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Abstract In genome-wide association studies (GWAS)
of complex traits, single SNP analysis is still the most
applied approach. However, the identified SNPs have
small effects and provide limited biological insight. A
more appropriate approach to interpret GWAS data of
complex traits is to analyze the combined effect of a

SNP set grouped per pathway or gene region. We used
this approach to study the joint effect on human
longevity of genetic variation in two candidate path-
ways, the insulin/insulin-like growth factor (IGF-1)
signaling (IIS) pathway and the telomere maintenance
(TM) pathway. For the analyses, we used genotyped
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GWAS data of 403 unrelated nonagenarians from long-
lived sibships collected in the Leiden Longevity Study
and 1,670 younger population controls. We analyzed
1,021 SNPs in 68 IIS pathway genes and 88 SNPs in
13 TM pathway genes using four self-contained
pathway tests (PLINK set-based test, Global test,
GRASS and SNP ratio test). Although we observed
small differences between the results of the different
pathway tests, they showed consistent significant
association of the IIS and TM pathway SNP sets with
longevity. Analysis of gene SNP sets from these
pathways indicates that the association of the IIS
pathway is scattered over several genes (AKT1, AKT3,
FOXO4, IGF2, INS, PIK3CA, SGK, SGK2, and
YWHAG), while the association of the TM pathway
seems to be mainly determined by one gene (POT1).
In conclusion, this study shows that genetic variation
in genes involved in the IIS and TM pathways is
associated with human longevity.

Keywords Genetics . Aging . Longevity . Gene set
analysis . Insulin/IGF-1 signaling . Telomere
maintenance

Introduction

Genome-wide association studies (GWAS) using
single SNP analysis have been very successful in
identifying loci for various quantitative traits and
diseases (Manolio et al. 2008). It became apparent
that complex traits are usually determined by many
genes with small effects and that results from single
SNP analysis provide limited biological insight and
only partly explain the genotypic variation of the
studied trait. Instead of analyzing single SNPs, the
combined effect of a SNP set, grouped per pathway or
gene region, can be tested for association with the
trait of interest. Such SNP set analysis could be used
as an alternative approach for GWAS analysis and,
since the composition of SNP sets is often based on
pathways, should be able to provide additional
biological insight of the studied trait.

Since the amount of tests in SNP set analysis is
low compared to single SNP analysis, it requires a
lower penalty for multiple testing. Therefore, SNP
set analysis is also very suitable in studies with
low power for GWAS analysis. The last couple of

years, several methods have been developed to
perform SNP set analysis on GWAS data (Wang et
al. 2010; Fridley and Biernacka 2011; Holmans
2010). There are two main types of methods, the
competitive and the self-contained tests. The compet-
itive tests compare the association between a SNP set
and trait to a standard defined by the genotyped SNPs
outside the SNP set (complement), while the self-
contained tests compare the SNP set to a fixed
standard that does not depend on the complement
(Goeman and Buhlmann 2007).

Human longevity is a complex trait that is assumed
to be determined by variation in many genes with
small effects. Previous GWA studies, in which single
SNP analyses were performed (Newman et al. 2010;
Deelen et al. 2011), have identified only one genome-
wide significant locus contributing to survival into old
age; APOE. However, the genetic contribution to
human lifespan variation, determined in twin studies,
is estimated at 25–30% (Gudmundsson et al. 2000;
Hjelmborg et al. 2006; Skytthe et al. 2003) and,
although the effect of genetic variation in APOE is
relatively large, the heritability of longevity is only
partially explained by this variation (Deelen et al.
2011). Part of the remaining heritability might be
explained by functionally related SNPs with small
effects, of which the joint effect could not be detected
in a single SNP analysis. Testing of SNP sets of
candidate pathways for association with longevity
would therefore be valuable.

The insulin/insulin-like growth factor (IGF-1)
signaling (IIS) pathway is considered as a candi-
date pathway for studying human longevity. It is
involved in the adaptation of the organism to its
(changing) environment (Tatar et al. 2003). When
experimentally induced in model organisms like
worms, flies, and mice, mutations in genes that play
a role in IIS, e.g., homologues of human IGF1R,
INSR, IRS1, PI3K, and FOXO, were shown to have a
considerable effect on lifespan (Kenyon et al. 1993;
Kimura et al. 1997; Tatar et al. 2001; Holzenberger et
al. 2003; Bluher et al. 2003; Morris et al. 1996;
Friedman and Johnson 1988; Clancy et al. 2001;
Hwangbo et al. 2004; Ogg et al. 1997; Lin et al. 1997;
Giannakou et al. 2004; Selman et al. 2011). Although
the IIS pathway is evolutionarily conserved, the
complexity of the human IIS pathway (Fig. 1) is
much larger compared to that of model organisms.
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Several studies have investigated associations be-
tween single SNPs in genes from the IIS pathway
and human longevity. The most prominent results
came from FOXO3 (Willcox et al. 2008; Flachsbart et
al. 2009; Anselmi et al. 2009; Pawlikowska et al.
2009; Li et al. 2009; Soerensen et al. 2010) and AKT1
(Pawlikowska et al. 2009), which showed associa-
tions with longevity in several independent cohort
studies.

Another candidate pathway for studying human
longevity is the mechanism of telomere maintenance
(TM). Telomeres are structures at the end of chromo-
somes, consisting of TTAGGG tandem repeats (Moyzis
et al. 1988), which protect chromosomes from
degradation or rearrangement (Blackburn 1991). In
normal human cells, telomere length declines with
every cell division (Harley et al. 1990), and when a
critical length is reached, the cell will enter replicative
senescence (Allsopp 1996). In human epidemiological
studies in blood, increased telomere length has been
associated with longevity (Atzmon et al. 2010), while
decreased telomere length has been associated with
increased mortality (Cawthon et al. 2003; Bakaysa et
al. 2007; Kimura et al. 2008), although some studies

showed contradictory results (Martin-Ruiz et al. 2005;
Bischoff et al. 2006). Telomere integrity is essentially
regulated by two protein networks, telomerase and its
associated factors, which regulate telomere length, and
the shelterin complex, which covers the telomeres (de
Lange 2005; Collins and Mitchell 2002) (Fig. 2).
Several studies have investigated associations be-
tween single SNPs in telomerase and shelterin genes
and telomere length. The most promising results came
from TERC and TERT (Atzmon et al. 2010; Codd et al.
2010; Levy et al. 2010; Mirabello et al. 2010; Rafnar
et al. 2009), of which the latter has also been
associated with human longevity (Atzmon et al. 2010).

In this study, we used four self-contained tests
(PLINK set-based test, Purcell et al. 2007; GRASS,
Chen et al. 2010; Global test, Goeman et al. 2004;
and SNP ratio test, O'Dushlaine et al. 2009) and one
competitive test (the comparative approach of Global
test) to study the joint effect of genetic variation in the
IIS and TM pathways on human longevity. For the
analyses, we used genotyped GWAS data of nonage-
narian siblings from the Leiden Longevity Study
(LLS) and younger population controls from the
Rotterdam Study (RS) (Deelen et al. 2011).

Fig. 1 Insulin/IGF-1 signaling pathway. The insulin/IGF-1
signaling pathway consists of the core components IGF1R/IR/
IRR, IRS, PI3K, AKT/SGK, FOXO and SIRT, and proteins that
have a direct activating or inhibiting effect on these proteins.
The small closed circles (containing Ac, P, or Ub) indicate an
activating effect of the posttranslational modification on the

protein, while the small dashed circles indicate an inhibiting
effect. The straight arrows pointing to these small circles
indicate an activating effect on the posttranslational modifica-
tion, while the dashed arrows indicate an inhibiting effect. Ac
acetylation, P phosphorylation, Ub ubiquitylation
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Materials and methods

Study populations

Leiden longevity study

For the LLS, long-lived siblings of European descent
were recruited together with their offspring and the
partners of the offspring. Families were included if at
least two long-lived siblings were alive and fulfilled
the age criterion of 89 years or older for males and
91 years or older for females, representing less than
0.5% of the Dutch population in 2001 (Schoenmaker
et al. 2006). In total, 944 long-lived proband siblings
were included with a mean age of 94 years (range,
89–104), 1,671 offspring (61 years, 39–81), and 744
partners (60 years, 36–79). DNA from the LLS was
extracted from samples at baseline using conventional
methods (Beekman et al. 2006). For the GWAS, 403
unrelated LLS siblings (one sibling from each sibling
pair) were included (LLS GWAS cases) (Deelen et al.
2011).

Rotterdam study

The RS is a prospective population-based study of
people aged 55 years and older, which was designed
to study neurological, cardiovascular, locomotor, and

ophthalmological diseases (Teichert et al. 2009). The
study consists of 7,983 participants from the baseline
cohort (RS-I) and 3,011 participants from an inde-
pendent extended cohort formed in 1999 (RS-II) from
which DNA was isolated between 1990 and 1993
(RS-I) or between 2000 and 2001 (RS-II). For the
GWAS, 1,731 participants from the combined cohort
who were below 60 years of age and for whom
GWAS data were available were included as controls
(LLS GWAS controls) (Deelen et al. 2011).

Population substructure

Multidimensional scaling analysis in PLINK (http://
pngu.mgh.harvard.edu/purcell/plink, Purcell et al.
2007) showed that there was no substructure in the
GWAS data to an extent that would affect the
observations (Deelen et al. 2011).

Genotyping and SNP selection

For the SNP set analyses, we used the genotype data
from the GWAS described by Deelen et al. (2011).
The LLS GWAS cases were genotyped using Illumina
Infinium HD Human660W-Quad BeadChips (Illu-
mina, San Diego, CA, USA). The RS GWAS controls
were genotyped using Illumina Infinium II Human-
Hap 550K Beadchips and Illumina Infinium II
HumanHap550-Duo BeadChips (Illumina), respec-
tively (Teichert et al. 2009). Of the 551,606 SNPs
measured in both the LLS GWAS cases and RS
GWAS controls, 516,712 SNPs passed quality control
using the following criteria: SNP call rate ≥0.95 or
MAF ≥0.01 in RS GWAS controls and LLS GWAS
cases, PHWE ≥10−4 and no between-chip effect in the
RS GWAS controls, and good cluster plots in the LLS
GWAS cases and RS GWAS controls if P <

1� 10�4 (Deelen et al. 2011).
We analyzed SNPs within a 10-kb window around

genes encoding proteins that belonged to the IIS
(Fig. 1) and TM pathway (Fig. 2). A gene was defined
as an NCBI Entrez Gene (mRNA or RNA) cluster,
corresponding to a set of transcripts (RefSeq) for
which the alignments can be obtained from the UCSC
genome browser (http://genome.ucsc.edu/), in which
all transcripts within a cluster agree on strand and
overlap. Due to an overlap of the 10-kb windows

a

b

Fig. 2 Telomere maintenance pathway. The telomere mainte-
nance pathway consists of proteins belonging to telomerase and
its associated factors or to the shelterin complex. Telomere
elongation is performed by telomerase after binding to the
telomere (a). However, binding of the shelterin protein POT1 to
the telomere blocks this process (b)
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around IGF2 and INS, two SNPs, rs4320932 and
rs7924316, were assigned to both genes.

Statistical analysis

PLINK set-based test

In the PLINK set-based test (–set-test, http://pngu.
mgh.harvard.edu/purcell/plink; Purcell et al. 2007), a
single SNP analysis (in our case, a trend test) of the
original pathway or gene SNP set is performed. For
each SNP set, a mean SNP statistic is calculated from
the single SNP statistics of a maximum amount (–set-
max) of independent SNPs below a certain P value
threshold (–set-p). If SNPs are not independent, i.e.,
in case linkage disequilibrium (r2) is above a certain
threshold (–set-r2), the SNP with the lowest P value
in the single SNP analysis is selected. The same
analysis is performed with a certain amount (–mperm)
of simulated SNP sets in which the phenotype status
of the individuals is permuted. An empirical P value
for the SNP set is computed by calculating the
number of times the test statistic of the simulated
SNP sets exceeds that of the original SNP set. For the
analysis in this study, the parameters were set to –set-
p 0.05 –set-r2 0.5, –set-max 99999, and –mperm
10,000.

GRASS

GRASS (http://linchen.fhcrc.org/grass.html; Chen et
al. 2010) calculates “eigenSNPs” for each gene in the
pathway SNP set by summarizing the variation of a
gene using principal component analysis. Subsequently,
one or more of these “eigenSNPs” per gene are selected
using regularized logistic regression to calculate a test
statistic for each pathway SNP set. The same analysis is
performed with simulated SNP sets in which the
phenotype status of the individuals is permuted. The P
value per pathway SNP set is calculated by comparing
the test statistic of the original pathway SNP set with
that of the combined simulated pathway SNP sets. For
the analysis in this study, the amount of simulated
pathway SNP sets was 10,000.

Global test

In this study, we used a modified version of the
Global test (http://www.bioconductor.org/help/bioc-

views/release/bioc/html/globaltest.html; Goeman et
al. 2004), which is capable and powerful for analyz-
ing GWAS data (Chapman and Whittaker 2008; Pan
2009). This test is based on a multiple logistic
regression model that uses the phenotype as the
response variable and the SNPs in the SNP set as
covariates and which automatically takes the
correlations between SNPs into account. The null
hypothesis is tested that none of the SNPs in the
SNP set are associated with the phenotype. P
values are calculated using a permutation test based
on 10,000 permutations.

For the comparative approach, 10,000 random
SNP sets per pathway SNP set were generated and
tested to determine the chance to find a similar-
sized SNP set with a comparable or lower P value
as compared to the original pathway SNP set.

SNP ratio test

The SNP ratio test (http://sourceforge.net/projects/
snpratiotest/; O'Dushlaine et al. 2009) performs a
single SNP analysis (in our case, a trend test) of the
original pathway or gene SNP set and of similar-sized
SNP sets in which the phenotype status of the
individuals is permuted. An empirical P value of the
SNP set is computed by calculating the ratio between
the proportion of SNPs that shows an association
below a certain P value threshold (p) in the original
GWAS dataset and in the simulated GWAS datasets.
The amount of significant SNPs in the simulated
GWAS datasets is defined as the top n SNPs with
the lowest P values, where n is the amount of SNPs
with an association below p in the original GWAS
dataset. For the analysis in this study, we made use of
the scripts described in “SRT_documenta-
tion_090310.pdf” (http://sourceforge.net/projects/
snpratiotest/). For the analysis in this study, p was
set to 0.05, and the amount of simulated datasets used
was 10,000.

Statistical significance

To adjust for multiple testing, the significance level
was set at the Bonferroni-corrected nominal P value
(which is 0.05/(number of pathway or gene SNP sets
tested)).
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Table 1 Characteristics of the insulin/IGF-1 signaling pathway proteins

Protein Gene Entrez gene ID Chr Start (bp) End (bp) Size (kb) SNPs Coverage

AKT1 AKT1 207 14 104,306,732 104,333,125 26.39 2 25.00%

AKT2 AKT2 208 19 45,428,064 45,483,105 55.04 6 45.45%

AKT3 AKT3 10000 1 241,718,158 242,073,509 355.35 25 50.00%

BIM BCL2L11 10018 2 111,594,962 111,642,493 47.53 12 47.06%

BCL-6 BCL6 604 3 188,921,859 188,946,169 24.31 6 23.81%

CAT CAT 847 11 34,417,048 34,450,182 33.13 18 80.00%

Cyclin D1 CCND1 595 11 69,165,054 69,178,423 13.37 3 27.27%

Cyclin D2 CCND2 894 12 4,253,163 4,284,782 31.62 20 45.00%

Cyclin G2 CCNG2 901 4 78,297,381 78,310,237 12.86 4 33.33%

p27kip CDKN1B 1027 12 12,761,569 12,766,572 5.00 9 75.00%

CBP CREBBP 1387 16 3,715,057 3,870,122 155.07 15 50.00%

Deptor (mTORC2) DEPDC6 64798 8 120,955,081 121,132,338 177.26 47 61.90%

p300 EP300 2033 22 39,818,560 39,906,027 87.47 6 50.00%

Fas ligand FASLG 356 1 170,894,808 170,902,635 7.83 7 45.45%

FOXO1 FOXO1 2308 13 40,027,801 40,138,734 110.93 19 65.38%

FOXO3A FOXO3 2309 6 108,987,719 109,112,664 124.95 21 68.75%

FOXO4 FOXO4 4303 X 70,232,751 70,240,109 7.36 3 NA

G6P G6PC 2538 17 38,306,341 38,318,912 12.57 5 83.33%

IGF1 IGF1 3479 12 101,313,775 101,398,508 84.73 20 47.06%

IGF1R IGF1R 3480 15 97,010,284 97,325,282 315.00 102 56.34%

IGF2 IGF2 3481 11 2,106,923 2,127,409 20.49 7 63.64%

Insulin INS 3630 11 2,137,585 2,139,015 1.43 4 80.00%

IR INSR 3643 19 7,063,266 7,245,011 181.75 52 50.00%

IRR INSRR 3645 1 155,077,289 155,095,290 18.00 6 37.50%

IRS1 IRS1 3667 2 227,304,277 227,371,750 67.47 11 53.33%

IRS2 IRS2 8660 13 109,204,185 109,236,915 32.73 15 59.09%

IRS4 IRS4 8471 X 107,862,383 107,866,263 3.88 2 NA

PCAF KAT2B 8850 3 20,056,528 20,170,900 114.37 44 62.96%

ERK2 MAPK1 5594 22 20,443,947 20,551,970 108.02 12 58.33%

ERK1 MAPK3 5595 16 30,032,927 30,042,131 9.20 2 33.33%

JNK1 MAPK8 5599 10 49,279,693 49,313,189 33.50 6 35.71%

JNK2 MAPK9 5601 5 179,593,203 179,651,677 58.47 17 40.00%

JNK3 MAPK10 5602 4 87,155,300 87,593,307 438.01 71 55.81%

mSIN1 (mTORC2) MAPKAP1 79109 9 127,239,494 127,509,334 269.84 26 64.00%

mLST8 (mTORC2) MLST8 64223 16 2,195,451 2,199,419 3.97 4 80.00%

mTOR (mTORC2) MTOR 2475 1 11,089,176 11,245,195 156.02 11 50.00%

PEPCK PCK1 5105 20 55,569,543 55,574,919 5.38 10 33.33%

PDK1 PDPK1 5170 16 2,527,971 2,593,190 65.22 0 0.00%

PHLPP1 PHLPP1 23239 18 58,533,714 58,798,646 264.93 41 64.29%

PHLPP2 PHLPP2 23035 16 70,236,353 70,306,205 69.85 4 15.38%

PI3K PIK3CA 5290 3 180,349,005 180,435,191 86.19 10 44.44%

PIK3CB 5291 3 139,856,921 139,960,875 103.95 8 42.86%

PIK3CD 5293 1 9,634,377 9,711,759 77.38 8 42.11%

PIK3R1 5295 5 67,558,218 67,633,405 75.19 31 65.12%
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Results

For the IIS pathway, we selected genes encoding
proteins that belong to the well-described core of the
pathway, consisting of IGF1R/IR/IRR, IRS, PI3K,
AKT/SGK, FOXO, and SIRT, or that had a direct
activating or inhibiting effect on these core compo-
nents (van der Horst and Burgering 2007; Taniguchi
et al. 2006). In addition, we selected several FOXO
target genes that play a role in cell-cycle inhibition,
oxidative-stress resistance, metabolism, and apoptosis
(van der Horst and Burgering 2007) (Fig. 1). For the
TM pathway, we selected genes encoding proteins
that were specifically associated with telomeres and
belonged to telomerase and its associated factors or to

the shelterin complex (Vulliamy et al. 2008; Harrington
et al. 1997; de Lange 2005) (Fig. 2). We analyzed
SNPs within a 10-kb window around the selected
genes (based on Pawlikowska et al. 2009) from
genotyped GWAS data of 403 unrelated nonagenarian
participants from the LLS and 1,670 middle-aged
controls from the RS (Deelen et al. 2011). A
description of the investigated samples is given in
Table S1. In total, 1,021 SNPs in 68 IIS pathway
genes and 88 SNPs in 13 TM pathway genes were
analyzed (Tables 1, 2, S3A, and S3B).

Four methods, PLINK set-based test, Global test,
GRASS, and SNP ratio test (Table S2), were used to
investigate the association of the SNP sets from the
IIS and TM pathways with longevity. As a biological

Table 1 (continued)

Protein Gene Entrez gene ID Chr Start (bp) End (bp) Size (kb) SNPs Coverage

PIK3R2 5296 19 18,125,016 18,142,343 17.33 5 66.67%

PIK3R3 8503 1 46,278,399 46,371,295 92.90 10 60.00%

PP2A PPP2R5B 5526 11 64,448,756 64,458,523 9.77 3 37.50%

Protor-1 (mTORC2) PRR5 55615 22 43,443,091 43,512,225 69.13 32 50.00%

PTEN PTEN 5728 10 89,613,175 89,718,512 105.34 8 47.06%

PTP1B PTPN1 5770 20 48,560,298 48,634,493 74.20 17 44.44%

p130Rb2 RBL2 5934 16 52,025,852 52,083,061 57.21 3 33.33%

RICTOR (mTORC2) RICTOR 253260 5 38,973,780 39,110,258 136.48 9 30.77%

SCP2 SCP2 6342 1 53,165,536 53,289,870 124.33 18 50.00%

SGK1 SGK1 6446 6 134,532,077 134,680,889 148.81 38 46.75%

SGK2 SGK2 10110 20 41,621,100 41,647,687 26.59 9 34.62%

SIRT1 SIRT1 23411 10 69,314,433 69,348,152 33.72 4 33.33%

SIRT2 SIRT2 22933 19 44,061,040 44,082,201 21.16 7 38.89%

SIRT3 SIRT3 23410 11 205,030 226,362 21.33 17 60.00%

SKP2 SKP2 6502 5 36,187,946 36,219,904 31.96 15 51.72%

SOCS1 SOCS1 8651 16 11,255,775 11,257,540 1.77 4 50.00%

SOCS3 SOCS3 9021 17 73,864,457 73,867,753 3.30 4 50.00%

MnSOD SOD2 6648 6 160,020,139 160,034,343 14.20 4 44.44%

USP7 USP7 7874 16 8,893,452 8,964,842 71.39 12 42.11%

14-3-3 YWHAB 7529 20 42,947,758 42,970,575 22.82 6 50.00%

YWHAE 7531 17 1,194,586 1,250,306 55.72 16 70.00%

YWHAG 7532 7 75,794,044 75,826,278 32.23 5 35.71%

YWHAH 7533 22 30,670,479 30,683,590 13.11 9 43.75%

YWHAQ 10971 2 9,641,557 9,688,557 47.00 10 58.33%

YWHAZ 7534 8 101,999,981 102,034,799 34.82 6 40.00%

Total 1,023

Chr Chromosome position of the gene according to NCBI Build 36, Start (bp) start position of the gene according to NCBI Build 36,
End (bp) end position of the gene according to NCBI Build 36, Coverage coverage of genes based on Phased data HapMap II release
22 CEU, NA not available
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negative control, we also analyzed a SNP set of 223
SNPs in 9 genes previously associated with eye and
hair color (Eriksson et al. 2010) (Tables 3 and S3C).
Both candidate pathways were consistently associated
with longevity across all four tests (Table 4). We
applied Bonferroni correction to adjust for the number
of tested pathways (i.e., 2, so for significance P<
0.025). After Bonferroni correction, the IIS pathway
SNP set remained significant in GRASS and Global
test, while the TM pathway SNP set remained
significant in the PLINK set-based test, GRASS, and
Global test. Using the comparative approach in
Global test as a competitive test, we also showed that
the probability to find a random SNP set with the
same amount of genes as the IIS or TM pathway and
a comparable or lower P value is less than 5% (2.11%
for the IIS and 2.95% for the TM pathway).

To determine which genes are mainly responsible
for the observed association of the pathway SNP sets
from the IIS and TM pathways with longevity, we
also investigated the association of gene SNP sets
from these pathways. Although the power to detect an
association using gene SNP set analysis is lower than
for pathway SNP set analysis, due to the larger amount
of tests, it provides a ranking of genes based on the
contribution to the observed associations of the path-
ways. To analyze the gene SNP sets, we used the PLINK

set-based test, Global test, and SNP ratio test. GRASS
was not used, since the underlying statistical method of
this test is less suitable for analysis of gene SNP sets.
Nine of the 68 IIS pathway gene SNP sets (AKT1,
AKT3, FOXO4, IGF2, INS, PIK3CA, SGK1, SGK2,
and YWHAG) and 1 of the 13 TM pathway gene SNP
sets (POT1) showed an association (P<0.05) with
longevity in at least two tests (Tables 5 and 6).

Discussion

To study the effect of the IIS and TM pathways on
longevity, SNP set analysis on GWAS data of 403
nonagenarian cases and 1,670 population controls
was performed. Both pathway SNP sets associated
significantly with longevity. The gene SNP sets
analysis showed that the association of the IIS
pathway was scattered over several genes (AKT1,
AKT3, FOXO4, IGF2, INS, PIK3CA, SGK1, SGK2,
and YWHAG), while the association of the TM
pathway seems to be mainly determined by one gene
(POT1).

The proteins encoded by the IIS gene SNP sets that
associate with longevity are involved in several parts
of the IIS pathway (Fig. 1). Akt1, Akt3, Foxo4, Igf2,
Ins2, Pik3ca, and Sgk1 knockout mice all show

Table 2 Characteristics of the telomere maintenance pathway proteins

Protein Gene Entrez gene ID Chr Start (bp) End (bp) Size (kb) SNPs Coverage

TPP1 (shelterin) ACD 65057 16 66,248,916 66,252,219 3.30 2 50.00%

Dyskerin (telomerase) DKC1 1736 X 153,644,225 153,659,158 14.93 1 NA

GAR1 (telomerase) GAR1 54433 4 110,956,115 110,965,342 9.23 1 14.29%

NHP2 (telomerase) NHP2 55651 5 177,509,072 177,513,567 4.50 2 33.33%

NOP10 (telomerase) NOP10 55505 15 32,421,209 32,422,654 1.45 7 45.45%

POT1 (shelterin) POT1 25913 7 124,249,676 124,357,273 107.60 25 55.56%

TP1 (telomerase) TEP1 7011 14 19,903,666 19,951,419 47.75 21 40.00%

TERC (telomerase) TERC 7012 3 170,965,092 170,965,542 0.45 1 25.00%

TRF1 (shelterin) TERF1 7013 8 74,083,651 74,122,541 38.89 10 60.00%

TRF2 (shelterin) TERF2 7014 16 67,946,965 67,977,375 30.41 6 57.14%

RAP1 (shelterin) TERF2IP 54386 16 74,239,136 74,248,842 9.71 4 50.00%

TERT (telomerase) TERT 7015 5 1,306,287 1,348,162 41.88 7 41.18%

TIN2 (shelterin) TINF2 26277 14 23,778,691 23,781,720 3.03 1 14.29%

Total 88

Chr Chromosome position of the gene according to NCBI Build 36, Start (bp) start position of the gene according to NCBI Build 36,
End (bp) end position of the gene according to NCBI Build 36, Coverage coverage of genes based on Phased data HapMap II release
22 CEU, NA not available
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abnormalities in growth and/or increased mortality
(www.informatics.jax.org; Blake et al. 2011), which
indicates that these genes are indeed responsible for
the growth- and lifespan-regulating effects of the IIS
pathway. Previously, SNPs in several of the signifi-
cant IIS pathway genes (AKT1, FOXO4, INS, and
PIK3CA) were studied by single SNP analysis, and
only one SNP, rs3803304 in AKT1, which was not
measured in our study, showed an association with
longevity (Pawlikowska et al. 2009). However, gene
set testing, which could have detected association of
additional genes containing SNPs with many small
effects, was not applied in that study. Most signaling
cascades require cooperation of several genes in
multiple branches of the cascade. This indicates that,
for signaling pathways, mutations in different genes
could result in similar downstream effects, which

would explain the scattered association in the IIS
pathway.

Although SNPs in FOXO3A have previously been
associated with longevity in several independent studies
(Willcox et al. 2008; Flachsbart et al. 2009; Anselmi et
al. 2009; Pawlikowska et al. 2009; Li et al. 2009;
Soerensen et al. 2010), the gene SNP set showed no
effect in our study in the PLINK set-based test, Global
test, and SNP ratio test (P=0.181, P=0.138, and P=
0.180, respectively) (Table 5). This might be due to
the fact that the effects of FOXO3A on longevity are
most prominent in centenarians. As was previously
reported by Flachsbart et al., centenarians represent a
highly selected phenotype even among nonagenarians
(Flachsbart et al. 2009). In addition, the genetic
contribution to longevity in general is increased at higher
ages (Hjelmborg et al. 2006), and the small effects of
longevity-promoting gene variants, relative to other
factors, may be larger in centenarians (Perls et al. 2002)
and not detectable in nonagenarians. The cases in
our study, which are from long-lived families,
have a mean age of 94 years, yet we had only 11
individuals >100 years, which may explain the absence
of significance of the FOXO3A association in our
population.

POT1 is part of the shelterin complex and is
responsible for the binding of this complex to the
TTAGGG repeats of telomeres. Binding of POT1 to
the telomere leads to decreased elongation by telo-
merase (de Lange 2005). Reduction of POT1 in
human fibroblasts by RNAi leads to induction of

Table 4 Results of gene set analysis of insulin/IGF-1 signal-
ing, telomere maintenance, and eye and hair color pathway
SNP sets

Pathway test Insulin/IGF-1
signaling

Telomere
maintenance

Eye and
hair color

PLINK set-based testa 0.064 0.019 0.340

GRASSa 0.010 0.023 0.540

Global testa 0.011 0.023 0.362

SNP ratio testa 0.044 0.034 0.337

a Permutation (n=10,000)
P value

Table 3 Characteristics of the eye and hair color pathway proteins

Protein Gene Entrez gene ID Chr Start (bp) End (bp) Size (kb) SNPs Coverage

ASIP ASIP 434 20 32,311,832 32,320,809 8.98 5 50.00%

HERC2 HERC2 8924 15 26,029,783 26,240,890 211.11 9 41.67%

IRF4 IRF4 3662 6 336,739 356,443 19.70 14 65.00%

MC1R MC1R 4157 16 88,511,788 88,514,886 3.10 3 33.33%

OCA2 OCA2 4948 15 25,673,616 26,018,053 344.44 82 58.00%

SLC24A4 SLC24A4 123041 14 91,858,678 92,037,578 178.90 62 53.68%

SLC45A2 SLC45A2 51151 5 33,980,478 34,020,537 40.06 15 44.83%

TYR TYR 7299 11 88,550,688 88,668,575 117.89 22 56.00%

TYRP1 TYRP1 7306 9 12,683,386 12,700,266 16.88 11 50.00%

Total 223

Chr Chromosome position of the gene according to NCBI Build 36, Start (bp) start position of the gene according to NCBI Build 36,
End (bp) end position of the gene according to NCBI Build 36, Coverage coverage of genes based on Phased data HapMap II release
22 CEU
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apoptosis, chromosomal instability, and senescence
(Yang et al. 2005). The same effects are observed in
Pot1b knockout mice (He et al. 2009; Hockemeyer et
al. 2008). In addition, telomerase-deficient Pot1b
knockout mice show a reduction in lifespan compared
to “normal” telomerase-deficient mice (Hockemeyer
et al. 2008), which stresses the importance of TM in
lifespan regulation. Most protein complexes contain
one or several proteins essential for specific functions
of the complex, e.g., binding, transport, or activation/
repression activity. This indicates that, for pathways
containing a protein complex, mutations in a single
gene, encoding such an essential protein, could be
sufficient to alter the function of the complex, which
would explain the single-gene association in the TM
pathway.

Table 5 Results of gene set analysis of insulin/IGF-1 signaling
pathway gene SNP sets

Gene PLINK set-
based testa

Global testa SNP
ratio testa

AKT1 0.003 0.002 0.099

AKT2 0.193 0.461 0.197

AKT3 0.101 0.023 0.043

BCL2L11 1 0.678 1

BCL6 1 0.539 1

CAT 1 0.661 1

CCND1 1 0.471 1

CCND2 0.248 0.073 0.073

CCNG2 1 0.528 1

CDKN1B 1 0.675 1

CREBBP 1 0.495 1

DEPDC6 1 0.378 1

EP300 1 0.823 1

FASLG 1 0.219 1

FOXO1 1 0.688 1

FOXO3 0.181 0.138 0.180

FOXO4 0.023 0.023 0.055

G6PC 0.156 0.172 0.173

IGF1 0.342 0.042 0.148

IGF1R 0.054 0.373 0.491

IGF2 0.028 0.019 0.084

INS 0.022 0.049 0.188

INSR 0.154 0.217 0.286

INSRR 0.139 0.247 0.224

IRS1 1 0.873 1

IRS2 1 0.569 1

IRS4 1 0.605 1

KAT2B 1 0.905 1

MAPK1 1 0.248 1

MAPK3 1 0.132 1

MAPK8 0.185 0.531 0.215

MAPK9 1 0.198 1

MAPK10 0.191 0.885 0.068

MAPKAP1 1 0.372 1

MLST8 1 0.593 1

MTOR 1 0.722 1

PCK1 1 0.547 1

PHLPP1 0.113 0.398 0.200

PHLPP2 1 0.364 1

PIK3CA 0.003 9:36� 10�4 0.022

PIK3CB 1 0.726 1

PIK3CD 1 0.828 1

PIK3R1 1 0.666 1

Table 5 (continued)

Gene PLINK set-
based testa

Global testa SNP
ratio testa

PIK3R2 1 0.722 1

PIK3R3 1 0.263 1

PPP2R5B 1 0.363 1

PRR5 0.355 0.163 0.257

PTEN 1 0.855 1

PTPN1 1 0.982 1

RBL2 1 0.061 1

RICTOR 1 0.343 1

SCP2 1 0.729 1

SGK1 0.091 0.007 0.016

SGK2 0.027 0.042 0.349

SIRT1 1 0.941 1

SIRT2 1 0.282 1

SIRT3 0.241 0.232 0.326

SKP2 1 0.898 1

SOCS1 1 0.349 1

SOCS3 1 0.996 1

SOD2 1 0.692 1

USP7 0.025 0.101 0.103

YWHAB 1 0.223 1

YWHAE 0.067 0.124 0.196

YWHAG 0.090 0.032 0.018

YWHAH 1 0.236 1

YWHAQ 0.228 0.175 0.293

YWHAZ 1 0.756 1

a Permutation (n=10,000) P value
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There are two main kinds of pathway analyses,
explorative and candidate based. Since we want
to focus on two pathways, the IIS and TM
pathways, we performed candidate-based pathway
analysis. The advantage of testing candidate
pathways instead of explorative testing is the
decreased penalty for multiple testing, due to the
limited amount of tests performed. For information
about pathways, several databases are available, e.g.,
Gene Ontology (Ashburner et al. 2000) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto 2000), which are particularly
useful for explorative studies (Wang et al. 2010).
However, to our knowledge, the IIS and TM path-
ways are not described in sufficient detail in these
databases, and we therefore assembled these path-
ways based on literature. Although the IIS pathway is
available in KEGG (hsa04910; insulin-signaling
pathway), only four of the nine IIS pathway genes
that were associated with longevity, AKT1, AKT3,
INS, and PIK3CA, were part of this pathway, which
indicates that the pathway definition used in this study
could have had a large influence on the results of the
analysis.

Different pathway tests could show contradictory
results, even when analyzing the same GWAS data
(Wang et al. 2010). These discrepancies are caused by
differences in, for example, the underlying statistical
methods of the tests. Therefore, we used several

pathway tests in parallel for our analysis. Some of the
available pathway tests require SNP P values as input
data, while others require raw genotypes (Wang et al.
2010). Given that we have GWAS data available, we
selected pathway tests that make use of raw geno-
types. All four selected pathway tests are self-
contained tests which deal with the complexity of
SNP set testing by permuting the case-control status.
While, the PLINK set-based test, Global test, and
SNP ratio test do not completely incorporate LD
information, GRASS employs PCA to deal with
correlations within each gene. A simulation study
showed that in general, GRASS was more power-
ful than the PLINK set-based test (Chen et al.
2010). Simulation studies for Global test or SNP ratio
test are not yet available. However, despite the
differences between the methods, they all showed
similar results for the IIS and TM pathways in this
study.

SNP set analysis could have power to detect
significant association, even if the power to detect
associations in single SNP analysis is low (Fridley
and Biernacka 2011), as was previously shown in the
Welcome Trust Case Control Consortium (Torkamani
et al. 2008). Our study has a power <1% to detect
single SNP associations of the tested SNPs with an
OR of 1.2 and a minor allele frequency of 0.25 (the
mean frequency of the tested SNPs). However,
because the small (non-significant) effects of the

Table 6 Results of gene set analysis of telomere maintenance pathway gene SNP sets

Gene PLINK set-based testa Global testa SNP ratio testa

ACD 1 0.491 1

DKC1 1 0.642 1

GAR1 1 0.281 1

NHP2 1 0.759 1

NOP10 1 0.208 1

POT1 0.007 0.014 0.019

TEP1 1 0.525 1

TERC 1 0.202 1

TERF1 1 0.821 1

TERF2 0.018 0.160 0.164

TERF2IP 1 0.825 1

TERT 1 0.471 1

TINF2 1 0.587 1

a Permutation (n=10,000)
P value
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SNPs are jointly tested, the pathway SNP set analysis
is able to detect a significant association of the IIS
and TM pathway. This indicates that SNP set analysis
could be a useful approach for studies which showed
no significant associations in single SNP analysis.

There is still much debate about the optimal size of
the window used in SNP set analysis (Holmans 2010;
Fridley and Biernacka 2011; Wang et al. 2010), and
we choose a fixed window of 10 kb to take into
account effects of SNPs in regulatory regions
surrounding the genes. The same window was also
used in a previous study of the IIS pathway
(Pawlikowska et al. 2009). Although there is a chance
that we will miss some functional SNPs, increasing
the window would increase the chance that SNPs are
included with no functional relationship to the tested
gene.

The amount and diversity of SNPs measured per
gene/pathway is highly variable between genotyping
platforms used for GWAS. In addition, there is a large
variety in allele frequencies and presence of SNPs
between populations. For single SNP analysis, one is
dependent on association of the same SNP (or a SNP
in high LD) for replication. However, when due to
varying allele frequencies, different SNPs associate in
different populations, SNP set analysis determines the
combined effect of SNPs within a gene and is able to
overcome this problem. Therefore, replication of SNP
set analysis is assumed to be more reproducible
between genotyping platforms and populations (Luo
et al. 2010; Wang et al. 2010). To support these
assumptions, our findings should be replicated in
other cohorts.

In conclusion, we have shown that genetic varia-
tion in genes involved in the IIS and TM pathways is
associated with human longevity. In addition, we
provide evidence that different self-contained tests
show similar results when applied to candidate-based
pathway analysis.
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