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Abstract This paper shows that endogenous business cycles (inventory cycles) arise
from a combination of nonconvex costs and economic interactions among firms. At the
micro level, firm behavior is characterized by lumpiness, and the standard production-
smoothing theory is empirically rejected. To account for this, a nonconvex cost function
is assumed in our model. It might be expected that even if the microeconomic behavior
is lumpy, the effect disappears at the aggregate level because of the law of large
numbers. However, we show that if there exist interactions among firms, a regular
endogenous cycle emerges at the aggregate level given that the degree of the interaction
effect exceeds a critical point. That is, the randomly behaving microeconomic agents
generate deterministic collective behavior via interactions. This offers an explanation
for the Kitchin cycle.
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1 Introduction

In this paper, we show that endogenous business cycles (inventory cycles) arise from a
combination of nonconvex costs and economic interactions among firms. In particular,
we show that the aggregate of randomly behaving microeconomic agents generates
deterministic collective behavior via interactions.

Economic fluctuations are certainly an important issue in economics, but what
causes such fluctuations? This natural and fundamental question has not yet been
answered in economics. For example, Cochrane (1994) demonstrates that popular
economy-wide shocks (e.g., monetary shocks or oil prices) fail to explain the bulk
of economic fluctuations. He writes, “What shocks are responsible for economic
fluctuations? Despite at least two hundred years in which economists have observed
fluctuations in economic activity, we still are not sure” (p. 295). We cannot resort to
mysterious aggregate exogenous shocks to explain aggregate fluctuations.

However, because an economy is composed of many firms, it might be expected
that aggregate fluctuations stem from firm-specific shocks and inherit some properties
from them. At the micro level, economic activities are characterized by lumpiness and
discreteness. Managers temporarily shut down plants or change the number of shifts
for inventory adjustment. This behavior clearly contradicts the standard production-
smoothing theory in microeconomics textbooks. In fact, the production-smoothing
theory has been empirically rejected (see Blinder and Maccini 1991). It is found
that, when some fixed costs exist (e.g., ordering costs), the cost curve is kinked and
nonconvexity emerges, which implies that the cost-minimizing strategy of firms is
production bunching (or the bunching of orders). This theory can account for the
stylized fact that production is more volatile than sales (e.g., Hall 2000). The aim of
this paper is to investigate how these firm-level characteristics are related to aggregate
fluctuations.

There are two different views concerning the effect of microeconomic characteris-
tics on aggregate fluctuations. One is that microeconomic characteristics disappear at
the macroscopic level. Indeed, less attention has been paid to the role of idiosyncratic
shocks in the macroeconomic literature simply because these shocks are considered
to average out in the aggregate by the law of large numbers (LLN). Lucas (1977)’s
argument is a typical one.1 According to this view, the observed aggregate fluctuations
must be explained by the presence of shocks that have a common origin across firms
in the economy. By definition, they are aggregate shocks.

On the other hand, another view, which has attracted much attention in recent years,
emphasizes the effects of interactions between sectors (or firms), especially input–
output linkages. In fact, positive comovement across sectors is a salient feature of the
business cycle. In contrast to the LLN argument, it is emphasized that the effects of
interactions between sectors (or firms) through input–output linkages,which propagate

1 “These changes [the changes in technology and taste] are occurring all the time and, indeed, their impor-
tance to individual agents dominates by far the relativelyminormovementwith constitute the business cycle.
Yet these movements should, in general, lead to relative, not general price movements.…in a complexmod-
ern economy, there will be a large number of such shifts in any given period, each small in importance
relative to total output. There will be much “averaging out” of such effects across markets.” (Lucas 1977,
p. 19).
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idiosyncratic shocks throughout the economy, cause the aggregate fluctuations that
are unexplained by the usual aggregate shocks (e.g., Long and Plosser 1983; Carvalho
2010; Foerster et al. 2011; Acemoglu et al. 2012; Carvalho and Gabaix 2013; for a
review, see Carvalho 2014). The key element of models used in these studies is the
existence of sectors that have disproportional impacts on the entire economy. This is
due to the heterogeneity of input–output linkages; that is, sectors are not equally intense
material suppliers. Shocks to general purpose technologies such as oil, electricity, and
iron and steel propagate to all sectors through the input–output linkages because most
sectors rely on them. In this sense, themicroeconomic shocks accounting for aggregate
fluctuations in these studies can be regarded as “pseudo–macroeconomic” shocks.
There are other strands of literature that are related to our analysis, for example, Bak
et al. (1993) and Durlauf (1993), where nonconvex technology and (local) interactions
are explicitly considered. Bak et al. (1993) demonstrate that small shocks to final goods
can cause an “avalanche” of production increases via supply chains.

Even though such interactions explain how aggregate fluctuations can be caused by
microeconomic shocks, there exist broad distinctions between our model and previous
studies. In contrast to Carvalho (2010) and Acemoglu et al. (2012), we assume that
each firm is small compared to the economy as a whole and can hardly influence the
outcome of the economy on its own. Furthermore, in contrast to Bak et al. (1993), in
which shocks to final goods are assumed to be exogenous, we assume that demand
for the products depends on the overall economic condition. We assume that on the
one hand, the behavior of a firm is affected by the state of the economy as a whole,
but on the other hand, the economy is composed of the firms themselves. In other
words, the macroscopic state of the economy not only is an aggregation of the firms,
it also prescribes the macroeconomic environment in which the firms engage in busi-
ness activities. This feedback loop generates rich interesting phenomena. This idea is
closely related to the “macro-micro loop” emphasized by Hahn (2002), where a macro
variable acts as an externality. We show that this mechanism can generate collective
behavior that is different from the motion of an individual firm.

On this point, our approach is close in spirit to heterogeneous interacting agent
models (see, e.g., Delli Gatti et al. 2009; Stiglitz and Gallegati 2011; for a survey, see
Hommes2006), especially toAoki’smethods (Aoki 1996, 2002;Aoki andShirai 2000;
Aoki andYoshikawa2007).Aoki and coauthors havedeveloped the applicationof jump
Markov processes, where the evolution of the probability distribution is described by
master equations. Although there is no doubt that Aoki’s methods expand the scope
of macroeconomic analysis, there exist some difficulties and situations that cannot
be dealt with in his framework (see Sect. 4.1). In particular, in our model, firms’
inventories are distributed continuously and affect firms’ choice of production. That
is, the system is described by an infinite-dimensional random variable, which is the
distribution of inventories (and production).

By using the propagation of chaos instead of Aoki’s methods, we present an alter-
native method to investigate how the system (i.e., the probability distribution) behaves
and changes its properties when parameters are changed. On the basis of cost-function
nonconvexity and the feedback effect, we show that a regular cyclical movement at
the macroscopic level emerges given that the effect exceeds a certain threshold. This
cyclical movement is endogenous and is an explanation for the Kitchin cycle.
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The rest of the paper is organized as follows. Section 2 discusses the firm behav-
ior characterized by nonconvexities, which can explain the empirical puzzle that the
volatility of production is larger than that of sales. Section 3 discusses the importance
of inventory movement for understanding business cycles. Section 4 contains our
main results and shows that the simple LLN cannot be applied and that an endogenous
movement emerges. Section 5 concludes.

2 Firm behavior: production and inventory

The standard cost function has been assumed to be convex in output and in the change of
output in standard microeconomic textbooks. This means that for cost minimization,
the manager of a firm must smooth its production by using inventories as a buffer
stock given that there exist sales fluctuations (production-smoothing models; see, e.g.,
Holt et al. 1960). This implies that production is less variable than sales. However,
this prediction is known to be inconsistent with the empirical data (see Blinder and
Maccini 1991). In particular, the correlation between sales and inventories is positive,
not negative as predicted by production-smoothing models. Namely, production is
more volatile than sales. The time evolution of inventories that firms have cannot be
explained by the motive for a buffer stock.

Blinder and Maccini (1991) present a well-known (S, s) model in which a firm
places an order of size S − s whenever its inventories reach the lower bound s. They
show that it is optimal for a firm to place infrequent large orders when fixed costs
of ordering exist, leading to bunched orders. The inventory series is characterized by
a sawtooth pattern. The (S, s) model is strongly supported by empirical data (e.g.,
Hall and Rust 2000). Although they emphasize retail and wholesale inventories, in
other words, the lumpiness of the delivery process, the bunching of orders by the retail
sector can induce production bunching in the manufacturing sector even though the
latter has the usual increasing marginal costs. For example, Cooper and Haltiwanger
(1992) point out this possibility, saying, “Downstream bunching of orders by retailers
may be the source of upstream production bunching by manufactures” (p. 116).

In relation to these studies, a close examination of data at the micro level (espe-
cially for the automobile industry) reveals that changes in production are quite lumpy.
Managers may shut their plants down for a week or change the number of shifts, thus
varying production. Ramey (1991), Cooper and Haltiwanger (1992), Bresnahan and
Ramey (1994), and Hall (2000) focus on the nonconvexity of the cost function to
explain these behaviors. They show that when there are fixed costs associated with
opening a plant and adding an additional shift, production bunching is an optimal strat-
egy. For example, Cooper and Haltiwanger (1992) present a simple model and show
that a start-up cost for a production run and a constant marginal cost of production
lead to production bunching.

To illustrate how the cost function associated with such fixed costs might look, a
simple nonconvex cost function is depicted in Fig. 1. If a manager has to produce,
on average, output Q ≡ (A + B)/2, the average cost can be reduced by alternating
between production at A and B rather than production at Q, that is, by production
bunching. Namely, even if there is no fluctuation in sales (or a small one around
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Fig. 1 A nonconvex cost function. The horizontal (vertical) axis is quantity (costs)

Q), firms optimally change their production level substantially, and therefore, the
nonconvexity leads to excess volatility of production. Furthermore, this nonconvexity
is quantitatively important to explain the variation of output. Bresnahan and Ramey
(1994) write, “[M]ost of the variance of output comes from varying hours over the
nonconvex portions of the cost function, rather than fromvarying hours over the convex
portions of the cost function” (p. 610).

Thequestion then arises as towhether the automobile industry is representative of all
manufacturing or is a special case. On this point, Mattey and Strongin (1997) consider
two extremes of technology types. “Pure assemblers” adjust their output by varying
plants’ work period, that is, temporary plant shutdowns, adding or dropping shifts, and
adding overtime hours (Saturday work). The automobile and transportation industries
are typical examples. The other type is “pure continuous processing” operations,where
output adjustment is carried out by varying the instantaneous flow rates of production
rather than work-period margin. Mattey and Strongin (1997) conclude that “pure
assembly” is a better characterization for manufacturing on the ground that plant
work-period margin is commonly used. Moreover, among these output-adjustment
margins, changes in the number of shifts are quantitatively important. Bresnahan and
Ramey (1994) show that at a quarterly frequency, changes in the number of shifts
account for 40% of plant-level output volatility in the automobile industry and is the
most important contributor to the variation of output. Shapiro (1996) shows that close
to half of the changes in employment in the U.S. manufacturing take place on late
shifts. Thus, we focus on changes in the number of shifts in the following analysis.

The discussion above suggests that the behavior of firms is as follows. For the sake
of simplicity, we assume that the firms choose one of two production states, high and
low (the same simplification can be found in the literature; see, for example, Bak
et al. (1993) and Durlauf (1993)). Suppose that a manufacturing firm has sufficient
inventories (or the wholesale and retail inventories that the firm supplies) and demand
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is low. The firm chooses a low production state (e.g., one-shift production) to reduce
its inventories. After eliminating the excess inventories, the firm waits for demand to
improve. If this happens, the firm adds a new shift to the existing line and increases
its output. Even if the sales forecast is overestimated, it is optimal for a manager to
maintain the high production for a while because of the fixed costs. After it replenishes
its inventories, the firm lays off the workers on the second shift and returns to the initial
state.

Note that the above pattern of behavior is not deterministic, but is exposed to various
idiosyncratic shocks. Suppose first that the demand (or sales) of a firm indexed by
i ∈ {1, . . . , N }, si

t , fluctuates around Si ,

si
t = Si + ξ i

t (1)

Here, ξ i
t represents a temporary demand shock with mean 0, that causes unintended

inventory investment, and N is the number of firms in this economy. We write ξ i
t ≡

−σ2dW i
2,t

dt , where W i
2,t is a standard Brownianmotion, σ2 > 0 is a constant, and

dW i
2,t

dt is

the formal derivative with respect to t . Because we focus on the fluctuations around Si

instead of the level of sales itself, we normalize Si = 0 and, thus, expected aggregate
sales

∑N
i=1 Si = 0. By definition, inventory investment can bewritten as the difference

between production and sales:

dyi
t = (xi

t − si
t )dt (2)

where xi
t denotes the production of firm i .2 We assume that production is described

by a motion in a double-well potential:

dxi
t = (−V ′(xi

t ) − eyi
t )dt + σ1dW i

1,t , V (x) = 1

4
x4 − 1

2
x2 (3)

where W i
1,t is a standard Brownian motion and σ1, e > 0 are constants. The stochastic

term represents various idiosyncratic shocks that affect the target level of production—
for example, changes in the price of materials. The potential function V (x) is shown
in Fig. 2.

The region around −1(+1) corresponds to low (high) production state. This model
is a generalization of a two-state Markov chain. Suppose, for example, that e = 0.
Because −1 and 1 are the local minima, xi

t stays around there until a large shock
occurs, at which point xi

t goes toward the other local minimum. Thus, the path of xi
t

alternates between low and high production.3 The second term on the right-hand side,

2 More precisely, xi
t is “the shift” with respect to Si , that is, the level of the production of firm i is xi

t + Si .
However, because we focus on fluctuations of production caused by a nonconvex cost function, we will use
that terminology throughout the paper.
3 Our analysis does not require that the double-well potential function V must be 1

4 x4 − 1
2 x2. We simply

need an alternating behavior (a generalization of two-state Markov chain), and therefore, V in Eq. (3) is
just one example to investigate the macroeconomic consequences of interacting agents. One can imagine a
more general and complicated functional form, but this makes the problem intractable.
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eyi
t , represents the effect of the inventories on the decision of its production level. That

is, if yi
t is large, the manager is likely to choose low production around xi

t = −1.
Combining these equations, the behavior of firm i is described by the following

two-dimensional stochastic differential equations:

dxi
t = (−V ′(xi

t ) − eyi
t )dt + σ1dW i

1,t , V (x) = 1

4
x4 − 1

2
x2

dyi
t = xi

t dt + σ2dW i
2,t (4)

where W i
k,t , k = 1, 2 are independent Brownian motions, and σ1, σ2 > 0 represent

the intensities of idiosyncratic shocks.4

These equations duplicate the firm behavior discussed above. Suppose that xi
t is

near −1 and yt > 0: the firm has sufficient inventories and chooses low production.
Because of the effect of yi

t , xi
t stays around −1 until yi

t is sufficiently reduced. When
yi

t < 0, production xi
t is pushed up by the shortage of inventories. Exceeding the

top of the curve (around 0), xi
t goes toward high production (+1), and the inventories

are replenished. The stochastic terms σ1dW i
1,t and σ2dW i

2,t represent idiosyncratic

shocks to firm i . For example, a good market condition σ2dW i
2,t < 0 reduces the

inventories beyond expectation and xi
t might stay around +1 longer. Sample paths

4 Because we consider inventories yi
t on the real line, the nonnegativeness of the inventories and its effect

on the firm’s behavior are not captured by Eq. (4). To be precise, this equation describes firm behavior well
only when the firm has inventories large enough or adjusts its production quickly to unexpected shocks so
that the probability of “sold out” is small. However, as discussed in Sect. 4, the main aim of this paper is to
investigate why heterogeneous firms’ behaviors are synchronized (or the emergence of collective behavior),
and for the sake of simplicity, we ignore this effect in the present analysis.
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Fig. 4 A sample path of inventories y in Eq. (4) with σ 2
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2 = 1/4 and e = 0.1

of Eq. (4) are depicted in Figs. 3 and 4. Figure 3 shows that xi
t oscillates between

+1 and −1 with the stochastic noise. In Fig. 5, the result of numerical simulations
of N = 20,000 independent copies of Eq. (4) is shown, which clearly shows the
bimodality of production.
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3 Inventory investment and business cycles

3.1 Importance of inventory investment

As is well known, inventory investment behavior is a key element in explaining aggre-
gate fluctuations. For example, Blinder and Maccini (1991) demonstrate that the drop
in inventory investment accounted for 87% of the drop in GNP during the average
postwar recession in theUnited States. In addition, a large part of short-run fluctuations
(business cycle frequencies) are explained by the behavior of inventory investment.
Blinder (1981) says, “Inventory fluctuations are important in business cycles; indeed,
to a great extent, business cycles are inventory fluctuations” (p. 500).

Furthermore, there is a consensus in the empirical literature that inventory move-
ments are procyclical and that production is more volatile than sales at the sector and
aggregate levels (see Ramey and West 1999 and the references cited in Sect. 2). As
discussed in the previous section, these features contradict the production-smoothing
theory, which predicts countercyclical inventory movements and smooth production.
Thus, from a macroscopic point of view, inventories are considered destabilizing fac-
tors because recessions are aggravated by declining inventories (e.g., Metzler 1941).

Interestingly, these “stylized facts” seem to depend on which frequencies we exam-
ine.Wen (2005) examines quarterly aggregate data from the U.S. and OECD countries
and shows that production and inventories exhibit drastically different behaviors at low
and high frequencies. According to his analysis, the procyclicality of inventory invest-
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ment can be observed only at relatively low cyclical frequencies such as business-cycle
frequencies (about 8–40 quarters per cycle). On the other hand, at a high frequency
(2–3 quarters per cycle), production is less volatile than sales and inventory investment
is strongly countercyclical. This can be due to managers being unable to handle unex-
pected demand shocks at such high frequencies because of the sluggishness involved
when making production adjustments, wherein inventories act as buffer stock as the
production-smoothing theory predicts.

As discussed above, which frequencies (or time scales) we examine is important.
For example, Hall (2000) examines weekly data for automobile assembly plants and
shows that two nonconvex margins (changes in the number of shifts and temporary
plant shutdowns) play an important role in explaining production behavior. He partic-
ularly emphasizes intermittent production—for example, weeklong temporary plant
shutdowns (for a recent application of this model, see Copeland et al. 2011). Although
weeklong shutdowns used to vary output are relevant to high-frequency (weekly or
monthly) production behavior, they are not suitable for explaining business cycles.
Bresnahan and Ramey (1994) show that adding or dropping an additional shift are
substantially more important at the quarterly frequency than at the weekly frequency.
In fact, they are the most important contributors to the quarter-on-quarter variation
of output. Bresnahan and Ramey (1994) write, “While closing the plant temporarily
might be important for the week-to-week variation in output, it might not be as impor-
tant at the quarterly frequency” (p. 609). This is why we emphasize changes in the
number of shifts to explain the business cycle in Sect. 2.

4 Aggregation: interaction effects

4.1 Interaction

In Sect. 2, we discussed the importance of lumpiness at the micro level. However, it
is unclear whether this lumpiness has some impact on business cycles. Because an
economy is composed of a large number of firms, it might be expected that lumpiness
might be irrelevant at the macroscopic level. In particular, each firm is exposed to
idiosyncratic shocks. Indeed, the conventional notion is that microeconomic behav-
iors would cancel each other out by LLN and that aggregate exogenous shocks are
needed to explain business cycles (e.g., Lucas 1977). According to this view, without
aggregate shocks, microeconomic structures such as cost-function nonconvexity have
no aggregate implications.

However, recent theoretical investigations present another possibility: Aggregate
fluctuations can result frommicroeconomic shocks. The distinct feature of these mod-
els is input–output linkages through which the shocks propagate to other sectors (e.g.,
Long and Plosser 1983; Acemoglu et al. 2012; Foerster et al. 2011; for a review, see
Carvalho 2014). In these models, a positive productivity shock to sector i increases
not only sector i’s output, but also the output of other sectors that use good i for mate-
rials. In particular, when sectoral outdegrees follow a fat-tailed distribution, aggregate
volatility decays at a lower rate as the size of the economy tends to infinity (Carvalho
2010; Acemoglu et al. 2012). Shocks to general purpose technologies such as oil,
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electricity, and iron and steel propagate to all sectors because most sectors rely on
them. Significant asymmetry—the presence of hubs—leads to aggregate fluctuations.
In this sense, their models are closely related to the “granular hypothesis” (Gabaix
2011) that there exist sectors (or firms) that have a disproportional impact on aggregate
fluctuations.5

Although the literature discussed above does not take into account nonconvex tech-
nology, nonconvexity and interaction are explicitly considered in Bak et al. (1993) and
Durlauf (1993). Assuming production bunching and supply chains, Bak et al. (1993)
demonstrate that the cascade of production is caused by a small shock to final goods
(“avalanche”). Although the shocks to final goods are exogenous in their model, it is
plausible to assume that the shocks also depend on economic conditions. That is, if a
large fraction of firms expanded their production, there would be increases in national
income (or GDP) and in the sales of final goods. In general, a firm is affected by the
condition of the entire economy, while the economy consists of the firms themselves.
This feedback (or interaction) effect is an important aspect, and will be shown to be
the origin of business cycles. In this respect, our model is related to Durlauf (1993),
who explores the role of complementarities (the positive spillover effect) and the
resulting stationary probability distribution. Assuming that each individual industry
chooses one of two types production (technologies 1 and 2), he shows that when strong
enough, these complementarities lead to multiple equilibria. Although the assumption
of binary choice (technology 1 or 2) simplifies the analysis significantly, more het-
erogeneous situations can also be considered. In our model, firms’ inventories are
distributed continuously and affect firms’ choice of production. Inventories act as a
state variable of a firm and their behavior cannot be described by the binary choice
model. To discuss the evolution at the macroeconomic level, we have to deal with
the distribution, which is an infinite-dimensional variable. In this sense, our model is
more heterogeneous than that of Durlauf (1993). Of course, there is no a priori reason
to assume that the resulting distribution is stationary. Thus, we require an alternative
framework to investigate the time evolution of an economy at the macroscopic level.

A series of studies conducted by Aoki (Aoki 1996, 2002; Aoki and Shirai 2000;
Aoki and Yoshikawa 2007) address this problem and present a framework called jump
Markov processes. In this framework, given that the transition rate from one state to
another one is specified, the evolution of the probability distribution is described by the
master equation. Although there is no doubt that Aoki’s methods expand the scope of
macroeconomic analysis and can be applied to various problems (for an application to
the Diamond search model, see Aoki and Shirai (2000)), there exist some difficulties,
and this framework is not suited for our problem. In particular, in our model, firms’
inventories are heterogeneous and distributed continuously, and a diffusion process is
considered. In such a situation, it is difficult to explicitly specify the transition rate and
the master equation. In addition, it is difficult to investigate the nonstationary behavior
of the probability distribution by solving master equations. We use the propagation

5 The asymmetry is crucial to derive aggregate fluctuations in their models. Dupor (1999) shows that when
the network is more densely connected and the asymmetry disappears, the aggregate fluctuations caused
by microeconomic shocks also disappear (the “irrelevance theorem”). Dupor (1999) says “the input–output
structures in this class provide a poor amplification mechanism for sector shocks” (p. 391).
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of chaos instead of Aoki’s methods to investigate how the probability distribution
behaves, without directly seeking the probability distribution itself.

4.2 Model with interaction

We consider an economy consisting of a large number of firms and add an interaction
term to Eq. (4). We assume that the sales of a firm i depend on the conditions of the
overall economy:

si,N
t = h〈x〉 + ξ i

t , 〈x〉 ≡ 1

N

N∑

j=1

x j,N
t (5)

where 0 < h < 1 and N is the number of firms in the economy.6 The assumption that
h is less than 1means that the sales do not increase asmuch as national income does. In
other words, h is the marginal propensity to consume. In addition, firms are assumed
to adjust their production depending on the expectation of the sales. Incorporating
these effects into our model, Eq. (4) gets modified as follows:

dxi,N
t = (−V ′(xi,N

t ) − eyi,N
t + D(E[si,N

t ] − xi,N
t ))dt + σ1dW i

1,t ,

V (x) = 1

4
x4 − 1

2
x2 (6)

dyi,N
t = (xi,N

t − si,N
t )dt

where E[si,N
t ] refers to the expectation of si,N

t and D > 0. The stochastic term
σ1dW i

1,t includes estimation errors of E[si,N
t ] by managers. Because E[si,N ] = h〈x〉,

we finally obtain

dxi,N
t = (−V ′(xi,N

t ) − eyi,N
t + D(h〈x〉 − xi,N

t ))dt + σ1dW i
1,t ,

V (x) = 1

4
x4 − 1

2
x2 (7)

dyi,N
t = (xi,N

t − h〈x〉)dt + σ2dW i
2,t

The term D(h〈x〉 − xi,N
t ) means that the production of a firm, i , rises if the marginal

propensity to consume h times the average of production 〈x〉 is higher than the pro-
duction of the firm i . On the other hand, by definition, 〈x〉 consists of all firms in
the economy. Through this feedback mechanism, an individual firm interacts with all
other firms (global interactions). In this sense, D can be viewed as the strength of the
interaction effects. Note that our model should not be interpreted to mean that each
firm knows the current production of all other firms. A key assumption in our model is
the “macro-micro loop” (Hahn 2002). Even if each firm focuses on the sales of its own
product, the macroeconomic environment represented by 〈x〉 affects its sales. Due to

6 Note that 〈x〉 is a time-dependent random variable.
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this effect, the firm, whether intentionally or unintentionally, interacts with all other
firms.

Using the empirical measure defined by U (N )
t = 1

N

∑N
j=1 δ

z j,N
t

(δz denotes the

Dirac measure at z), the system of equations in (7) can be written as

dzi,N
t = σdW i

t + f (zi,N
t )dt + 1

N

N∑

j=1

b(zi,N
t , z j,N

t )dt (8)

= σdW i
t + f (zi,N

t )dt +
(∫

b(zi,N
t , z)U (N )

t (dz)

)

dt (9)

Here,

zi,N
t =

(
xi,N

t

yi,N
t

)

, f (zi,N
t ) =

(
−(xi,N

t )3 + xi,N
t − eyi,N

t

xi,N
t

)

, σ =
(

σ1 0
0 σ2

)

dW i
t =

(
dW i

1,t
dW i

2,t

)

, b(zi,N
t , z j,N

t ) =
(

D(hx j,N
t − xi,N

t )

−hx j,N
t

)

It should be noted that the state of the economy is determined by the empirical measure
U (N )

t , which is also a random variable. Equation (9) means that on the one hand, U (N )
t

consists of {zi,N
t }i=1,...,N by definition, but on the other hand, individual process zi,N

t

is affected by U (N )
t . The feedback mechanism mentioned above is represented by

interaction term
∫

b(zi,N
t , z)U (N )

t (dz).
For technical reasons, we consider the followingmodified version of equations (8):

dzi,N
t = f (zi,N

t )dt + g(zi,N
t )dW i

t + 1

N

N∑

j=1

b̃(zi,N
t , z j,N

t )dt

b̃(zi,N
t , z j,N

t ) =
(

b̃1(z
i,N
t , z j,N

t )

b̃2(z
j,N
t )

)

b̃1(z
i,N
t , z j,N

t ) =
⎧
⎨

⎩

D(hx j,N
t − xi,N

t ) if |D(hx j,N
t − xi,N

t )| ≤ K1

K1 if D(hx j,N
t − xi,N

t ) > K1
−K1 otherwise

(10)

b̃2(z
j,N
t ) =

⎧
⎨

⎩

−hx j,N
t if | − hx j,N

t | ≤ K2

K2 if − hx j,N
t > K2

−K2 otherwise

where we have replaced the interaction b with b̃, and K1, K2 > 0. Although this
technical assumption is needed for the following proposition, it is not expected to

123



380 Y. Arata

substantially affect the behavior of zi
t and U (N )

t given that K1 and K2 are sufficiently
large.7

Next, we introduce the corresponding mean-field equation given by

dzi
t = f (zi

t )dt + g(zi
t )dW i

t +
(∫

b̃(zi
t , z)ut (dz)

)
dt

ut (dz) = the law of zi
t (11)

Assuming that initial condition {zi
0}i=1,...,N is drawn independently from the identical

distribution, u0, we obtain the following results.

Proposition 1 1. The mean-field equation (11) is well-posed; that is, there exists a
unique solution on [0, T ] for any T > 0.

2. The process zi,N
t described by Eq. (10) converges in law to the solution of the

mean-field equation (11), zi
t , with speed 1/

√
N; that is,

sup
N

√
N E[sup

t≤T
‖zi,N

t − zi
t‖] < ∞ (12)

3. For any k ∈ N and any k-tuple (i1, . . . , ik), the law of the process (zi1,N
t , . . . , zik ,N

t ,

t ≤ T ) converges to ut ⊗ · · · ⊗ ut .

Proof Given (10), the interaction, b̃, is bounded—that is, ‖b̃‖2 ≤ K for some K > 0.
Hence, b̃ satisfies the linear growth condition of the interactions (H3) in Baladron et al.
(2012). Further, other conditions about f, g, and b̃ (H1, H2, and H4 in Baladron et al.
(2012), respectively) hold. Therefore, applying Theorems 2 and 4 in Baladron et al.
(2012), our claim follows.

Property 3 in Proposition 1 is called the propagation of chaos.8 This propertymeans
that the probability distribution of (z1t , . . . , zk

t ) evolves as if each element is indepen-
dent when N → ∞. Namely, the motions of k tagged particles approach independent
copies of Eq. (11), regardless of the interactions represented by

∫
b̃(zi,N

t , z)U (N )
t (dz).

The underlying reason is clarified by the following proposition.

Proposition 2 Property 3 in Proposition 1 is equivalent to U (N )
t (M(R2)-valued

random variables, where M(R2) denotes the set of probability measures on R
2) con-

verging in law to constant random variable ut (Proposition 2.2 in Sznitman 1991).

This proposition states that the empirical measure U (N )
t tends to concentrate near

ut , the solution of the mean-field equation (11). In other words, while each element
behaves stochastically, the empirical distribution converges to the deterministic one,
ut , as N → ∞. In this sense, this can be considered as a form of the law of large num-
bers. Because of this property, the interaction term

∫
b̃(zi,N

t , z)U (N )
t (dz) converges

7 In what follows, the stability analysis and numerical simulations are performed with b.
8 This terminology comes from Kac. In probability theory, since the seminal work by McKean (1967), this
property has been investigated by many works. For reviews, see Sznitman (1991) and Gartner (1988).
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to the deterministic term
∫

b̃(zi
t , z)ut (dz), and therefore, from the point of view of an

individual firm, there is no difference between the usual drift term and the interaction
effects. This is why the law of k tagged particles (firms) can be described by the prod-
uct of ut , ut ⊗ · · · ⊗ ut . Of course, the solution of Eq. (11), ut , is different from that
of the equation without the interaction term

∫
b̃(zi

t , z)ut (dz). It should be noted that
there is no a priori reason to assume that ut is stationary. In fact, as we will see later,
it shows cyclical movement at some parameter values. In what follows, we study the
behavior of ut when we change the parameters.

4.3 Stability analysis

In the previous section, we demonstrated that limN→∞ U (N )
t = ut . As Eq. (11) shows,

on the one hand, ut is the law of zi
t by definition, but on the other hand, stochastic

process zi
t also depends on ut . Namely, it can be considered that the equation is non-

linear with respect to ut and, in practice, an explicit solution is unfeasible. Therefore,
to investigate the evolution of ut , an approximation method is needed. It should be
noted that in our model [Eq. (7)], each firm depends on 〈x〉 and 〈y〉 instead of ut itself,
and our primary concern is the behavior of 〈x〉 and 〈y〉.9 Instead of investigating ut

directly, we consider the dynamics of lower moments of ut (see, e.g., Dawson 1983;
Zaks et al. 2005; Kawai et al. 2004).

Setting ϕ = (x − 〈x〉)n(y − 〈y〉)m and using Ito’s formula, we have

dϕ = n(x − 〈x〉)n−1(y − 〈y〉)mdxi
t + m(x − 〈x〉)n(y − 〈y〉)m−1dyi

t

+1

2
n(n − 1)(x − 〈x〉)n−2(y − 〈y〉)mσ 2

1 dt

+1

2
m(m − 1)(x − 〈x〉)n(y − 〈y〉)m−2σ 2

2 dt (13)

Using the Taylor expansion around 〈x〉 in (7), substituting dxi
t and dyi

t into (13), and
then taking the expectation of both sides of (13), we obtain the following dynamical
systems of moments:

˙〈x〉 = 〈x〉 − 〈x〉3 − 3μ2,0〈x〉 − μ3,0 − e〈y〉 − D(1 − h)〈x〉
˙〈y〉 = (1 − h)〈x〉

μ̇2,0 = −2Dμ2,0 − 2eμ1,1 + 2(1 − 3〈x〉2)μ2,0 − 6〈x〉μ3,0 − 2μ4,0 + σ 2
1 (14)

μ̇1,1 = −Dμ1,1 − eμ0,2 + (1 − h)μ2,0 + (1 − 3〈x〉2)μ1,1 − 3〈x〉μ2,1 − μ3,1

μ̇0,2 = 2(1 − h)μ1,1 + σ 2
2

where μn,m = 〈(x − 〈x〉)n(y − 〈y〉)m〉 and 〈〉 denotes the expectation with respect to
ut , that is,

∫
ϕ(z)ut (dz).˙denotes the time derivative.10

9 Given Proposition 2, the definition of 〈x〉 (and 〈y〉) in Eq. (5) is equivalent to the expectation with respect
to ut .
10 Equations for the higher moments can be deduced in a similar way, but become irrelevant under the
Gaussian approximation. See below.
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Now, we focus on state 〈x〉 = 〈y〉 = 0 (called the disordered state). Note that the
disordered state is the stationary solution without interaction and corresponds to the
situation where idiosyncratic shocks cancel each other out (i.e., the LLN argument
holds), and therefore, no aggregate fluctuations appear. Moreover, 〈x〉 = 〈y〉 = 0 is
always a solution with an arbitrary value of D because of the symmetry in our model.
At this stationary solution, other moments are determined by Eq. (14):

0 = −2Dμ∗
2,0 − 2eμ∗

1,1 + 2μ∗
2,0 − 2μ∗

4,0 + σ 2
1 (15)

0 = −Dμ∗
1,1 − eμ∗

0,2 + (1 − h)μ∗
2,0 + μ∗

1,1 − μ∗
3,1 (16)

0 = 2(1 − h)μ∗
1,1 + σ 2

2 (17)

We then apply the Gaussian approximation to investigate the linear stability of the
disordered state. The Gaussian approximation means that we approximate the system
by theGaussian distributionwith time-varying parameters (see Zaks et al. 2005;Kawai
et al. 2004). Because all the moments of Gaussian distributions are determined by the
lowermoments (〈x〉, 〈y〉,μ2,0,μ1,1,μ0,2), Eq. (14) becomes a closed-form expression.
Specifically, μ3,0 = 0, μ3,1 = 3μ2,0μ1,1, and μ4,0 = 3μ2

2,0 are used in our model.
Next, we conduct a standard linear stability analysis. The Jacobian of the five-

dimensional system of (〈x〉 〈y〉 μ2,0 μ1,1 μ0,2) can be written in a block diagonal
form:

(
A 0
0 B

)

(18)

A is a 2 × 2 matrix and B is a 3 × 3 matrix. Therefore, the behavior of 〈x〉 and 〈y〉
around the disordered state can be determined solely by

A =
(
1 − 3μ∗

2,0 − D(1 − h) −e
(1 − h) 0

)

(19)

The eigenvalues are given by

λ± = 1

2

(
1 − 3μ∗

2,0 − D(1 − h) ±
√

(1 − 3μ∗
2,0 − D(1 − h))2 − 4(1 − h)e

)
(20)

We examine when the stability of the disordered state is lost—that is, the real parts of
the eigenvalues become 0. From (20), μ∗

2,0 = 1
3 (1 − D(1 − h)). From (17), μ∗

1,1 =
− σ 2

2
2(1−h)

. Substituting these values into Eq. (15), we obtain the following condition:

fh(D) ≡ Dh(1 − D + Dh) = 3

2

(
σ 2
1 + eσ 2

2

1 − h

) ≡ 3

2
σ 2 (21)

σ 2(≡ σ 2
1 + eσ 2

2
1−h ) represents the intensity of idiosyncratic shocks. The left-hand side,

fh(D), can be interpreted as the degree of interaction that generates “order” (or col-
lective behaviors) in the system. In particular,
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Fig. 6 Equation (21)

lim
h→1

fh(D) = D (22)

When the two parameters, σ and D, satisfy this relation, bifurcation occurs. The
interpretation is as follows. When the interaction effect, D, is below the critical point,
D∗, idiosyncratic shocks dominate the system. These shocks disturb and impede the
generation of collective behaviors, and the system is close to the one with no interac-
tion. Therefore, simple LLN holds and the stationary distribution, with 〈x〉 = 〈y〉 = 0,
is stable. Themicroeconomic structure (e.g., lumpiness) is irrelevant for an explanation
of aggregate fluctuations.

However, when D exceeds critical point D∗, the situation changes completely. The
linear stability analysis above shows that the stationary distributionwith 〈x〉 = 〈y〉 = 0
is no longer stable. That is, idiosyncratic shocks do not prevent the interaction from
generating collective behaviors in the system (Fig. 6). In fact, as we will see later,
regular cyclical behavior is observed at the aggregate level. In the next subsection, we
conduct numerical simulations.

4.4 Simulation

Figures 7, 8, 9, 10, 11, 12 and 13 show simulation results for 〈x〉 and 〈y〉 of Eq. (7)
with different values of D (other parameters are fixed and N = 20,000). In Fig. 7 with
a small value of D, there is no observable aggregate behavior: only a small variation
around 〈x〉 = 〈y〉 = 0 exists. This is considered to be the finite–number effect of N .
It is consistent with our analysis in the previous section. The microeconomic shocks
cancel each other out; therefore, production bunching (or nonconvexity) at the firm
level plays no role in aggregate fluctuations.
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Fig. 7 Simulation of Eq. (7) with σ 2
1 = σ 2

2 = 1/4, e = 0.1, h = 0.9, and D = 0.1. The solid (dashed)
line is 〈x〉(〈y〉)
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Fig. 8 Equation (7) with D = 0.32. The other parameters are the same as in Fig. 7

Figure 8 shows that when the interaction effect is large enough to compensate for
the disturbance caused by idiosyncratic shocks, a different aggregate behavior appears
and an endogenous cyclical movement is observed. This is consistent with the fact
that the eigenvalues (20), have an imaginary part different from 0 near the bifurcation
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Fig. 9 Histogram of xi
t when 〈x〉 = 0.00. The parameters are the same as in Fig. 8
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Fig. 10 Histogram of yi
t when 〈x〉 = 0.00. It corresponds to an economy going through a phase of

contraction due to excess inventories, 〈y〉 = 0.56
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Fig. 11 Histogram of yi
t when 〈x〉 = 0.00. It corresponds to an economy going through a phase of

expansion, 〈y〉 = −0.52
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Fig. 12 Histogram of xi
t when 〈x〉 = 0.45
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Fig. 13 Histogram of xi
t when 〈x〉 = −0.46

point. Interestingly, the movement at the macroscopic level is more regular than at the
firm level.

Figure 10 shows the histogram of y when 〈x〉 = 0.00 and 〈y〉 > 0—that is,
when the economy has excess inventories. This corresponds to a situation in which
the economy goes through a phase of contraction to reduce the excess inventories.
However, it should be noted that there is heterogeneity among firms and, as Fig. 10
shows, some firms’ inventories are running short. The same argument can be applied
to Fig. 12, where business is good, 〈x〉 > 0. Under this favorable business condition,
there exist firms that choose low production depending on their states. The motions
of 〈x〉 and 〈y〉 are the firms’ averaging behaviors in the economy.

However, the cyclical behavior of 〈x〉 and 〈y〉 can be observed to be significantly
below the critical value, D∗ = 0.92, predicted by the stability analysis in the pre-
vious section. This is related to the fact that the resulting distribution is different
from a Gaussian distribution. In particular, the marginal distribution of xi

t shows clear
bimodality. In Fig. 14, we estimate the spectral density of the cycle of 〈x〉. This density
peaks at 0.014—that is, the period of the cycle is 71. On the other hand, from (20),
the frequency is approximately given by 2π/

√
(1 − h)e = 0.016 near the bifurca-

tion point. The period predicted by the stability analysis is 1/0.016 = 63, which is
relatively close to the estimated value. Therefore, although the critical value of D is
overestimated, we conclude that the qualitative feature of our model is captured by
the stability analysis.11

11 On this point, Zaks et al. (2005) reach the same conclusion. See Zaks et al. (2005) and the relevant
discussion therein.
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This cyclical behavior of 〈x〉 and 〈y〉 is closely related to the well-known Kitchin
cycle, which is usually explained as follows (see, e.g., Korotayev and Tsirel 2010).
Suppose that firms observe an improvement in their commercial situation. They man-
age the increase in demand by increasing production. The demand is filled with the
supply, but the supply gradually becomes excessive because it takes some time for
businesspeople to realizes that supply exceeds demand. This time lag generates an
unexpected increase in inventories, which leads to reduction of production so as to
decrease excessive inventories. After inventories are sufficiently reduced, a new cycle
of demand increase is initiated. According to this explanation, the origin of these
cycles is information time lags.

Atfirst glance, as shown inFig. 8, the behavior of 〈x〉 and 〈y〉 appears to be consistent
with the above scenario. An increase in 〈x〉 is an increase in demand that leads to an
increase in 〈y〉. The cycle of 〈y〉 lags behind that of 〈x〉. However, it should be noted
that information time lags at the firm level are not assumed in our model. Because
of nonconvex technology, business people optimally choose low or high production
and increase or decrease inventories. Furthermore, in contrast to Carvalho (2010),
Acemoglu et al. (2012), and Gabaix (2011), each firm has a negligible impact on 〈x〉
and 〈y〉 as N is large. 〈x〉 and 〈y〉 are the average xi

t and yi
t values, respectively, of all

firms in the economy; therefore, there is no representative firm corresponding to the
motion of 〈x〉 and 〈y〉. Indeed, as shown in Figs. 3, 4, and 8, the behavior of 〈x〉 and
〈y〉 is different from that of an individual firm, xi

t and yi
t . The behavior of 〈x〉 and 〈y〉

is a type of collective behavior that can only be observed at the macroscopic level.
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Last, it is worth noting that the relation of the two cyclical behavior of 〈x〉 and 〈y〉
can be explicitly written. Summing both sides of Eq. (2) over i and dividing them by
N , we obtain

1

N

N∑

i=1

dyi
t = 1

N

N∑

i=1

(xi
t − si

t )dt = 1

N

N∑

i=1

(xi
t − h〈x〉 − ξ i

t )dt

=
(

(1 − h)〈x〉 − 1

N

N∑

i=1

ξ i
t

)

dt (23)

Taking the limit, N → ∞, we obtain the simple relation ˙〈y〉 = (1 − h)〈x〉 by LLN.
This means that aggregate inventory investment (change in inventories) comoves with
aggregate production without a time lag. This prediction is consistent with empirical
data (see, e.g., Table 2 in Stock and Watson 1999).

5 Concluding remarks

This paper investigates the relationship between microeconomic structures and busi-
ness cycles. The standard production-smoothing theory has been empirically rejected
in the literature; therefore, we focused on the nonconvex cost function. This hypothe-
sis, which has empirical support, can explain the excess volatility of production. The
issue is whether this microeconomic structure has a nontrivial effect at the aggregate
level. In particular, our model explicitly takes into account the feedback loop—that
is, the macroscopic state of the economy not only represents firms’ aggregation but
also prescribes the macroeconomic environment experienced by firms. If this effect is
taken into account, this problem becomes complicated. We need to deal with the evo-
lution of the distribution of production and inventories, that is, an infinite-dimensional
random variable.

To investigate this problem, the propagation of chaos approach is useful. It shows
that whereas each element behaves stochastically, the empirical distribution converges
to the deterministic distribution as N → ∞. This does not imply that the distribution
is stationary. In fact, the feedback loop together with nonconvex technology generates
rich interesting phenomena and has been shown to be the origin of business cycles.

The standard linear stability analysis shows that the disorder state corresponding to
the LLN argument loses its stability given that the interaction effect exceeds a critical
point. This means that the interaction effect generates “order” (or collective behaviors)
in the system. With the help of numerical simulations, we have demonstrated that the
resulting aggregate behavior shows regular cyclical movement without any aggregate
exogenous shocks. This endogenous business cycle is an explanation for the Kitchin
cycle. It should be noted that there is no representative firm corresponding to 〈x〉 and
〈y〉 and that the behavior of 〈x〉 and 〈y〉 is different from that of an individual firm, xi

t
and yi

t . This is one example of the collective behaviors that can be observed only at
the aggregate level and are crucial to macroeconomic analysis.
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Finally, there exists other microeconomic behavior that is characterized by
lumpiness (e.g., Cooper and Haltiwanger 2006). Investigating how microeconomic
characteristics affect aggregate fluctuations via interactions is a promising subject for
future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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