Skip to main content
Log in

Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to formulate novel microbial consortia isolated from plastic garbage processing areas and thereby devise an eco-friendly approach for enhanced degradation of low-density polyethylene (LDPE). The LDPE degrading bacteria were screened and microbiologically characterized. The best isolates were formulated as bacterial consortia, and degradation efficiency was compared with the consortia formulated using known isolates obtained from the Microbial Culture Collection Centre (MTCC). The degradation products were analyzed by FTIR, GC-FID, tensile strength, and SEM. The bacterial consortia were characterized by 16S ribosomal DNA (rDNA) sequencing. The formulated bacterial consortia demonstrated 81 ± 4 and 38 ± 3 % of weight reduction for LDPE strips and LDPE pellets, respectively, over a period of 120 days. However, the consortia formulated by MTCC strains demonstrated 49 ± 4 and 20 ± 2 % of weight reduction for LDPE strips and pellets, respectively, for the same period. Furthermore, the three isolates in its individual application exhibited 70 ± 4, 68 ± 4, and 64 ± 4 % weight reduction for LDPE strips and 21 ± 2, 28 ± 2, 24 ± 2 % weight reduction for LDPE pellets over a period of 120 days (p < 0.05). The end product analysis showed structural changes and formation of bacterial film on degraded LDPE strips. The 16S rDNA characterization of bacterial consortia revealed that these organisms were novel strains and designated as Enterobacter sp. bengaluru-btdsce01, Enterobacter sp. bengaluru-btdsce02, and Pantoea sp. bengaluru-btdsce03. The current study thus suggests that industrial scale-up of these microbial consortia probably provides better insights for waste management of LDPE and similar types of plastic garbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond Ser B Biol Sci 364:1985–1998

    Article  CAS  Google Scholar 

  • Beveridge TJ (2001) Use of gram stain in microbiology. Biotech Histochem 76:111–118

    Article  CAS  Google Scholar 

  • Bhardwaj H, Gupta R, Tiwari A (2012) Microbial population associated with plastic degradation. Open Access Sci Rep 1:272. doi:10.4172/scientificreports.272

    Google Scholar 

  • Bhatia M, Girdhar A, Tiwari A, Nayarisseri A (2014) Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. Springerplus 3:497. doi:10.1186/2193-1801-3-497

    Article  Google Scholar 

  • Central Pollution Control Board (2013) Annual Report 2011–12. PR Division, Ministry of Environment & Forests, Govt. of India. (http://cpcb.nic.in/upload/AnnualReports/AnnualReport_43_AR_2011-12)

  • Corti A, Muniyasami S, Vitali M, Imam SH, Chiellini E (2010) Oxidation and biodegradation of polyethylene films containing pro-oxidant additives: synergistic effects of sunlight exposure, thermal aging and fungal biodegradation. Polym Degrad Stab 95:1106–1114

    Article  CAS  Google Scholar 

  • Das MP, Kumar S (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3Biotech 5:81–86

    Google Scholar 

  • Das MP, Kumar S, Rebecca JL, Sharmila S (2013) Isolation and identification of LDPE degrading fungi from municipal solid waste. J Chem Pharm Res 5:78–81

    Google Scholar 

  • Deepika S, Jaya MR (2015) Biodegradation of low density polyethylene by microorganisms from garbage soil. JEBAS 3:15–21

    Google Scholar 

  • Dey U, Mondal NK, Das K, Dutta S (2012) An approach to polymer degradation through microbes. IOSR J Pharm 2:385–388

    Google Scholar 

  • Duddu MK, Tripura LK, Guntuku G, Divya DS (2015) Biodegradation of LDPE by a new bio-surfactant producing thermophillic Streptomyces coelicoflavus NBRC 15399. Afr J Biotechnol 14:327–340

    Article  CAS  Google Scholar 

  • Esmaeili A, Pourbabaee AA, Alikhani HA, Shabani F, Esmaeili E (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One. doi:10.1371/journal.pone.0071720

    Google Scholar 

  • Geldreich EE, Nash HD, Reasoner DJ, Taylor RH (1972) The necessity of controlling bacterial populations in potable waters: community water supply. J Am Water Works Assoc 64:596–602

    CAS  Google Scholar 

  • Hemashenpagam N, Growther L, Murgalatha N, Raj VS, Vimal SS (2013) Isolation and characterization of a bacterium that degrades PBSA. Int J Pharm Bio Sci 4:335–342

    CAS  Google Scholar 

  • Hester RE, Harrison RM (2011) Marine pollution and human health. RSC Publishing, London

    Book  Google Scholar 

  • Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond Ser B Biol Sci 364:2115–2126

    Article  CAS  Google Scholar 

  • Howard GT, Hilliard NP (1999) Use of coomassie blue-polyurethane interaction in detection of polyurethanease proteins and polyurethanolytic bacteria. Int Biodeterior Biodegrad 43:23–30

    Article  CAS  Google Scholar 

  • Jakubowicz I, Yarahmadi N, Arthurson V (2011) Kinetics of abiotic and biotic degradability of low-density polyethylene containing pro-degradant additives and its effect on the growth of microbial communities. Polym Degrad Stab 96:919–928

    Article  CAS  Google Scholar 

  • John RC, Essien JP, Akpan SB, Okpokwasili GC (2012) Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria. Bull Environ Contam Toxicol 88:1014–1019

    Article  CAS  Google Scholar 

  • Jurtshuk P Jr, McQuitty DNM (1976) Use of quantitative oxidase test for characterizing oxidative metabolism in bacteria. Appl Environ Microbiol 31:668–679

    CAS  Google Scholar 

  • Klein PD, Graham DY, Gaillour A (1991) Water source as risk factor for Helicobacter pylori infection in Peruvian children. Lancet 337:1503–1506

    Article  CAS  Google Scholar 

  • Kruskala WH, Wallisa WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  • Kumar S, Hatha AAM, Christi KS (2007) Diversity and effectiveness of tropical mangrove soil micro flora on the degradation of polythene carry bags. Rev Biol Trop 55:777–786

    Google Scholar 

  • Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas spp. Indian J Microbiol 52:411–419

    Article  CAS  Google Scholar 

  • Lee B, Pometto AL, Fratzke A, Bailey TB (1991) Biodegradation of dagradable plastic polyethylene by Phanerochate and Streptomyces species. Appl Environ Microbiol 57:678–685

    CAS  Google Scholar 

  • Lee YJ, Kim KS, Kwon YK, Tak RB (2003) Biochemical characteristics and antimicrobials susceptibility of Salmonella gallinarum isolated in Korea. J Vet Med Sci 4:161–166

    Google Scholar 

  • Lodhi AF, Hasan F, Shah Z, Hameed A, Faisal S, Shah AA (2011) Optimization of culture conditions for the production of poly (3-Hydroxybutyrate) depolymerase from newly isolated Aspergillus fumigates from soil. Pak J Bot 43:1361–1372

    CAS  Google Scholar 

  • Manzur A, Limon GM, Favela TE (2004) Biodegradation of physiochemically treated LDPE by a consortium of filamentous fungi. J Appl Polym Sci 92:265–271

    Article  CAS  Google Scholar 

  • Mossel DAA, Mengerink WHJ, Scholts HH (1962) Use of modified MacConkey agar medium for the selective growth and enumeration of Enterobacteriaceae. Appl Microbiol 84:235–240

    Google Scholar 

  • Murray PR, Baron JH, Pfaller MA, Jorgensen JH, Yolken RH (2003) Manual of clinical microbiology, 8th edn. American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51:134–140

    Article  CAS  Google Scholar 

  • Nanda S, Sahu SS, Abraham J (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J Appl Sci Environ Manag 14:57–60

    CAS  Google Scholar 

  • North EJ, Halden RU (2013) Plastics and environmental health: the road ahead. Rev Environ Health 28:1–8

    Article  CAS  Google Scholar 

  • Nowak B, Pajak J, Drozd BM, Rymarz G (2011) Microorganisms participating the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeterior Biodegrad 65:757–767

    Article  CAS  Google Scholar 

  • Obradors N, Aguilar J (1991) Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl Environ Microbiol 57:2383–2388

    CAS  Google Scholar 

  • Orhan Y, Büyükgüngör H (2000) Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int Biodeterior Biodegrad 45:49–55

    Article  CAS  Google Scholar 

  • Page RD (2002) Visualizing phylogenetic trees using TreeView. Curr Protoc Bioinformatics. Chapter 6: Unit 6.2. doi:10.1002/0471250953.bi0602s01

  • Patel V, Jain S, Madamwar D (2012) Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India. Bioresour Technol 107:122–130

    Article  CAS  Google Scholar 

  • Pelczar MJ Jr, Reid RD, Chan ECS (1977) Microbiology, 4th edn. Tata McGraw-Hill Publishing Company Ltd, New Delhi

    Google Scholar 

  • Sah A, Negi H, Kapri A, Anwar S, Goel R (2011) Comparative shelf life and efficacy of LDPE and PVC degrading bacterial consortia under bioformulation. Ekologija 57:55–61

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sen SK, Rault S (2015) Microbial degradation of low density polyethylene (LDPE): a review. JECE 3:462–473

    Google Scholar 

  • Skariyachan S, Megha M, Kini MN, Mukund KM, Rizvi A, Vasist K (2015) Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore. India Environ Monit Assess 187:4174. doi:10.1007/s10661-014-4174-y

    Article  Google Scholar 

  • Stager CE, Erikson E, Davis JR (1983) Rapid method for detection, identification and susceptibility testing of enteric pathogens. J Clin Microbiol 17:79–84

    CAS  Google Scholar 

  • Taylor WI, Achanzar D (1972) Catalase test as an aid to the identification of Enterobacteriaceae. Appl Microbiol 29:58–61

    Google Scholar 

  • Titters RR, Sancholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580

    Google Scholar 

  • Tribedi P, Sil AK (2013) Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2. J Appl Microbiol 116:295–303

    Article  Google Scholar 

  • Tribedi P, Sarkar S, Mukherjee K, Sil AK (2012) Isolation of a novel Pseudomonas sp. from soil that can efficiently degrade polyethylene succinate. Environ Sci Pollut Res 19:2115–2124

    Article  CAS  Google Scholar 

  • Usha R, Sangeetha T, Palaniswamy M (2011) Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agric Res Center J Int 2:200–204

    Google Scholar 

  • Vijaya CH, Reddy RM (2008) Impact of soil composting using municipal solid waste on biodegradation of plastics. Indian J Bacteriol 8:235–259

    Google Scholar 

  • Yoon MG, Jeon HJ, Kim MN (2012) Biodegradation of polyethylene by a soil bacterium and alkB cloned recombinant cell. J Bioremedediat Biodegrad 3:145

    CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge Karnataka State Council for Science and Technology (KSCST), Indian Institute of Science, Bangalore, for the financial support (Proj. Ref. No. 38S0142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinosh Skariyachan.

Additional information

Responsible editor: Gerald Thouand

Electronic supplementary material

ESM 1

(DOC 783 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skariyachan, S., Manjunatha, V., Sultana, S. et al. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environ Sci Pollut Res 23, 18307–18319 (2016). https://doi.org/10.1007/s11356-016-7000-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7000-y

Keywords

Navigation