microorganisms. 
Then, in this case, there is a recommendation that meconium 
collection should be performed until 24 h after birth [124]. 
Despite these limitations, meconium drug testing remains 
the “gold standard” for identifying in utero drug exposure 
(drug exposure detection in newborn). More studies are 
needed to associate meconium drug concentration with the 
degree of exposure or the severity of outcomes [114].

Breast milk

Human breast milk (HBM) is a complex fluid with high lipo-
protein content, and is considered as the best nutrient for 
newborns aging from 6 months to 2 years old and also works 
as a complement to solid food [125–127]. Several exogenous 
compounds arising from mothers’ consumption habits may 
be incorporated into breast milk during lactation, and breast-
fed babies may be exposed to the substances such as medica-
tion, pesticides, toxic metals and drugs of abuse [128–131]. 
In forensic toxicology, HBM is an alternative matrix for 
drug analysis with a short detection window, being useful 
to investigate mother’s recent drug use (hours) and to assess 
the infant exposure to substances that may be harmful for 
their cognitive and motor development [132, 133]. It is also 
noteworthy that the noninvasive and easy collection of this 
sample and the importance of the analytical results com-
plement the information from self-reports [134, 135]. The 
benefits associated to breastfeeding for both mother and 
infant, including decreased rates of infections and severe 
comorbidities, must be weighed against the effects of the 
drug on the infant to make the best decision for both mother 
and child’s health.

Advances in analytical chemistry provided new tech-
niques that offer adequate sensitivity, environmental friend-
liness and ability to fast process many samples of differ-
ent complexities [136]. In a recent review about HBM and 
psychoactive substances by Santos and De Martinis [137], 
most studies published over the last 10 years reported anal-
ysis of HBM using LC–MS/MS, and the most commonly 
employed sample preparation techniques were SPE, protein 
precipitation, LLE and some miniaturized techniques. More 
detailed information is summarized and published elsewhere 
[137]. More recently, Behpour et al. [138] developed a gel-
based electromembrane microextraction (EME) coupled 
with switchable hydrophilicity solvent-based liquid–liquid 
microextraction procedure to quantify antidepressants in 
breast milk, serum and wastewater samples. The technique 
provided growth of enrichment factor over original EME, 

reducing limits of detection (LODs) and limits of quan-
tification (LOQs); and the use of low volume of organic 
solvent allowed the analysis by gas chromatography with 
flame ionization detector (GC–FID), which usually cannot 
be performed with EME due to its aqueous acceptor phase, 
which is often analyzed by high-performance liquid chro-
matography with ultraviolet detection (HPLC–UV) [138]. 
Sempio et al. [139] developed an LC–MS/MS method for 
quantification of 12 cannabinoids in 30 samples from a clini-
cal study and 6 samples from a breast milk bank and com-
pared the analysis’ results with ELISA immunological assay. 
They performed protein precipitation followed by online 
extraction using 0.2 mL of sample, achieving lower LOQs 
than ELISA’s LODs for THC-COOH and adequate absolute 
recoveries [139]. Results showed that the 30 clinical samples 
tested negative on ELISA, but all of them tested positive for 
THC using LC–MS/MS, and in many of them, 11-hydroxy-
Δ9-tetrahydrocannabinol (THC-OH), THC-COOH, CBD 
and cannabigerol were also detected [139]. All the 6 milk 
bank samples tested negative on ELISA and on LC–MS/MS 
as well [139]. The results of this study show the importance 
of correctly interpreting the results of screening tests and 
the need of greater implementation of quantitative analyses 
in the routine of toxicological assessment. The absence of 
THC-COOH according to ELISA would mean that there was 
no recent consumption of cannabis, while a highly sensitive 
technique showed the opposite result, suggesting the pos-
sibility of infant exposure [139].

The excretion of substances into HBM depends on phys-
icochemical characteristics of the compound, including 
molecular weight, ionization degree (pKa) and the solubil-
ity in lipids as well as the pH of milk (6.5–6.8) [140]. For 
instance, THC, the major psychoactive compound of can-
nabis, has low molecular weight and high pKa value, is lipid 
soluble and 99% is protein bound. Those factors cause the 
THC transfer into breast milk and its accumulation in lipid-
filled portions as well [141]. Cannabis is the most consumed 
drug of abuse in pregnancy and after birth, but still there is 
no information about how much the amount present in HBM 
is related to the concentration of THC in cannabis or its 
joints, the frequency of use and the concentration in mater-
nal plasma [127, 142]. Two surveys evaluated the effect of 
maternal marijuana use while breastfeeding, and they found 
that infants exposed to marijuana were slightly smaller and 
had decreased points in motor scores, but marijuana use 
during pregnancy might have caused confounded results 
[143, 144]. Some studies reported cases of infant cocaine 
intoxication through breast milk presenting acute effects 
as agitation and seizures, neonatal abstinence syndrome in 
cases of opioid intoxication, and sedation and breast sucking 
difficulty due to exposure to cannabis [145, 146]. Several 
clinical studies about infant exposure through breastfeeding 
are summarized in Drugs and Lactation  Database [147].
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The lack of studies shows the importance of public poli-
cies to inform population about the consequences of infants 
exposed to drugs of abuse through breast milk. The risk 
assessment in breastfed babies requires more quantitative 
data, as well as an understanding of the factors determining 
exposure after oral maternal ingestion followed by excretion 
into HBM. Furthermore, confirmatory toxicological analysis 
should be included in quality control routines of breast milk 
samples (complementing self-reports and screening tests) to 
maintain its quality and the importance of breastfeeding. In 
addition, combining clinical data with in silico modeling and 
simulation approaches (such as physiologically based phar-
macokinetic model, chemometrics and others) is an emerg-
ing and powerful strategy for predicting drug mechanisms 
and toxic effects in human body [148].

Vitreous humor

Vitreous humor (VH) is an alternative matrix commonly 
used in postmortem toxicological analyses and its applica-
tion in forensic analysis started in the 1960s [149]. Since 
then, many analyses in VH have been conducted, includ-
ing ethanol, illicit drugs and endogenous compounds [150]. 
One of the interests of using VH in toxicological analysis is 
especially when traditional matrices, such as blood or urine, 
are unavailable or under inappropriate conditions for analy-
sis [151]. Casework involving embalmed, burned or highly 
decomposed bodies are such examples [152].

VH is a gelatinous liquid filling the eyeball, between the 
crystalline lens and the retina [2, 149][143]. The composi-
tion of VH is primarily water (around 98%), including other 
components such as lipids, electrolytes, polysaccharides, 
proteins and other substances [149, 151]. Drugs present 
in circulating blood may reach the VH through the blood-
retinal barrier, by passive diffusion or active transport [153, 
154]. Drugs are able to reach the VH only if in free form (not 
bound to proteins) [154], and thus drugs exhibiting a low 
rate of protein binding are present in VH at greater levels 
[154, 155]. On the other hand, if a drug is likely to bind to 
proteins, it should not be expected in VH [154].

The application of VH in forensic analyses is based on 
several advantages of this matrix. In comparison to other 
postmortem fluids, the composition of VH makes it a cleaner 
matrix, with less interferents [2, 153], being an aqueous 
matrix with minimal protein contents [151]. VH also has 
a low number of cells and lacks of blood vessels [153], 
avoiding potential infections from the blood [155]. Another 
advantage of VH is its prolonged stability in comparison to 
other matrices [2, 156]. The location of VH is also an advan-
tage, as it is located in a body compartment protected against 
contamination and microbial activity [149, 151], especially 
being remotely located from gastrointestinal tract [150]. In 

comparison, postmortem blood is more likely than VH to 
suffer microbial activity and degradation [157] and autol-
ytic processes are delayed in VH in relation to blood [158]. 
After death, bacteria present in the gut, lung, oral cavity and 
other microbiomes, and also environmental bacteria may 
infect other surrounding tissues and fluids, whereas in VH 
this process occur to a lesser extent, reducing the contami-
nation and increasing the stability of this specimen [149]. 
For example, in a study by Harper [157], postmortem blood 
and VH were collected from 51 decedents and microbio-
logical analyses revealed no significant amounts of bacteria 
or fungi in VH and high diversity of microorganisms in 32 
postmortem blood specimens. This is particularly interest-
ing for ethanol testing, since the postmortem formation of 
ethanol is unlikely in VH [159]. In VH, there is no esterase 
activity [160], which also contributes to an increased stabil-
ity of compounds in this specimen. Although the use of VH 
has several analytical benefits, drug testing in VH has a few 
limitations. The volume available for sampling is limited 
and the blood-retinal barrier may restricts the incorporation 
of drugs into VH [156, 159]. In addition, in violent death 
cases a rupture of the eyeball may occur, with loss of VH.

The collection of VH is performed by gentle introduc-
tion of a sterilized needle into the eyeball followed by fluid 
aspiration [149], penetrating in approximately 2 cm [2] and 
avoiding the collection of retinal or iris cells [153]. Usually 
sufficient volumes are collected for analysis but the volume 
may be reduced during postmortem body dehydration pro-
cess [149]. Around 2–2.5 mL of VH is available in each 
eyeball [152]. Water or saline solution may be used as sur-
rogate for VH, to provide the physical aspect of the eyeball, 
after VH is removed [153, 161], especially for funeral pur-
poses. Usually samples are stored in polypropylene or glass 
tubes, without adding any preservatives or adding fluorides 
(sodium or potassium), oxalates (calcium or potassium) 
or ethylenediaminetetraacetic acid (EDTA) disodium salt 
[151]. For example, in a study by Rees et al. [160], it has 
been shown that sodium fluoride addition to VH provided 
greater stabilities for 6-MAM, which could be explained 
due to reduction of bacterial activity and putrefaction in 
this sample.

In general, VH testing in a forensic toxicology setting 
does not differ from blood or urine testing and several meth-
ods developed for blood/urine testing have been adopted in 
VH analysis [154]. As previously mentioned, the protein and 
aqueous contents in VH samples tend to reduce the complex-
ity of sample preparation [151]. A systematic contempo-
rary review covering methods used in the preparation and 
analysis of VH specimens has been recently published by 
Wójtowicz et al. [151]. In general, several extraction tech-
niques have been explored for VH samples’ preparation. In 
the literature, there are several SPE-based methods available 
proposed for extracting drugs from VH specimens [154–156, 
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162–168]. LLE has also been reported and explored for 
VH samples [169–175]. Other techniques have been less 
frequently explored such as microwave assisted extraction 
[176], disposable pipette extraction [177], supercritical fluid 
extraction [178], dispersive liquid-liquid microextraction 
[179] and liquid-phase microextraction (LPME) [180].

A diverse repertoire of analytical techniques has been 
reported in the analysis of VH specimens. Chromatogra-
phy coupled to mass spectrometry-based methods have 
been frequently used due to its high sensitivity, selectivity 
and accuracy [151]. Gas chromatographic techniques used 
in separation and analysis of VH samples include GC–MS 
[154, 156, 163, 164, 167–170, 180–182], gas chromatog-
raphy with nitrogen-phosphorus detector (GC–NPD) [170, 
177] and GC–FID [159, 166]. Gas chromatography coupled 
to tandem ion trap mass spectrometry (GC–MS/MS) has also 
been applied in the analysis of cocaine in sheep’s VH [183]. 
Analytical methods using LC have been developed as well, 
using diverse techniques such as HPLC–UV [162], high-
performance liquid chromatography–diode array detection 
[155, 171, 176, 179, 184], LC with fluorescence detector 
(e.g., [174]), LC–MS/MS (e.g., [173, 175, 185]) and liquid 
chromatography coupled to time-of-flight mass spectrom-
etry (LC–TOF-MS) [165]. Comprehensive screening of VH 
(covering a large range of compounds) and comparison to 
other traditional matrices (e.g. blood or urine) have been 
performed by GC–MS [156] or by LC–TOF-MS [165]. 
Separation methods based on capillary electrophoresis have 
also been explored for drug testing in VH such as a capillary 
electrophoresis with diode array detection method published 
by Costa et al. [172]. Besides instrumental separation meth-
ods, immunoassays applied in the analysis of other biologi-
cal fluids have also been explored for VH [170, 186–189].

Over the years, VH has been successfully used in foren-
sic casework, for illicit drugs and NPS testing. Several 
classic drugs of abuse have been detected in authentic VH 
specimens such as the following examples: ethanol [159, 
181, 190], cocaine and its metabolites [155, 164, 166, 172, 
176, 181, 190–192], opioids and/or their metabolites [155, 
167, 168, 173, 176, 177, 182, 185, 190], amphetamine and/
or methamphetamine [164, 173, 190], MDA derivatives 
[169], ketamine [172], phencyclidine [154, 170], LSD 
and its metabolites [175], γ-hydroxybutyric acid [193], 
benzodiazepines [171, 173, 184, 190], antidepressants 
[173, 180, 194, 195] and barbiturates [196]. On the other 
hand, VH does not seem to be a good biological matrix for 
investigating cannabinoids [151]. In a study by Saenz et al. 
[197], THC and THC-OH were detected only in blood and/
or urine but not in VH in two cases [197]. In these same 
two cases, THC-COOH was detected in blood, urine and 
VH in one case whereas in the other case THC-COOH 
was detected in blood and urine only [197]. Similarly, in 
another study by Peres et al. [164], THC and THC-COOH 

were detected in three cases in whole blood specimens but 
not in VH. Other studies in the literature reported findings 
regarding THC and its metabolite distribution into VH in 
agreement with these observations [170, 198]. This can 
be rationalized due to strong affinity for plasma proteins 
and lipophilicity exhibited by THC, which reduces the 
incorporation of THC into aqueous specimens, such as 
VH [164, 199]. In addition, Lin and Lin [198] observed 
low vitreous concentrations of THC-COOH, a hydropho-
bic character compound. In regard to NPS, VH has also 
been implemented in toxicological analysis for a differ-
ent classes including fentanyl and non-fentanyl opioids 
[200–207], synthetic cathinones [208–212], designer ben-
zodiazepines [190], 5-(2-aminopropyl)indole [213] and 
phenethylamines [214–216].

Other alternative matrices

Oral fluid, meconium, hair, sweat, breast milk and VH 
are commonly reported and implemented in forensic toxi-
cological analyses as alternative matrices. However, this 
range of alternative specimens is not exhaustive and other 
fluids have been explored and proposed. The use of other 
fluids and tissues including bile [5], nails [217], bone mar-
row [218], umbilical cord [107, 113, 219] and others, as 
alternative matrices has been reviewed and discussed in 
the literature. In addition, tooth is another matrix that has 
been explored in forensic toxicology, especially consid-
ering its ability to resist to postmortem decomposition, 
environmental changes and other agents [220]. Examples 
of drugs or metabolites recently reported in human teeth 
include cocaine, benzoylecgonine, morphine, 6-MAM, 
THC, CBN, CBD [220], amphetamine, MDMA, mor-
phine, codeine, norcodeine, methadone,  2-ethylidene-
1,5-dimethyl-3,3-diphenylpyrrolidine, fentanyl, tramadol, 
diazepam, nordiazepam and promethazine [221]. Another 
alternative specimen more recently explored is cerumen 
or earwax. Cocaine and metabolites, methamphetamine, 
opioids, cannabinoids, benzodiazepines, antiepileptics 
and antipsychotics are examples of substances recently 
reported in authentic cerumen specimens [222, 223]. 
Meier et al. [222] have also detected the NPS 4-fluoroam-
phetamine in cerumen specimens. The collection of ceru-
men is less invasive than that of other biofluids [223] and 
the detection window is longer when compared to urine 
[222]. Synovial fluid obtained from articular joints, espe-
cially knee joints, has been also proposed as an alternative 
matrix for the investigation of drugs/metabolites such as 
morphine, codeine, cocaine, 6-MAM, benzoylecgonine 
and ecgonine methyl ester [224].
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Conclusions

The selection of specimens in toxicological analyses is a 
critical step. Understanding the properties of both target 
analyte and matrix is very important, to select the most 
appropriate biological fluid/tissue for the case under 
investigation. Alternative biological matrices are biologi-
cal fluids/tissues that can provide additional information 
and advantages in comparison to blood and urine testing, 
in several aspects such as sample collection, detection 
window and complexity of sample preparation/analysis. 
In addition, these matrices can be collected and analyzed 
when blood and urine are not available. However, each one 
of these alternative matrices has its own characteristics, 
advantages and limitations, which need to be considered. 
The perspective in forensic toxicology is that alternative 
matrices will be more frequently explored in the future. 
For example, the Organization of Scientific Area Commit-
tees for Forensic Science (OSAC) recommend research on 
alternative matrices for the improvement of forensic toxi-
cology [225]. Therefore, further research is still needed 
to provide analytical methods and better understanding 
on the behavior of drugs in these matrices, especially for 
emerging NPS.
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