
J Comput Virol Hack Tech (2015) 11:137–142
DOI 10.1007/s11416-014-0236-5

ORIGINAL PAPER

A token-based authentication security scheme for Hadoop
distributed file system using elliptic curve cryptography

Yoon-Su Jeong · Yong-Tae Kim

Received: 2 September 2014 / Accepted: 29 December 2014 / Published online: 27 February 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In recent years, a number of platforms for build-
ing Big Data applications, both open-source and proprietary,
have been proposed. One of the most popular platforms is
ApacheHadoop, an open-source software framework for Big
Data processing used by leading companies like Yahoo and
Facebook. Historically, earlier versions of Hadoop did not
prioritize security, so Hadoop has continued to make secu-
rity modifications. In particular, the Hadoop Distributed File
System (HDFS) upon which Hadoop modules are built did
not provide robust security for user authentication. This paper
proposes a token-based authentication scheme that protects
sensitive data stored in HDFS against replay and imperson-
ation attacks. The proposed scheme allows HDFS clients to
be authenticated by the datanode via the block access token.
Unlike most HDFS authentication protocols adopting pub-
lic key exchange approaches, the proposed scheme uses the
hash chain of keys. The proposed scheme has the perfor-
mance (communication power, computing power and area
efficiency) as good as that of existing HDFS systems.

Special Issue: Convergence Security Systems.

This work was supported by the Security Engineering Research
Center, granted by the Korea Ministry of Knowledge Economy.

Y.-S. Jeong
Division of Information and Communication Convergence
Engineering, Mokwon University, 88 Doanbuk-ro,
Seo-gu, Daejeon 302-318, Korea
e-mail: bukmunro@mokwon.ac.kr

Y.-T. Kim (B)
Division of Multimedia Engineering, Hannam University,
133 Ojeong-dong, Daedeok-Gu, Daejeon 306-791, Korea
e-mail: ky7762@hnu.kr

1 Introduction

With the growth of social networks and smart devices, the
use of Big Data has increased dramatically over the past few
years. BigData requires new technologies that efficiently col-
lect and analyze enormous volumes of real-world data over
the network [1–3]. In particular, open-source platforms for
scalable and distributed processing of data are being actively
studied in Cloud Computing in which dynamically scalable
and often virtualized IT resources are provided as a service
over the Internet [4].

Apache’s Hadoop is an open-source software framework
for Big Data processing used by many of the world’s largest
online media companies including Yahoo, Facebook and
Twitter. Hadoop allows for the distributed processing of
large data sets across clusters of computers [5,6]. HDFS,
Hadoop’s distributed file system, is designed to scale up
from single servers to thousands of machines, each offer-
ing local computation and storage. MapReduce, another
Hadoop component, is a scalable, parallel processing frame-
work that works in tandem with HDFS. Hadoop enables
users to store and process huge amounts of data at very low
costs, but it lacks security measures to perform sufficient
authentication and authorization of both users and services
[7,8].

Traditional data processing andmanagement systems such
as Data Warehouse and Relational Database Management
Systems are designed to process structured data, so they
are not effective in handling large-scale, unstructured data
included in Big Data [9,10]. Initially, secure deployment
and use of Hadoop were not a concern [11–13]. The data
in Hadoop was not sensitive and access to the cluster could
be sufficiently limited. As Hadoop matured, more data and
more variety of data including sensitive enterprise and per-
sonal information are moved to HDFS. However, HDFS’s

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-014-0236-5&domain=pdf

138 Y.-S. Jeong, Y.-T. Kim

lax authentication allows any user to impersonate any other
user or cluster services.

For additional authentication security, Hadoop provides
Kerberos that uses symmetric key operations [4,6,14]. If
all of the components of the Hadoop system (i.e., namen-
odes, datanodes, and Hadoop clients) are authenticated using
Kerberos, the Kerberos key distribution center (KDC) might
have a bottleneck. To reduce Kerberos traffic (and thereby
putting less load on the Kerberos infrastructure), Hadoop
relies on delegation tokens. Delegation token approaches use
symmetric encryption and the shared keys may be distrib-
uted to hundreds or even thousands of hosts depending upon
the token type [15,16]. This leaves Hadoop communication
vulnerable to eavesdropping and modification, thus making
replay and impersonation attacks more likely. For example,
an attacker can gain access to the data block by eavesdrop-
ping the block access token [17]. Hadoop security controls
require the namenode and the datanode to share a private key
to use the block access token. If the shared key is disclosed to
an attacker, the data on all datanodes is vulnerable [11,18].

This paper proposes a token-based authentication scheme
that protects sensitive HDFS data against replay and imper-
sonation attacks. Theproposed schemeutilizes the hash chain
of authentication keys, rather than public key-based authen-
tication key exchanges commonly found in existing HDFS
systems. The proposed scheme allows clients to be authenti-
cated to the datanode via the block access token. In terms of
performance, the proposed scheme achieves communication
power, computing power and area efficiency similar to those
of existing HDFS systems.

The remainder of this paper is organized as follows. Sec-
tion 2 describes Hadoop’s two primary components: HDFS
and MapReduce. Section 3 presents the proposed authenti-
cation scheme for HDFS. In Sect. 4, the proposed scheme
is evaluated in terms of security and performance. Finally
conclusions are given in Sect. 5.

2 Related work

Hadoop is an open-source platform that supports the process-
ing ofBigData in a distributed computing environment [1,2].
Hadoop is made up of stand-alone modules such as a distrib-
uted file systemcalledHDFS, a library for parallel processing
of large distributed datasets called MapReduce, and so on.
HDFS and MapReduce were inspired by technologies cre-
ated inside Google—Google File System (GFS) and Google
MapReduce, respectively [5,7].

2.1 HDFS

HDFS is a distributed, scalable file system that stores large
files across multiple machines. Files are stored on the HDFS
in blockswhich are typically 64MB in size. That is, anHDFS

Fig. 1 The architecture of HDFS

file is chopped up into 64MB chunks and data that is smaller
than the block size is stored as it is, not occupying the full
block space. Figure 1 showsa typical architecture of anHDFS
cluster, consisting of a namenode, a secondary namenode and
multiple datanodes [6,14].

HDFS stores its metadata (i.e., the information about
file names, directories, permissions, etc.) on the namenode.
HDFS is basedonamaster–slave architecture so a singlemas-
ter node (namenode) maintains all the files in the file system.
The namenode manages the HDFS’s namespace and regu-
lates access to the files by clients. It distributes data blocks to
datanodes and stores this mapping information. In addition,
the namenode keeps track of which blocks need to be repli-
cated and initiates replication whenever necessary. Multiple
copies of each file provide data protection and computational
performance.

The datanodes are responsible for storing application data
and serve read/write requests from clients. The datanodes
also perform block creation, deletion and replication upon
instruction from the namenode.

Datanodes periodically send Heartbeats and Blockre-
ports to the namenode. Receipt of a Heartbeat implies that
the datanode is functioning properly. The namenode marks
datanodes without recent Heartbeats as dead and does not
forward any new I/O requests to them. A Blockreport con-
tains a list of all blocks on a datanode. Blockreports provide
the namenode with an up-to-date view of where blocks are
located on the cluster. The namenode constructs and main-
tains latest metadata from Blockreports.

Figure 2 depicts the overall operations ofHDFS.As shown
in the figure, all servers are fully connected and communicate
with each other using TCP-based protocols.

2.2 MapReduce

MapReduce is a framework for processing large data sets
in parallel across a Hadoop cluster. Like HDFS, it is based

123

A token-based authentication security scheme 139

Fig. 2 The operational view of
HDFS

on a master–slave model. The master is a special node which
coordinates activity between several worker nodes. Themas-
ter receives the input data that is to be processed. The input
data is split into smaller chunks and all these chunks are
distributed to and processed in parallel on multiple worker
nodes. This is called the Map phase. The workers send their
results back to themaster nodewhich aggregates these results
to produce the sum total. This is called the Reduce phase.

MapReduce operates on key-value pairs. That is, all input
and output inMapReduce is in key-value pairs [14]. Concep-
tually, a MapReduce job takes a set of input key-value pairs
and produces a set of output key-value pairs by passing the
data throughMap and Reduce functions. The Map tasks pro-
duce an intermediate set of key-value pairs that the Reduce
tasks uses as input [15,17].

In the MapReduce model designed for batch-oriented
computations over large data sets, eachMap job runs to com-
pletion before it can be consumed by a Reduce job. MapRe-
duceOnline, amodifiedMapReduce architecture, allowsdata
to be pipelined between Map and Reduce jobs. This enables
Reduce jobs to have access to “early returns” fromMap jobs
as they are being produced. That is, the Reduce job can
start earlier, which reduces MapReduce completion times
and improves the utilization of worker nodes. This architec-
ture is effective in continuous service environments where
MapReduce jobs can run continuously accepting new data
as it arrives and analyzing it immediately [16,18].

3 Elliptic curve-based authentication token generation

This section presents the proposed HDFS authentication
scheme that creates delegation tokens using elliptic curve
cryptography (ECC).

3.1 Overview

The proposed authentication scheme strengthens the pro-
tection of authentication information exchanged between

Fig. 3 The overview of the proposed authentication scheme

namenode and datanode. The proposed scheme is designed
to operate in a master–slave architecture presented in Fig. 3.
That is, it requires an operation environment where a single
master node (namenode) coordinates activity between sev-
eral slave nodes (datanodes). The proposed scheme allows
HDFS clients to be authenticated by the datanode via the
block access token. Unlike most HDFS authentication pro-
tocols adopting public key exchange approaches, the pro-
posed scheme uses the hash chain of keys. The proposed
scheme has the performance (communication power, com-
puting power and area efficiency) as good as that of existing
HDFS systems. Figure 3 shows an overview of the proposed
authentication scheme. The proposed scheme exploits dele-
gation tokens to add another layer of protection to the existing
HDFS authentication.

3.2 Assumptions

The proposed authentication scheme has the following
assumptions:

• Clock synchronization is provided. That is, all HDFS
nodes (client, namenode, and datanode) refer to a com-
mon notion of time.

• The symmetric key encryption functions that encrypt
plaintext M with private key K share hash function H().

123

140 Y.-S. Jeong, Y.-T. Kim

• For secure communication betweennamenode anddatan-
ode, Secure Shell (SSH) is used.

3.3 Terms and definitions

Table 1 presents the terms used in the proposed scheme.

3.4 Token generation

In the proposed scheme, tokens are generated based on ECC
and used to enhance the security of authentication messages
communicated between namenode and datanode. This offline
token generation process consists of the following four steps.

• Step 1: The namenode chooses a random number, as rep-
resented in Eq. (1). The namenode then generates a pri-
vate/public key pair using Eq. (2).

dS ∈ [2, n − 2] (1)

QS ∈ dS × P (2)

• Step 2: The namenode sends public key QS generated
using Eq. (2) to the datanode. Upon receiving QS , the
datanode performs Eq. (3) through (6) in order to create
a digital signature. This digital signature is sent to the
namenode.

Choose KS ∈ [2, n − 2], lS (3)

Choose RS = KS × P, K−1 mod P (4)

tS = RS,X (5)

T KS = K−1
S (H(QS.X , IS, tS) + dCH × rS (6)

Table 1 Notation

Symbol Description

E GF(p) on the elliptic curve

N The largest number

P Large prime

QX The public key of x

dS The selected private key of [2, n-2]

tz Expiration time of the authentication of x

Ix Temporary identifier of x

QXY.Z Mutually agreed Key between x and y

eZ Selected value at the h(Qxy.Z, x, tx, Ix)

TKx Token Information of x

Rx Points of the elliptic curve x

rx Coordinate x values of elliptic curve

(r,S) Certificate pair for the message

In Eq. (6), temporary datanode identifier IS and creden-
tials expiry time tS are included to facilitate managing
datanodes. RS,X , a pre-shared key between namenode
and datanode, is replaced with rS . A pair of rS and token
T KS serves as credentials denoted as (rS, T KS).

• Step 3: In Eq. (7), the datanode sends its public key QCH

to the namenode along with IS , (rS, T KS) and tS .

QCH , IS, (rS, T KS) , tS (7)

• Step 4: Among the credentials sent from the datanode to
the namenode, QCH , IS and tS are processed by the hash
function, as denoted in Eq. (8). The resulting value eS is
stored along with other authentication information sent
by the datanode, as represented in Eq. (9).

eS ∈ H (QS, QS.x , IS, tS) (8)

Store S = QS, QCh, IS, tS, eS, (rS, T KS) (9)

3.5 Authentication in client and datanode communication

The namenode stores private key Ki that is used in the hash
chain and sets seed value c j,0 for generating and verifying
a delegation token. Seed value c j,0 is generated by applying
the hash function to random number ci, j n times. ci, j denotes
a random number of client i and j . The clients are divided
into several groups, each of which has at least n clients. The
authentication between client and datanode is performed in
the following six steps.

• Step 1: The client sends block access token (rS, T KS),
timestamp tS and seed value c j,0 to the datanode, as rep-
resented in Eq. (10).

Trans f er EKi, j

(
(rS, T KS) tS, c j,0

)
,

Ki , Ec j,0(Ki ||K j) (10)

• Step 2: The datanode decrypts the message from the client
usingprivate key Ki, j that is shared by client anddatanode.
This is represented in Eq. (11).

DKi, j

(
(rS, T KS) tS, c j,0

)
(11)

• Step 3: The datanode obtains seed value c j,0 after the
decryption represented in Eq. (11). The datanode decrypts
Ec j,0 (Ki ||K j) using seed value c j,0 and key Ki , thereby
obtaining key K j . This is denoted in Eq. (12).

DKi, j

(
Ki ||K j

)
(12)

• Step 4: The datanode verifies timestamp tS and authen-
ticates block access token (rS, T KS). If the client is a

123

A token-based authentication security scheme 141

legitimate user, the datanode encrypts the requested data
using private key Ki, j and sends it to the client.

Check (rS, T KS), tS (13)

Trans f er EKi, j (Data) (14)

• Step 5: The datanode decrypts the ciphertext presented
in Eq. (15) using private key Ki, j . If the decrypted data is
valid, the datanode regenerates EKi, j ((rS, T KS) tS, c j,0),
Ki , Ec j,0 (Ki ||K j) and sends it to the client.

Re generate EKi, j

(
(rS, T KS) tS, c j,0

)
,

Ki , Ec j,0

(
Ki ||K j

)
(15)

• Step 6: The client decrypts the data received from the
datanode using private key Ki, j .

4 Evaluation

4.1 Security evaluation

Table 2 show security evaluation of attack type (replay attack,
disguise attack, data encryption) used in HDFS, HDFS with
public key system, [11] and the proposed scheme. Replay
and impersonation attack scenarios that can occur in the
authentication of HDFS clients and data were devised and
the resilience of the proposed scheme against those attacks
was assessed.

An attacker posing as a legitimate client sends the inter-
cepted message Egj,n (D||Ki ||Ec j,0 (Ki ||K j)) and Eki (c j,n)
to the namenode. The attacker then receives Egj,n (B||Ki ||
Ec j,0 (Ki ||K j)) and Eki (c j,n) from the namenode. However,
the attacker does not know Ki and K j so the attacker cannot
decrypt the message sent by the namenode. Therefore, the
replay attack fails.

An attacker posing as a legitimate client sends the
intercepted message EKi, j ((rS, T KS) tS, c j,0), Ki and
Ec j,0 (Ki ||K j) to the datanode. The datanode verifies
timestamp tS and realizes that it is not a valid request. Note
that the attacker is unaware of private key Ki, j so the attacker
cannot modify the timestamp.

Given that there is a malicious node impersonating a
datanode, this node cannot know the request message sent
by the client because it is unaware of hash chain value
c j,n and g j,n , the information kept private by each client.
Even if this node is able to produce the block access
token, it cannot create EKi, j ((rS, T KS) tS, c j,0), Ki and
Ec j,0 (Ki ||K j) to be sent to the client. Therefore, the pro-
pose scheme eliminates the threat of datanode impersonation
attacks.

Table 2 Security evaluation

Security analysis HDFS HDFS with public
key system

[11] Proposed
scheme

Replay attack × ◦ ◦ ◦
Disguise attack × ◦ ◦ ◦
Data encryption × ◦ ◦ ◦

4.2 Performance evaluation

In conventionalHDFS, the datanode requires only one key vk
to issue a delegation token, and it keeps the session key until
the delegation token is issued. Compared to conventional
HDFS, HDFS with public key-based authentication requires
m additional keys at the namenode and m additional keys at
the datanode. At the client side, a public key that is shared
by the client and the namenode and n additional keys are
required.

In the authentication protocol suggested in [11], the
namenode does not need to store any key for the client
because it receives Emk(KNC) sent by the client. Similarly,
the datanode does not store any key for the client as it receives
Evk (KCD) from the client.

In the proposed scheme, the client and datanode store Ki

and Ec j,0 (Ki ||K j) in tables in order to load the block access
token in memory. The stored information is revoked when
the token expires. The memory required by the proposed
scheme is similar to that required by conventional HDFS and
the protocol in [11]. Compared to HDFS with public key-
based authentication, the proposed scheme requires much
less memory.

HDFS with public key-based authentication requires m
additional key exchanges between namenode and client and
n×m additional key exchanges between datanode and client,
in addition to the 6-round key exchange of conventional
HDFS systems. In the proposed scheme and the protocol
in [11], all key exchanges are performed during the con-
ventional 6-round authentication process so additional key
exchanges are not needed.

Figure 4 is shows the bandwindth and storage time accord-
ing to the ECC key length. As a result of the Fig. 2, ECC key
length is increasing bandwidth and storage time. The time
of the total time needed for the key establishment is also
consumed more which was added to the decode time of the
material only as a message time.

5 Conclusion

As the popularity of cloud-based Hadoop grows, efforts to
improve the state of Hadoop security increase. This paper
proposes a token-based authentication scheme that aims to
provide more secure protection of sensitive HDFS data with-

123

142 Y.-S. Jeong, Y.-T. Kim

Fig. 4 The bandwidth and storage according to ECC key length of
time

out overburdening authentication operations. The proposed
scheme adds another layer of protection to the existing sym-
metric key HDFS authentication. ECC technology employed
in the proposed scheme makes generated authentication
keys anonymous, thereby protecting them against breaches
or accidental exposures. The proposed scheme allows the
Hadoop clients to be authenticated by the datanode via the
block access token while thwarting replay and imperson-
ation attacks. In addition, the proposed scheme makes use of
the hash chain of authentication keys, gaining performance
advantage over public key-based HDFS authentication pro-
tocols. In the future, ways to protect the privacy of enterprise
and personal data stored in HDFS will be studied.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Apache Hadoop: http://hadoop.apache.org/
2. Barakat, O.L., Hashim, S.J., RajaAbdullah, R.S.A.B., Ramli, A.R.,

Hashim, F., Samsudin, K., Rahman, M.A.: Malware analysis per-
formance enhancement using cloud computing. J. Comput. Virol.
Hacking Tech. 10(1), 1–10 (2014)

3. Cao, Y., Miao, Q., Liu, J., Gao, L.: Abstracting minimal security-
relevant behaviors for malware analysis. J. Comput. Virol. Hacking
Tech. 9(4), 171–178 (2013)

4. Hong, J.K.: The security policy for Big Data of US government.
J. Digit. Converg. 11(10), 403–409 (2013)

5. Ghemawat, S., Gobioff, H., Leung, S.: The google file system.
In: Proceedings of the Nineteenth CM Symposium on Operating
Systems Principles, vol. 37, issue no. 5, pp. 29–43 (2003)

6. Apache Hadoop MapReduce Tutorial: http://hadoop.apache.org/
docs/r1.0.4/mapred_tutorial.html

7. Dean, J., Ghemawat, S.:MapReduce: simplified data processing on
large clusters. In: Proceedings of Sixth Symposium on Operating
SystemDesign and Implementation (OSDI04), pp. 137–150 (2004)

8. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop
distributed file system. In: Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST),
pp. 1–10 (2010)

9. Vatamanu, C., Gavilut, D., Benchea, R.M.: Building a practical and
reliable classifier for malware detection. J. Comput. Virol. Hacking
Tech. 9(4), 205–214 (2013)

10. Cimpoesu,M., Gavilut, D., Popescu, A.: The proactivity of percep-
tron derived algorithms in malwawre detection. J. Comput. Virol.
Hacking Tech. 8(4), 133–140 (2012)

11. Hong, J.K.: Kerberos Authentication Deployment Policy of US in
Big Data environment. J. Digit. Converg. 11(11), 435–441 (2013)

12. Jeong, Y.S., Han, K.H.: Service Management Scheme using secu-
rity identification information adopt to Big Data environment.
J. Digit. Converg. 11(12), 393–399 (2013)

13. Lee, S.H., Lee,D.W.:Current status ofBigData utilization. J.Digit.
Converg. 11(2), 229–233 (2013)

14. White, T.: Hadoop The Definitive Guide, 2nd edn, pp. 41–47.
O’Reilly Media, Sebastopol (2009)

15. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy,
K., Sears, R.: MapReduce Online. In: Proceedings of NSDI’10
(2010)

16. Lee, M.Y.: Technology of distributed stream computing. Electron.
Telecommun. Trends 26(1) (2011)

17. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. Commun. ACM 51(1), 107–113 (2008)

18. Jeong, S.W., Kim, K.S., Jeong, I.R.: Secure authentication protocol
in Hadoop distributed file system based on Hash chain. JKIISC
23(5), 831–847 (2013)

123

http://hadoop.apache.org/
http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html

	A token-based authentication security scheme for Hadoop distributed file system using elliptic curve cryptography
	Abstract
	1 Introduction
	2 Related work
	2.1 HDFS
	2.2 MapReduce

	3 Elliptic curve-based authentication token generation
	3.1 Overview
	3.2 Assumptions
	3.3 Terms and definitions
	3.4 Token generation
	3.5 Authentication in client and datanode communication

	4 Evaluation
	4.1 Security evaluation
	4.2 Performance evaluation

	5 Conclusion
	References

