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Quinoline biodegradation by filamentous fungus Cunninghamella
elegans and adaptive modifications of the fungal
membrane composition
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Abstract Quinoline, which belongs to N-heterocyclic com-
pounds, occurs naturally in the environment and is used in
numerous industrial processes. The structures of various
chemicals, such as dyes and medicines, are based on this com-
pound. Due to that fact, quinoline and its derivatives are wide-
ly distributed in environment and can exert toxic effects on
organisms from different trophic levels. The ability of the
filamentous fungus Cunninghamella elegans IM 1785/21Gp
to degrade quinoline and modulate the membrane composi-
tion in response to the pollutant was studied. C. elegans IM
1785/21Gp removes quinoline with high efficiency and trans-
forms the pollutant into two novel hydroxylated derivatives,
2-hydroxyquinoline and 3-hydroxyquinoline. Moreover, due
to the disruption in the membrane stability by quinoline,
C. elegans IM 1785/21Gp modulates the fatty acid composi-
tion and phospholipid profile.

Keywords Quinoline . Degradation . Fungi . Phospholipid
profile

Introduction

Quinoline, which is classified into N-heterocyclic com-
pounds, is a pollutant widely distributed in environment.
High amounts of quinoline are released during the processing

of coal tar and creosote (Pereira et al. 1983; Padoley et al.
2008). Additionally, quinoline is generated during the pro-
cessing of dyes, antibiotics, pesticides, or other industrial pro-
cesses, and as a result, it occurs in high amounts in effluents
and wastewaters (Fetzner 1998; EPA 2001; Padoley et al.
2008). Good solubility, highmobility, and persistence of quin-
oline cause that it is detected in both aquatic and soil ecosys-
tems (Hartnik et al. 2007; Reineke et al. 2007; Blum et al.
2011). Moreover, quinoline and its derivatives can exert toxic
effects on a variety of organisms from different trophic levels.
Ecotoxicological effect of quinoline has been demonstrated
toward bacteria, algae, daphnidas, and soil invertebrates
(Kobetičová et al. 2011; Sochová et al. 2011). Also,
genotoxic and mutagenic activities of quinoline were
confirmed by Eisentraeger et al. (2008) and Neuwoehner
et al. (2009). Due to that fact, increasing environmental pol-
lution by quinoline is a worldwide concern.

Biotransformation of quinoline by bacteria is a well-known
process with reference to its conditions and metabolites
formed during the conversion. Various bacteria, especially
those belonging to the genus Pseudomonas, possess the ability
to tolerate and degrade quinoline (Cui et al. 2004; Zhu et al.
2008; Bai et al. 2009; Sun et al. 2009; Lin and Jianlong 2010).

On the other hand, the knowledge concerning fungal bio-
transformation of quinoline and the influence of the pollutant
and formed derivatives on microorganisms is insignificant.
Only few works describe the conversion of quinoline by fun-
gi, which commonly occur in many environments and are
extensively studied as degradation models of persistent pol-
lutants. White rot fungi possess an ability to degrade pharma-
ceuticals, pesticides, and dyes (Cruz-Morató et al. 2013).
Species of Aspergillus, Mucor, or Cochliobolus are widely
used in the elimination of dangerous xenobiotics (Carvalho
et al. 2011; Felczak et al. 2014; Krupiński et al. 2014). Also,
fungi belonging to the genus of Cunninghamella are well
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known for their ability to metabolize various pollutants.
Cunninghamella species transform polyaromatic hydrocar-
bons like phenanthrene (Pothuluri et al. 1996; Marco-Urrea
et al. 2015), organotin compounds (Bernat and Długoński
2002), or drugs (Paludo et al. 2013; Ahmad et al. 2014).
Additionally, as eukaryotic organisms, filamentous fungi can
provide additional information about quinoline biotransfor-
mation products, their behavior, and toxicity, which are par-
ticularly important for the assessment of the ecological risk.

In this study, we assessed the abilities of Cunninghamella
elegans IM 1785/21Gp to biotransform quinoline and specify
the impact of the compound on the microorganism, taking into
account especially the changes in the fatty acids and phospho-
lipid profile and permeability of the cell membrane. To our
knowledge, nothing has been yet reported on the adaptive
modulation of the fungal fatty acid composition in response
to quinoline.

Materials and method

Microorganism

The filamentous fungus, C. elegans IM 1785/21Gp, was ob-
tained from the Culture Collection of the Department of
Industrial Microbiology and Biotechnology, University of
Lodz, Poland. The selected fungus had previously been de-
scribed as a strain capable of 11β-hydroxylation of
cortexolone to hydrocortisone (Długoński et al. 1997) and
degradation of phenanthrene and tributyltin (TBT)
(Lisowska and Długoński 1999; Bernat and Długoński 2002).

Preparation of fungal inoculum

The spores from 10-day-old cultures on ZT slants (glucose,
4 g L−1; Difco yeast extract, 4 g L−1; agar, 25 g L−1; malt
extract 6°Blg, up to 1 L; pH 7.0) were washed with 5-mL
Sabouraud medium. The obtained spore suspension was incu-
bated on a rotary shaker (180 rpm) at 28 °C, for 24 h. Then, the
inoculum was transferred to fresh Sabouraud medium and
incubated for 24 h, under the same conditions.

Dry weight estimation

To determine the biomass production, the mycelium was sep-
arated by filtration through Whatman filter no. 1, washed
twice, and dried at 105 °C to obtain constant weight.

Elimination of quinoline

Two milliliter of the obtained preculture was transferred to
18 mL of fresh modified Czapek-Dox medium, with an ap-
propriate amount of quinoline. Additionally, biotic controls

containing fresh medium and inoculum of the examined fun-
gus and abiotic controls consisting of fresh uninoculated me-
dia and quinoline were prepared. The initial concentrations of
quinoline were in the range of 0–400 mg L−1. All samples

Quinoline determination by gas chromatography–mass
spectrometry and liquid chromatography–tandem mass
spectrometry methods

To detect quinoline and the products of its transformation,
whole samples of fungal cultures were homogenized on a
FastPrep-24 Instrument and extracted twice with ethyl acetate.
The collected organic phases were dried over anhydrous
Na2SO4 and evaporated to dryness under reduced pressure.
The samples dissolved in ethyl acetate were analyzed on a
gas chromatograph Hewlett-Packard Model 6890 with a
5973 Mass Detector, on a capillary column Restek RTX-
5MS (60 m×0.25 mm×0.23 μm). The temperature of the
column for 4.5 min was 110 °C, and then, it increased to
290 °C at a rate of 20 °C min−1. The carrier gas was helium,
at a constant flow rate of 1 mL min−1. The total time of anal-
ysis was 19.5 min.

For the liquid chromatography–tandem mass spectrometry
(LC-MS/MS) analysis, the extracts were dissolved in metha-
nol. A hybrid triple-quadrupole/linear ion trap mass spectrom-
eter (3200 QTRAP LC-MS/MS, ABSciex) was used to ana-
lyze quinoline and its derivatives in fungal samples. The LC
equipment included an HPLC binary solvent delivery system
(Agilent Series 1200). The chromatographic separation was
performed on a reversed-phase C18 column (4.6×50 mm,
1.8 mm Eclipse SB-C18, Agilent Technologies). The mobile
phase for the LC-MS/MS analysis consisted of water and
methanol; additionally, 5-mM ammonium formate was used
as an additive in all solvents. The gradient profile is presented
in Table 1. The volume of injection was 10 μL. Mass spec-
trometry of quinoline and its potential metabolites was per-
formed using electrospray ionization (ESI), on a 3200
QTRAP system in the positive or negative ion mode. An

Table 1 Linear gradient of water and methanol composition (%) for the
separation of quinoline and its metabolites on a reverse-phase column
(Eclipse SB-C18, 4.6 × 50 mm, 1.8 mm) coupled to an ESI/MS source

Time (min) Water (%) Methanol (%) Flow rate (mL min−1)

0 70 30 0.6

1 70 30 0.6

5 20 80 0.6

10 20 80 0.6

10.1 70 30 0.6

12 70 30 0.6
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information-dependent acquisition (IDA) method, EMS (en-
hanced MS)/EPI (enhanced product ion), was used to identify
possible metabolites. The spectra were obtained over a range
from m/z 50 to 600. Potential metabolites were also detected
using the multiple-reaction monitoring (MRM) mode with a
dwell time 50 ms per each ion transition. The MRM transition
lists of these compounds were created based on the optimiza-
tion of the obtained standards (quinoline, 2-hydroxyquinoline,
8-hydroxyquinol ine, 2,6-dihydroxyquinol ine , 7-
hydroxycoumarin, and 3-(2,4-dihydroxyphenyl) propionic ac-
id; Table 2). Data analysis was performed with Analyst™

v1.5.2 software.

Lipid determination

The samples were filtered onWhatman filter no. 1 and washed
with distilled water twice. Then, the mycelium was homoge-
nized with 10 mL of methanol using FastPrep-24 Instrument.
After collection, the supernatant was supplemented with 2 mL
of 0.9 % NaCl and extracted with chloroform. The organic
phase was drained by anhydrous sodium sulfate and evaporat-
ed to dryness. The extracts were dissolved in a methanol/
chloroform (4:1) mixture and analyzed. The lipid determina-
tion was performed on an Agilent 1200 HPLC system and an
3200 QTRAP mass spectrometer according to Bernat et al.
(2014). All analyses were carried out on cultures containing
200 mg L−1 quinoline, in the stationary phase of growth.

Permeability of fungal cell membranes

From fungal cultures incubated with or without quinoline,
1-mL samples (at least in triplicates) were withdrawn for anal-
ysis. The samples were washed twice with phosphate-buffered
saline (0.1 M, pH=7.4) and incubated with 3 mM propidium
iodide in the dark, for 5 min, at room temperature. After the
incubation, the samples were washed twice with PBS and
20μL of the suspensions was mounted on a microscopic slide.

Confocal microscopy

The images were captured using a Confocal Laser Scanning
Microscope (LSM510, Zeiss) combined with an Axiovert
200M (Zeiss, Germany) inverted fluorescence microscope

equipped with a Plan-Neofluar objective (40×/0.75 oil). All
settings were held constant during the course of all experi-
ments. The propidium iodide fluorescence was detected using
a He–Ne laser (543 nm) and a LP filter set (560–615 nm), and
the Nomarski DIC sections were also performed. The figure
panels in this article represent typical results from observation.

Statistical analysis

All experiments were carried out at least in triplicate and an-
alyzed individually. One-way analysis of variation was used to
determine the statistical significance of the results.

Results and discussion

Quinoline biodegradation by C. elegans IM 1785/21Gp

Preliminary stages of research included the evaluation of
C. elegans IM 1785/21Gp growth in the presence of quinoline
and the assessment of quinoline elimination. The analysis re-
vealed thatC. elegans IM 1785/21Gp exhibited high tolerance
toward quinoline (Fig. 1). The strain was able to grow in the
presence of high concentrations of the compound. The growth
of C. elegans IM 1785/21Gp was inversely proportional to
quinoline concentrations. In samples containing 200 mg L−1

of quinoline, the inhibition of growth reached the value of

Fig. 1 The growth of C. elegans IM 1785/21Gp in the presence of
quinoline on mineral medium, after 48-h incubation. Data are expressed
as percentage (means ± SD) of control sample without pollutant

Table 2 MRM transitions and
MS parameters for quinoline and
its potential metabolites

Analyte MRM transition Polarization Retention time

Quinoline 130.1 > 103.1, 130.1 > 77.1 + 5.75

2-hydroxyquinoline 146.1 > 128.1, 146.1 > 101.1 + 4.62

8- hydroxyquinoline 146.1 > 101.1, 146.1 > 75 + 5.93

2,6-di hydroxyquinoline 162.1 > 144.1, 162.1 > 116.1 + 2.1

7-hydroxycoumarin 161 > 133, 161 > 105 – 3.98

3-(2,4-dihydroxyphenyl) propionic acid 181 > 137.1, 181 > 120.9 – 0.88
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30% in comparison to control samples without the xenobiotic.
The obtained results also indicated that the tested fungal strain
possessed the ability to remove quinoline and it is connected
with its high tolerance to the compound. The highest elimina-
tion of quinoline, 70 % in comparison to abiotic control, was
noted in samples containing 200 mg L−1 quinoline (Fig. 2).
Only in samples containing more than 300 mg L−1 of the test
compound, there was no loss of the substrate, which could be
associated with poor growth of C. elegans IM 1785/21Gp in
these trials. The highest quinoline concentrations significantly
affected the growth of the fungus, which in turn limited the
utilization of quinoline. Therefore, the concentration of
200 mg L−1 was selected for the next stages of research.

Due to the fact that fungal biodegradation pathways of
quinoline are poorly identified, we decided to investigate thor-
oughly the C. elegans IM 1785/21Gp ability to convert quin-
oline. The carried out experiments revealed that the quinoline
elimination was accomplished by formation of two metabo-
lites (Fig. 3). The analysis of these compounds was done on

HPLC-MS/MS. A hybrid QTRAP mass spectrometer com-
bines the scanning capabilities of triple quadrupole and linear
ion trap instruments. In IDA methods, EMS or MRM scans
trigger the acquisition of EPI spectra using EMS-IDA and
MRM-IDA; quinoline (RT 5.75) and its two metabolites, 2-
hydroxyquinoline (RT 4.62) and metabolite with RT 3.95,
were determined in fungal samples. The increase of the 101,
117, and 128 m/z fragments by 1 in the mass spectrum of me-
tabolite RT 3.95 in comparison to that of 2-hydroxyquinoline
allowed deducing that hydroxyl group is attached to the third
carbon atom (Fig. 4).

Literature data describe numerous species of bacteria with
an ability to eliminate quinoline, while little is known about
the possibilities of using filamentous fungi. Zhang et al.
(2007) described the white rot fungus, Pleurotus ostratus, as
a strain capable of growing in the presence of quinoline and
removing the pollutant at a concentration of 250 mg L−1 with-
in 15 days. The published data also indicate that
Cunninghamella strains are able to grow and transform N-
heterocyclic compounds such as carbazole (Yang and Davis
1992), quinine (Siebers-Wolff et al. 1993), 6-methylquinoline
(Mountfield and Hopper 1998), benzoquinoline, and
phenanthridine (Sutherland et al. 2005).

Fungal biotransformation of quinoline was presented by
Sutherland et al. (1994), who showed that C. elegans was ca-
pable of N-oxidation of the compound. Also, P. ostreatus was
described as a strain with an ability to convert quinoline. During
the transformation process, the author detected two unidentified
metabolites (Zhang et al. 2007). The production of 3-hydroxy
derivatives of carbazole was indicated by Yang and Davis
(1992), who revealed that Cunninghamella echinulata grew
in the presence of N-methylcarbazole and converted it into
carbazole, N-hydroxymethylcarbazole, 3-hydroxycarbazole,
and 3-hydroxy-N-hydroxymethylcarbazole.

Fig. 3 MRM scan of the extract
of a 2-day-old fungal culture
incubated with quinoline
(200 mg/l). a
3-hydroxyquinoline,
b 2-hydroxyquinoline,
and c quinoline

Fig. 2 Elimination of quinoline by C. elegans IM 1785/21Gp after 48-h
incubation on mineral medium. Data are expressed as percentage (means
± SD) of appropriate abiotic control
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Summing up, the results presented in this work are in
agreement with literature data, which indicate that strains of
Cunninghamella are able to transform N-heterocyclic
compounds.

Quinoline impact on fatty acids and phospholipid profile
of C. elegans IM 1785/21Gp

In the control samples, without the pollutant, we determined
nine fatty acids in the biomass of C. elegans IM 1785/21Gp,
but only six of them accounted for 95 % of total lipids. These
were the following lipids: two saturated fatty acids, C16:0 and
C18:0, and four unsaturated ones, C16:1(n-9), C18:1(n-9),
C18:2(n-6), and C18:3(n-3) (Fig. 5). The detailed analysis
revealed a threefold decrease in the amount of C18:0
(P<0.01) in samples containing quinoline. Additionally, in
the presence of the xenobiotic, an increased amount of
C18:2(n-6) (P<0.01) and decreased amount of C18:3(n-6)

Fig. 5 Fatty acid profile of C. elegans IM 1785/21Gp mycelium after
incubation with or without quinoline. Data are expressed as the
means ± SD

Fig. 4 The mass chromatogram
of quinoline metabolites collected
at the second day of C. elegans
IM 1785/21Gp incubation,
acquired in the MRMmode a m/z
146.1, 2-hydroxyquinoline and b
m/z 146.1, 3-hydroxyquinoline
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(P<0.05) were observed. Corresponding results were obtain-
ed during the analysis of the phospholipid profile of
C. elegans IM 1785/21Gp. In samples containing quinoline,
decreases in the amounts of C18:1 and C18:3 were also ob-
served. We also noted changes in the value of the unsaturated
biomass index, which slightly increased from 1.07 in the con-
trol samples to 1.15 in the probes with quinoline.

Many toxic substances can interact with various compo-
nents of the cell structure, so the introduction of qualitative
and quantitative changes in its composition may play an im-
portant role in the adaptation mechanisms. Moreover, main-
taining the adequate stability and fluidity of membrane under
stress factors is essential for the proper functioning of a

microorganism. This goal can be achieved by changing the
saturation of membrane, composition of phospholipids, or
length of fatty acids (Xia and Yuan 2009; Murínová and
Dercová 2014). The decrease in the ratio of saturated fatty
acids and the increase in production of unsaturated ones were
shown for Escherichia coli incubated with ethanol (Chiou
et al. 2004). On the other hand, in the presence of TBT, the
amount of saturated fatty acid in C. elegans was found to
increase (Bernat and Długoński 2007). Moreover, the men-
tionedmechanism is a commonly described bacterial response
to the presence of toxic compounds such as chlorophenol and
naphthalene (Dercová et al. 2004; Mrozik et al. 2005). In
summary, the same organism may react to the presence of
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Fig. 6 The phospholipid profile
of the mycelium of C. elegans IM
1785/21Gp in the presence of
quinoline and without addition of
compound. Data are expressed as
the means ± SD. Asterisk
(P< 0.05) indicates values that
differ significantly from the
control. PC phosphatidylcholine,
PE phosphatidylethanoloamine,
PS phosphatidylserine, PI
phosphatidylinsitol, PA
phosphaticid acid
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various xenobiotics in different ways, which can be connected
with the structure of the compound, its toxicity, and mecha-
nism of action.

In the next stage of the study, we examined the phospho-
lipid profile of C. elegans IM 1785/21Gp during the incuba-
tion with quinoline. Phospholipids (PLs) can be divided to
phosphatidylcholine (PC), phosphatidylethanoloamine (PE),
phosphatidylserine (PS), phosphatidylinsitol (PI),
phosphatidylglycerol (PG), and phosphaticid acid (PA). The
analysis of the C. elegans IM 1785/21Gp mycelium revealed
that PCs were dominant PLs and accounted for about 45–
52 % of total PLs. Also, PE occurred in significant amounts
reaching the value of about 37–31 %. PA, PS, and PI were
presented in smaller quantities, achieving the level 3–6 %
(Fig. 6 and Table 3). It is worth mentioning that the addition
of quinoline caused an about 25 % increase in the PC/PE ratio
in comparison to control samples. Simultaneously, with the
increase in PC/PE, the unsaturated index increased from 2.3

to 2.7, for control and quinoline, respectively. Also, the anal-
ysis with propidium iodide, which stains only cells with
disrupted membranes, suggested that membrane permeability
of C. elegans IM 1785/21Gp hyphae increased in samples
containing quinoline (Fig. 7). Additionally, in these samples,
a 1.8-fold increase in the PA content was noted.

The results indicating that PC and PE are dominant PLs in
the biomass of C. elegans IM 1785/21Gp are in accordance
with the work of Bernat et al. (2014). Also, Xia and Yuan
(2009) indicated that in the biomass of Saccharomyces
cerevisiae strains, PC and PE were major lipids and accounted
for 50 and 20 %, respectively.

Due to the fact, that PC is a typical bilayer lipid which
stabilizes the membrane and PE promotes non-bilayer com-
position; their ratio could provide important information on
membrane stability and integrity (de Kroon et al. 2013;
Murínová and Dercová 2014). A simultaneous increase in
PC/PE ratio and unsaturated index can indicate on an increase
in the membrane fluidity and permeability. The disruption of
membranes caused by quinoline was also confirmed by stain-
ing with propidium iodide.

PAs are used for the synthesis of other PLs, but they are
also considered as signal lipids. The changes in the amount of
PA may also indicate that those PLs can play a role in the
tolerance to quinoline. Literature data indicated that the con-
tent of PA can increase in response to various environmental
stress factors (Darwish et al. 2009; Han and Yuan 2009).
Corresponding results were obtained by Bernat et al. (2014),
who indicated that the addition of TBT increased the level of
PA.

Toxic compounds can be collected at different membrane
sites and induce changes in phospholipid profile (Murínová
and Dercová 2014). Various membrane modifications enable
the microorganisms to grow in the presence of pollutants.
However, the data on the adaptive modulation of the

Fig. 7 C. elegans IM 1785/21Gp
incubated with quinoline (b)
compared to controls without the
toxic substrate (a). The left panel
represents the cells stained with
PI, themiddle panel the Nomarski
DIC, and the right panel the
merged images. The bar
represents 20 μm

Table 3 Total amount of PLs (%) and values of characteristic index

Lipid species Control Quinoline

PC 45.0 ± 0.74 51.6 ± 3.28*

PA 3.1 ± 0.75 5.5 ± 0.27*

PE 37.2 ± 5.14 31.7 ± 3.21

PS 5.9 ± 0.59 4.3 ± 0.84

PI 5.4 ± 0.01 5.58 ± 0.96

PC/PE ratio 1.2 ± 0.16 1.5 ± 0.38

DBI 2.3 ± 0.21 2.7 ± 0.27

Data are expressed as the means ± SD

PC phosphatidylcholine, PE phosphatidylethanoloamine, PS
phosphatidylserine, PI phosphatidylinsitol, PA phosphaticid acid, and
DBI double-bond index

*P< 0.05 indicates values that differ significantly from the control
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filamentous fungi membrane in response to quinoline, espe-
cially on phospholipids, are limited. We suppose that the pres-
ence of quinoline disrupts the membrane stability, increasing
the unsaturated lipid content, which influences the cell perme-
ability. In order to maintain proper composition and functional
behavior, the microorganism increases the production of PC
and decreases the synthesis of PE.

Summing up, the presented results clearly indicate that the
microscopic fungus C. elegans IM 1785/21Gp is able to elim-
inate quinoline with high efficiency. Two hydroxylated me-
tabolites, 2-hydroxyquinoline and 3-hydroxyquinoline, are
formed during the biodegradation process. Additionally, the
obtained data reveal that C. elegans IM 1785/21Gp can mod-
ulate the fatty acids and phospholipid profile in response to
quinoline. To our knowledge, this is the first report concerning
the formation of novel quinoline metabolites by fungi and
describing the influence of quinoline on the C. elegans IM
1785/21Gp membrane composition.

Conclusions

Quinoline, which belongs to N-heterocyclic compounds, is
commonly used in various industrial processes. Due to that
fact, quinoline and its derivatives are widely distributed in
environment and can exert toxic effects on organisms from
different trophic levels. The ability of the filamentous fungus
C. elegans IM 1785/21Gp to degrade quinoline and modulate
the membrane composition in response to this pollutant was
studied. C. elegans IM 1785/21Gp removes quinoline with
high efficiency and transforms the pollutant into two novel
hydroxylated derivatives, 2-hydroxyquinoline and 3-
hydroxyquinoline. Moreover, due to the disruption in the
membrane stability by quinoline, C. elegans IM 1785/21Gp
modulates the fatty acid composition and phospholipid pro-
file. To our knowledge, this is the first report on the adaptive
modification of the membrane composition in C. elegans IM
1785/21Gp mycelium in response to quinoline.
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