Skip to main content

Advertisement

Log in

Unraveling molecular targets of bisphenol A and S in the thyroid gland

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) is a well-known endocrine disruptor with several effects on reproduction, development, and cancer incidence, and it is highly used in the plastic industry. Bisphenol S (BPS) was proposed as an alternative to BPA since it has a similar structure and can be used to manufacture the same products. Some reports show that BPA interferes with thyroid function, but little is known about the involvement of BPS in thyroid function or how these molecules could possibly modulate at the same time the principal genes involved in thyroid physiology. Thus, the aims of this work were to evaluate in silico the possible interactions of BPA and BPS with the thyroid transcription factors Pax 8 and TTF1 and to study the actions in vivo of these compounds in zebrafish thyroid gene expression. Adult zebrafish treated with BPA or BPS showed that sodium iodide symporter, thyroglobulin, and thyroperoxidase genes were negatively or positively regulated, depending on the dose of the exposure. Human Pax 8 alignment with zebrafish Pax 8 and Rattus norvegicus TTF1 alignment with zebrafish TTF1 displayed highly conserved regions in the DNA binding sites. Molecular docking revealed the in silico interactions between the protein targets Pax 8 and TTF1 with BPA and BPS. Importance of some amino acids residues is highlighted and ratified by literature. There were no differences between the mean energy values for BPA docking in Pax 8 or TTF1. However, BPS energy values were lower in TTF1 docking compared to Pax 8 values. The number of amino acids on the protein interface was important for Pax 8 but not for TTF1. The main BPA interactions with proteins occurred through Van der Waals forces and pi-alkyl and alkyl interactions, while BPS interactions mainly occurred through carbon hydrogen bonds and conventional hydrogen bonds in addition to Van der Waals forces and pi-alkyl interactions. These data point to a possible interaction of BPA and BPS with Pax 8 and TTF1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

We are very grateful to Prof. Dr. Silvana Allodi from IBCCF-UFRJ for making the invertebrate vivarium available and Silvania Nunes for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nelilma Correia Romeiro or Leandro Miranda-Alves.

Ethics declarations

The Ethics Committee for the Use of Animals (CEUA) of the Federal University of Rio de Janeiro approved all the procedures (number 045/14).

Conflict of interest

The authors declare that they have no conflict of interest.

Financial support

This study was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (PP-SUS-FAPERJ E-26/110.282/2014; JCNE-FAPERJ, E-26/201.520/2014; APQ1-FAPERJ, E-26/111.485/2014), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Ciências sem Fronteiras/Pesquisador Visitante Especial/88881.062218/2014-0), and Conselho Nacional de Desenvolvimento Científico (CNPq, PQ- Nível 2, 305872/2016-8). Berto-Júnior scholarship and Ana Paula Santos-Silva fellowship were provided by CAPES. This research was also supported by FAPES No. 03/2017-UNIVERSAL (#179/2017) and CNPq No. 12/2017 (#304724/2017-3). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Disclosure statement

No competing financial interests exist.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berto-Júnior, C., Santos-Silva, A.P., Ferreira, A.C.F. et al. Unraveling molecular targets of bisphenol A and S in the thyroid gland. Environ Sci Pollut Res 25, 26916–26926 (2018). https://doi.org/10.1007/s11356-018-2419-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2419-y

Keywords

Navigation