Skip to main content

Advertisement

Log in

Genetic and systemic toxicity induced by silver and copper oxide nanoparticles, and their mixture in Clarias gariepinus (Burchell, 1822)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Unanticipated increase in the use of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) due to their antimicrobial properties is eliciting environmental health concern because of their coexistence in the aquatic environment. Therefore, we investigated the genetic and systemic toxicity of the individual NPs and their mixture (1:1) using the piscine micronucleus (MN) assay, haematological, histopathological (skin, gills and liver) and hepatic oxidative stress analyses [malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT)] in the African mud catfish, Clarias gariepinus. The fish were exposed to sublethal concentrations (6.25–100.00 mg/L) of each NP and their mixture for 28 days. Both NPs and their mixture induced significant (p < 0.05) increase in MN frequency and other nuclear abnormalities. There was significant decrease in haemoglobin concentration, red and white blood cell counts. Histopathological lesions observed include epidermal skin cells and gill lamellae hyperplasia and necrosis of hepatocytes. The levels of MDA, GSH and activities of SOD and CAT were impacted in C. gariepinus liver following the exposure to the NPs and their mixture. Interaction factor analysis of data indicates antagonistic genotoxicity and oxidative damage of the NPs mixture. These results suggest cytogenotoxic effects of Ag NPs, CuO NPs and their mixture via oxidative stress in Clarias gariepinus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahamed M, AlSalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411(23–24):1841–1848

    Article  CAS  Google Scholar 

  • Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115

    Article  CAS  Google Scholar 

  • Alimba CG, Saliu JK, Adesanya A, Bakare AA (2011) Evaluation of genotoxicity of a municipal landfill leachate by micronucleus test using Clarias gariepinus. Res Environ Life Sci 4(1):1–6

    Google Scholar 

  • Alimba CG, Ajayi EO, Hassan T, Sowunmi AA, Bakare AA (2015) Cytogenotoxicity of abattoir effluent in Clarias gariepinus (Burchell, 1822) using micronucleus test. Chin J Biol 2015:1–6

    Article  Google Scholar 

  • Alkaladi A, El-Deen NA, Afifi M, Zinadah OA (2015) Hematological and biochemical investigations on the effect of vitamin E and C on Oreochromis niloticus exposed to zinc oxide nanoparticles. Saudi J Bio Sci 22(5):556–563

    Article  CAS  Google Scholar 

  • American Fisheries Society (2004) Guidelines for the use of fishes in research. Copyright by the American Fisheries Society, Bethesda, MD. 1–57. Available on the internet: http://www.fisheries.org/afs/publicpolicy/guidelines 2004

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468

    Article  CAS  Google Scholar 

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102

    Article  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  • Augspurger TP, Herman RL, Tanacredi JT, Hatfield JS (1994) Liver lesions in winter flounder (Pseudopleuronectes americanus) from Jamaica Bay, New York: indications of environmental degradation. Estuaries. 17(1):172–180

    Article  Google Scholar 

  • Ayoola SO, Adejumobi KO, Adamson OH (2014) Haematological indices and enzymatic biomarker of black jaw tilapia (Sarotherodon melanotheron) from Lagos Lagoon. Agrosearch. 14(1):62–75

    Article  Google Scholar 

  • Bakare AA, Alabi OA, Gbadebo AM, Ogunsuyi OI, Alimba CG (2013) In vivo cytogenotoxicity and oxidative stress induced by electronic waste leachate and contaminated well water. Challenges 4(2):169–187

    Article  Google Scholar 

  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208(3):286–292

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  CAS  Google Scholar 

  • Beutler E, Durgun O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 51:882–890

    Google Scholar 

  • Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96(2):159–165

    Article  CAS  Google Scholar 

  • Blaxhall PC, Daisley KW (1973) Routine haematological methods for use with fish blood. J Fish Biol 5(6):771–781

    Article  Google Scholar 

  • Bolognesi C, Cirillo S (2014) Genotoxicity biomarkers in aquatic bioindicators. Curr Zool 60(2):273–284

    Article  CAS  Google Scholar 

  • Braham RP, Blazer VS, Shaw CH, Mazik PM (2017) Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA. Environ Mol Mutagens 58(8):570–581

    Article  CAS  Google Scholar 

  • Cambier S, Røgeberg M, Georgantzopoulou A, Serchi T, Karlsson C, Verhaegen S, Iversen TG, Guignard C, Kruszewski M, Hoffmann L, Audinot JN (2018) Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. Sci Total Environ 610:972–982

    Article  CAS  Google Scholar 

  • Carrasco KR, Tilbury KL, Myers MS (1990) Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47(11):2123–2136

    Article  CAS  Google Scholar 

  • Cavallo D, Ursini CL, Iavicoli S (2012) Cyto-genotoxicity of engineered nanomaterials: implications for occupational health. Curr Top Toxicol 8:59–82

    CAS  Google Scholar 

  • Cheesbrough M (2005) Haematological test. In: District laboratory practice in tropical countries part 2, 2nd edn. New York, Cambridge, pp 263–347

    Chapter  Google Scholar 

  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100(2):151–159

    Article  CAS  Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  • Cunningham S, Brennan-Fournet ME, Ledwith D, Byrnes L, Joshi L (2013) Effect of nanoparticle stabilization and physicochemical properties on exposure outcome: acute toxicity of silver nanoparticle preparations in zebrafish (Danio rerio). Environ Sci Technol 47(8):3883–3892

    Article  CAS  Google Scholar 

  • De Graaf G, Janssen H (1995) Artificial reproduction and pond rearing of the African catfish Clarias gariepinus in Sub-Saharan Africa: a handbook. FAO, Roma

    Google Scholar 

  • Delgado K, Quijada R, Palma R, Palza H (2011) Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett Appl Microbiol 53(1):50–54

    Article  CAS  Google Scholar 

  • Doak SH, Dusinska M (2017) NanoGenotoxicology: present and the future. Mutagenesis 32(1):1–4

    Article  CAS  Google Scholar 

  • Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S (2011) Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Intl J Heat Mass Transfer 54(19–20):4376–4388

    Article  CAS  Google Scholar 

  • Esteban MA (2012) An overview of the immunological defenses in fish skin. ISRN immunology http://sci-hub.tw/10.5402/2012/853470

  • Farkas J, Peter H, Christian P, Urrea JA, Hassellöv M, Tuoriniemi J, Gustafsson S, Olsson E, Hylland K, Thomas KV (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37(6):1057–1062

    Article  CAS  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles freshwater fish-Labeo rohita. Appl Nano 6:19–29

    Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75

    Article  CAS  Google Scholar 

  • Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine 9:2399–2407

    Google Scholar 

  • Georgantzopoulou A, Serchi T, Cambier S, Leclercq CC, Renaut J, Shao J, Kruszewski M, Lentzen E, Grysan P, Eswara S, Audinot JN (2016) Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol 13(1):9. https://doi.org/10.1186/s12989-016-0117-9

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    CAS  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41(23):8178–8186

    Article  CAS  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107(2):404–415

    Article  CAS  Google Scholar 

  • Groff JM (2001) Cutaneous biology and diseases of fish. Vet Clin North Am Exot Anim Pract 4(2):321–411

    Article  CAS  Google Scholar 

  • Huang S, Chueh PJ, Lin YW, Shih TS, Chuang SM (2009) Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol Appl Pharmacol 241(2):182–194

    Article  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  Google Scholar 

  • Katsifis SP, Kinney PL, Hosselet S, Burns FJ Christie (1996) Interaction of nickel with mutagens in the induction of sister chromatid exchanges in human lymphocytes. Mutat Res 359: 7–15

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    Article  CAS  Google Scholar 

  • Khan MS, Qureshi NA, Jabeen F (2017a) Assessment of toxicity in fresh water fish La with silver nanoparticles. Appl Nanosci 7(5):167–179

    Article  CAS  Google Scholar 

  • Khan MS, Qureshi NA, Jabeen F, Asghar MS, Shakeel M, Fakhar -E -Alam M (2017b) Eco-friendly synthesis of silver nanoparticles through economical methods and assessment of toxicity through oxidative stress analysis in the Labeo Rohita. Biol Trace Elem Res 176(2), 416–428

  • Kruszewski M, Brzoska K, Brunborg G, Asare N, Dobrzynska M, Dusinska M, Fjellsbo LM, Georgantzopoulou A, Gromadzka-Ostrowska J, Gutleb AC, Lankoff A, Magdolenova Z, Pran ER, Rinna A, Instanes C, Sandberg WJ, Schwarze P, Stepkowski T, Wojewodzka M, Refsnes M (2011) Toxicity of silver nanomaterials in higher eukaryotes. In: Fishbein JC (ed) Advances in molecular toxicology. Elsevier, Baltimore, pp 179–218

    Chapter  Google Scholar 

  • Lee B, Duong CN, Cho J, Lee J, Kim K, Seo Y, Kim P, Choi K, Yoon J (2012) Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). J Biomed Biotechnol 2012:1–14

    Google Scholar 

  • Li S, Pozhitkov A, Ryan RA, Manning CS, Brown-Peterson N, Brouwer M (2010) Constructing a fish metabolic network model. Genome Biol 11:R115. https://doi.org/10.1186/gb-2010-11-11-r115

    Article  CAS  Google Scholar 

  • Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, Chen T (2017) Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol 91(1):509–519

    Article  CAS  Google Scholar 

  • Lin S, Zhao Y, Xia T, Meng H, Zhaoxia J, Liu R, George S, Xiong S, Wang X, Zhang H, Pokhrel S, Mädler Z, Damoiseaux R, Lin S, Nel A (2011) High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 5(9):7284–7295

    Article  CAS  Google Scholar 

  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278

    Article  CAS  Google Scholar 

  • Makwana S, Choudhary R, Kohli P (2015) Advances in antimicrobial food packaging with nanotechnology and natural antimicrobials. Int J Food Sci Nutr Eng 5(4):169–175. https://doi.org/10.5923/j.food.20150504.02

    Article  Google Scholar 

  • Misra H, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  Google Scholar 

  • Nelson BC, Wright CW, Ibuki Y, Moreno-Villanueva M, Karlsson HL, Hendriks G, Sims CM, Singh N, Doak SH (2017) Emerging metrology for high-throughput nanomaterial genotoxicology. Mutagenesis 32(1):215–232

    Article  CAS  Google Scholar 

  • OECD (1992) Guideline for testing of chemicals, 203. Fish, acute toxicity test. OECD, Paris

    Google Scholar 

  • Olarinmoye O, Taiwo VO, Clarke E, Kumolu-johnson C, Aderinola O, Adekunbi F (2009) Hepatic pathologies in the brackish water catfish (chrysichthys nigrodigitatus) from contaminated locations of the Lagos lagoon complex. Appl Ecol Environ Res 7(3):277–286

    Article  Google Scholar 

  • Ostaszewska T, Chojnacki M, Kamaszewski M, Sawosz-Chwalibóg E (2016) Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian. Environ Sci Pollut Res 23:1621–1633. https://doi.org/10.1007/s11356-015-5391-9

    Article  CAS  Google Scholar 

  • Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S (2003) Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci Total Environ 309(1–3):105–115

    Article  CAS  Google Scholar 

  • Rajkumar KS, Kanipandian N, Thirumurugan R (2016) Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci 6(1):19–29

    Article  CAS  Google Scholar 

  • Rice-Evans C, Omorphos SC, Baysal E (1986) Sickle cell membranes and oxidative damage. Biochem J 237(1):265–269

    Article  CAS  Google Scholar 

  • Sayed AH (2016) Genotoxicity detection following exposure to silver nanoparticles in African catfish (Clarias gariepinus). Int J Nanoparticles 9(1):41–53

    Article  CAS  Google Scholar 

  • Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine 12(3):701–710

    Article  CAS  Google Scholar 

  • Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116:90–101

    Article  CAS  Google Scholar 

  • Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(1):S13

    Article  Google Scholar 

  • Stegeman JJ, Lech JJ (1991) Cytochrome P-450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. Environ Health Perspect 90:101–109

    CAS  Google Scholar 

  • Ubani-Rex OA, Saliu JK, Bello TH (2017) Biochemical effects of the toxic interaction of copper, lead and cadmium on Clarias gariepinus. J Health Pollut 7(16):38–48

    Article  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6(1):1769–1780

    Article  CAS  Google Scholar 

  • Villarreal FD, Das GK, Abid A, Kennedy IM, Kültz D (2014) Sublethal effects of CuO nanoparticles on Mozambique tilapia (Oreochromis mossambicus) are modulated by environmental salinity. PLoS One 9(2):e88723

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32(1):165–173

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100(2):160–167

    Article  CAS  Google Scholar 

  • Yoo-Iam M, Chaichana R, Satapanajaru T (2014) Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver barb (Barbonymus gonionotus). Chem Speciat Bioavailab 26(4):257–265

    Article  CAS  Google Scholar 

  • Zhao J, Wang Z, Liu X, Xie X, Zhang K, Xing B (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J Hazard Mater 197:304–310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Ibadan Postgraduate College teaching and research assistantship award given to Olusegun I. Ogunsuyi. The cooperation between the institutions in Nigeria and Luxembourg was initiated at the “Meet the expert” initiative session during the Society of Toxicology (SOT) 2017 annual conference in Baltimore, USA. The authors would like to thank Jean-Luc Biagi from the electron microscopy platform (MRT, LIST, Luxembourg) for his valuable help on the acquisition of the SEM pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adekunle A. Bakare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Céline Guéguen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunsuyi, O.I., Fadoju, O.M., Akanni, O.O. et al. Genetic and systemic toxicity induced by silver and copper oxide nanoparticles, and their mixture in Clarias gariepinus (Burchell, 1822). Environ Sci Pollut Res 26, 27470–27481 (2019). https://doi.org/10.1007/s11356-019-05958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05958-6

Keywords

Navigation