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ANALYSIS OF THE WEIGHTED KAPPA AND ITS MAXIMUMWITH MARKOV MOVES
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In this paper, the notion ofMarkovmove from algebraic statistics is used to analyze theweighted kappa
indices in rater agreement problems. In particular, the problem of the maximum kappa and its dependence
on the choice of the weighting schemes are discussed. The Markov moves are also used in a simulated
annealing algorithm to actually find the configuration of maximum agreement.
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The analysis of rater agreement is currently one among the most active and relevant research
areas in categorical data analysis. Even in the simplest case where two or more observers rate
a common set of n objects on the same rating scale, there are in literature several indices to
summarize the agreement, each of themwith its own paradoxes, counterexamples, and unexpected
behaviors. Indeed, the large spectrum of possible indices is the symptom of the difficulties in the
interpretation of the results. For a general survey, the reader can refer to Fleiss et al. (2003), von
Eye and Mun (2004), or Shoukri (2010).

The most popular measures of agreement, at least in the two-rater case, are the Cohen’s κ

and the weighted Cohen’s κw. First introduced in Cohen (1960) and Cohen (1968), respectively,
such two indices have been analyzed, criticized, generalized, in order to adapt to the multi-rater
case, to incomplete rating schemes, and so on. For instance, in the multi-rater case the most
popular extension of the Cohen’s κ is the Conger’s κC introduced in Conger (1980), where the
pairwise agreement in all possible two-way marginal tables is considered, see the discussion and
the examples in Vanbelle (2019). In all cases, the rationale behind such indices is the measurement
of the rater agreement beyond chance, in the sense that under complete independence of the raters
the value of the indices should be zero. In this paper, we restrict our attention to the weighted
Cohen’s κw and its extensions to the multi-rater case, paying special attention to the connections
between the choice of the weighting scheme and the maximum attainable value of such indices.

A first issue of the kappa-type statistics we consider in this paper is normalization. It is
known that the interpretation of kappa-type statistics is not straightforward since their maximum
is 1 only when the marginal distributions are homogeneous. In the case of non-homogeneous
margins, the maximum value can be considerably less than 1. As customary in statistics when
working with indices, a problem is therefore to compute the maximum value attainable by an
index in order to compare the observed value with the maximum. Some attempts has been made
in the direction of finding the maximum value of the kappa statistics. For instance, a procedure
has been introduced in Umesh et al. (1989), where the maximum agreement is found by fixing the
observed agreement and by varying the marginal distributions.When working with fixed margins,
however, the computation of the maximum attainable kappa is relatively easy only in the case
of the unweighted κ in two-rater setting, see, e.g., Sim and Wright (2005). The problem is less
simple in the weighted case or in the multi-rater setting. We will illustrate this point extensively.
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Figure 1.
Two psychiatrists’ rating of severity of depression. The observed table (left), a table with the same margins and maximum
agreement with linear weights (center), and the table with the same margins and maximum agreement with quadratic
weights (right).

A second issue this paper deals with is the dependence of the kappa-type statistics on the
choice of the weights. The unweighted version of the Cohen’s κ only distinguishes between
agreement cells and disagreement cells, and thus, it is used in case of ratings on a nominal scale.
When the rating scale is ordinal, or in general when there are some disagreements to be considered
more serious than others, then the weighted κw should be preferred. In this case, the choice of
the weights is a delicate issue, and it is known that different weighting schemes lead to quite
different results. In addition, the main weighting schemes (i.e., linear or quadratic) have been
studied extensively, but there is a need of further analyses to better understand the role played
by the weights in the behavior of kappa-type statistics. In a recent paper by Kvålseth Kvålseth
(2018), the dependence of the weighted κw on the choice of the weights is highlighted, and the
relevance of the interpretation of the κw values as functions of the weighting schemes is discussed
extensively. The author motivates its study on the properties of the weights claiming that, without
a clear understanding of the connections between the weights and the κw, the weighted κw itself
is not a satisfactory index to describe the agreement in an ordinal context. Thus, also this problem
will be considered here.

Both the points described above are analyzed in this paper with the aid of algebraic statistics.
We give insights and new results to provide a precise understanding of the action of weights in the
computation of the kappa, and thiswill help for a correct interpretation ofweighted kappa statistics.
This analysis is carried out here by means of the Markov moves, well-known tools in algebraic
statistics for the analysis of contingency tables. In particular, we show how the properties of the
weights affect the configuration ofmaximumagreement. Our results allow a precise understanding
of the role of the weights and their impact on the structure of the configuration with maximum
agreement. The use of algebraic statistics for rater agreement analysis has been considered in
other works, but mainly for computational purposes. For instance, the use of Markov bases to
make exact tests in this framework can be found in Rapallo (2003) and Rapallo (2005).

Without introducing here formal definitions, for which the reader can refer to the next section,
let us present a simple example, taken from von Eye and Mun (2004), page 74. Two psychiatrists
P1 and P2 rate the severity of depression of 129 patients using a three-level ordinal scale. The
observed data are in Fig. 1 (left). A table with the same margins and maximum agreement with
linear weights is in Fig. 1 (center), while the table with the samemargins andmaximum agreement
with quadratic weights is in Fig. 1 (right).

Already from this simple example, we can highlight some counterintuitive facts. For instance,
not always the maximum agreement is obtained by maximizing the counts on the diagonal. With
quadratic weights the maximum is not attained in a table which fulfills the main diagonal as much
as possible. We will show that to fulfill the diagonal is a good strategy to increase the agreement
only if the weights define a distance on the ground set, and this is not the case, for instance,
when quadratic weights are used. On that point, the available resources to compute the maximum
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agreement fail. The R package rel, LoMartire (2020) and, for the two-rater setting, some online
calculators, e.g., in Lowry (2020) at the date of submission, do not give the correct answer.

Another interesting point concerning the above example is that with linear weights there
are several configurations with the same value of kappa. The tables in Fig. 1 (center and right)
share the same value of weighted kappa with linear weights (0.6089), although they appear rather
different at a first sight, and the weighted kappa with quadratic weights ranges from 0.6007 to
0.6909. We will see that in this simple example all tables with the maximum agreement under
linear weights can be obtained in an easy way, as only one Markov move can be applied.

Finally, we exploit again the Markov moves, and we introduce a simple simulated annealing
algorithm to find the maximum agreement. In particular, we assume the marginal distributions as
fixed and we consider all multivariate tables with fixed one-way margins. The proposed algorithm
can be applied with a general weighting scheme, not limited to linear or quadratic. Notice that
the problem can be tackled also within the theory of integer linear programming (maximize the
kappa statistics taking fixed the margins), but Markov moves provide a flexible tool and a solution
easy to explain.

The paper is organized as follows. In Sect. 1 we recall the notation and the basic definitions
about the Cohen’s κ , the weighted Cohen’s κw, and the Conger’s κC and κC,w for the multi-rater
case. In Sect. 2, we compute the Markov bases for the rater agreement problem in the two-rater
and in the multi-rater cases. Such Markov bases are used in Sect. 3 to state some results on the
structure of the configuration ofmaximum agreement in connectionwith the (metric) properties of
theweighting schemes. Section 4 is devoted to the illustration of a simulated annealing algorithm to
actually find the configuration of maximum agreement, while in Sect. 5 the results of a simulation
study are presented and discussed. Finally, Sect. 6 contains some concluding remarks and pointers
to future directions.

1. Notation and Basic Recalls

In this section, we briefly review the basic definitions about the kappa-type indices of agree-
ment which will be used in the paper. We first focus on the two-rater setting.

Let us consider the ratings of the two raters as a pair of random variables X and Y on the
set {1, . . . , k}, or more generally on a finite ground set {x1, . . . , xk}. Let us denote with pi j the
probability of the cell (i, j), and with pi+ (i = 1, . . . , k) and p+ j ( j = 1, . . . , k) the marginal
distributions of X and Y , respectively. The Cohen’s κ is defined as:

κ =
∑k

i=1 pii − ∑k
i=1 pi+ p+i

1 − ∑k
i=1 pi+ p+i

= 1 −
∑

(i, j)∈D pi j
∑

(i, j)∈D pi+ p+ j
, (1)

where D = {(i, j) : i �= j} is the set of the disagreement cells.
Given a matrix of weights of agreementW = (wi j ) with 0 ≤ wi j < 1 for all i, j with i �= j ,

and wi i = 1 for all i , the weighted kappa is:

κw =
∑k

i, j=1 wi j pi j − ∑k
i, j=1 wi j pi+ p+ j

1 − ∑k
i, j=1 wi j pi+ p+ j

= 1 −
∑

(i, j)∈D ui j pi j
∑

(i, j)∈D ui, j pi+ p+ j
, (2)

where in the second expression ui j = 1 − wi j . Although not strictly necessary for the theory of
rater agreement, we suppose that the matrices W and U = (ui j ) are symmetric, because some of
our results are based on the properties of the metric functions, where symmetry is one the axioms.
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In the previous formulas, the ui j are weights of disagreement, and it is easily seen that ui j = 0 on
the main diagonal and 0 < ui j ≤ 1 for i �= j . When a sample is available, the indices κ and κw

are estimated by replacing in Eqs. (1) and (2) the theoretical probabilities with the corresponding
sample proportions. On a sample of size N , we denote with ni j the count of the cell (i, j) and
therefore sample proportion is p̂i j = ni j/N .

Among the most commonly used weighting schemes there are:

(a) the quadratic weights (see Fleiss and Cohen 1973):

ui j = (i − j)2

(k − 1)2
(3)

(b) the linear weights (see Cicchetti and Allison 1971):

ui j = |i − j |
k − 1

(4)

Moreover, the unweighted κ in Eq. (1) can be considered as a special case of the weighted κw by
setting

ui j =
{
0 for i = j
1 otherwise

(5)

Recent discussions on the choice, use, and interpretation of the different weighting schemes can
be found in Warrens (2013) and Kvålseth (2018). On one side, the main reasons in favor of the
quadratic and linearweights are essentially of theoretical nature. In fact, the quadraticweights lead
to the interpretation of the weighted kappa as the intraclass correlation coefficient, see Schuster
(2004). On the other side, the linear weights allow us to define the weighted kappa as a weighted
average of kappas for the 2 × 2 tables obtained by collapsing adjacent categories, see Vanbelle
and Albert (2009). However, undesirable behaviors of the weighted kappa for some data set can
be observed under both choices of the weights, and thus the interpretation of the value of kappa
is not easy in general. We will come back to this issue later in the paper, when we will use
Markov moves to find the maximum agreement. Another interesting interpretation of the linear
and quadratic weights is discussed in Li (2016), where matrix W is decomposed into a sum of
suitable rank one matrices.

In order to illustrate our theory, we also consider a square-root version of theweights, namely:

ui j =
√|i − j |√

k − 1
(6)

As a preliminary remark, notice that the linear weights in Eq. (4) and the square-root weights in
Eq. (6) define a distance inR, while the quadratic weights in Eq. (3) do not, because the triangular
inequality is not satisfied. Usually, functions like the quadratic weights are called dissimilarities.
In this paper, when the matrixU is a distance matrix, we name the weights as “distance weights,”
and in particular, we refer to the weights in Eq. (6) as to the sqrt weights. Moreover, we use the
notation κq , κl , κs when quadratic, linear, or sqrt weights are used, while we denote with κw the
kappa with a general weight.

Observe that the distance defined by the linear weights is the usual Euclidean distance in
R, and it has a special behavior in terms of the triangular inequality. In fact, for i < j < h the
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triangular inequality becomes an equality: uih = ui j + u jh . We will exploit this property later in
the paper.

In the multi-rater setting, we consider the ratings of r raters as r random variables X1, . . . , Xr

on the same set {1, . . . , k}, or more generally on {x1, . . . , xk}. The observed data form a kr table.
We denote with pi1...ir the probability of the cell (i1, . . . , ir ), and with ni1...ir the corresponding
observed count on a sample of size N . Moreover, we denote with p(u) the one-dimensional
marginal distribution of Xu , and with p(uv) the two-dimensional marginal distribution of the pair
(Xu, Xv).

To measure the agreement in the multi-rater setting, it is customary to use the Conger’s κC ,
originally introduced in Conger (1980) and the re-analyzed in several papers, see, e.g., Vanbelle
(2019). The Conger’s κc is based on a pairwise rater agreement analysis. It is defined as:

κC = po − pe
1 − pe

(7)

where po is the mean proportion of agreement between all r(r−1)/2 pairs of raters, and similarly
pe is the mean proportion of expected agreement between all r(r − 1)/2 pairs of raters under
independence. In formulas,

po = 2

r(r − 1)

∑

u,v∈{1,...,r},u<v

k∑

i=1

p(uv)
i i (8)

and

pe = 2

r(r − 1)

∑

u,v∈{1,...,r},u<v

k∑

i=1

p(u)
i p(v)

i . (9)

Since the Conger’s κC is based on the two-way margins of the kr table, it is easy to define a
weighted version of the Conger’s kappa as follows:

κC,w = po,w − pe,w
1 − pe,w

(10)

with

po,w = 2

r(r − 1)

∑

u,v∈{1,...,r},u<v

k∑

i, j=1

wi j p
(uv)
i j (11)

and

pe,w = 2

r(r − 1)

∑

u,v∈{1,...,r},u<v

k∑

i, j=1

wi j p
(u)
i p(v)

j (12)

In the above definition, the weights are the same for all pairs u, v of raters, but the definition can
be easily extended to the case of different weights on different two-way margins. Also notice that
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the Conger’s κC can be defined in the general case of g-wise agreement, as in the original paper
Conger (1980). This is done by taking the κC unchanged in Eq. (7), and computing the observed
agreement and the expected agreement in Eqs. (8) and (9) on the g-way marginal tables instead
of the two-way tables. However, when the weighted version κC,w in Eqs. (10)–(12) is considered,
the pairwise agreement is the most reasonable choice, and the extension to the g-wise agreement
would require new definitions of the weighting schemes.

2. Markov Bases

In this section, we introduce themain tools from algebraic statistics needed in our framework.
In particular, we define the notion of Markov basis and we compute the relevant Markov bases
for the rater agreement problems.

Let n be an observed contingency table, possibly multi-way. An integer-valued statistic is a
function T : Nkr −→ N

s . Since we need to compute themaximum agreement with fixedmarginal
distributions we are particularly interested in the function

T : n �−→ ((ni+)i=1,...,k, (n+ j ) j=1,...,k) (13)

in the two-way case and

T : n �−→ ((n(1)
i )i=1,...,k, . . . , (n

(r)
i )i=1,...,k) (14)

in the general multi-rater case, where n(s)
i is the i-th entry of the marginal distribution of the s-th

rater.

Definition 1. Given a statistic T , the fiber (or reference set) of a contingency table n is the set

FT (n) = {n′ ∈ N
kr | T (n′) = T (n)} . (15)

Definition 2. AMarkov move for the statistic T is an integer-valued tablem such that T (m) = 0.

Definition 3. A Markov basis for the fiber FT (n) of a table n is a set of Markov moves

Mn,T = {m(1), . . . ,m(�)}

such that for each pair of tables n′, n′′ ∈ FT (n) there exists a sequence ofmoves (m(i1), . . . ,m(iQ))

such that

1. n′′ = n′ + ∑Q
j=1m

(i j )

2. n′ + ∑q
j=1m

(i j ) ≥ 0 for all q = 1, . . . , Q.

In words, aMarkov basis is a set of moves whichmakes the fiberFT (n) connected and all interme-
diate steps are nonnegative. In algebraic statistics, this is the main tool to define a Metropolis-like
Markov chain Monte Carlo algorithm for doing exact inference for contingency tables. For a
comprehensive introduction to Markov bases and their use in statistics, the reader can refer to the
books Sullivant (2018) and Aoki et al. (2012).

Since we are particularly interested in the computation of the maximum agreement given the
marginal distributions, we need the Markov bases for the statistic T in Eqs. (13) and (14).



1276 PSYCHOMETRIKA

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 0 −1 0

0 0 0 0

−1 0 +1 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 +1

0 +1 0 −1

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

)b()a(

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 +1 0 −1

0 −1 0 +1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 +1

0 0 +1 −1

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

)d()c(

Figure 2.
Four basic moves for the two-rater problem. a Two nonzero elements on the diagonal; b one nonzero element on the
diagonal, the move lies on the upper triangle; c one nonzero element on the diagonal, the move lies on both the upper and
the lower triangle; d no nonzero elements on the diagonal.

Following Diaconis and Sturmfels (1998), in the general case the computation of a Markov
basis needs symbolic computation and is actually not feasible for large-sized tables. However, the
Markovbases for thefibers considered in this paper canbe theoretically characterized and therefore
no symbolic computation is involved. For an overview on the computation of Markov bases
through symbolic software, the underlying computational problems, and the actual limitations for
large tables, the reader can refer to Aoki et al. (2012).

As a first step, we recall a result from Diaconis and Sturmfels (1998) about the Markov basis
for two-way tables with fixed margins.

Definition 4. Let i, i ′ be two distinct row indices and j, j ′ be two distinct column indices. A
basic move is a move m such that

mi j = mi ′ j ′ = +1, mi j ′ = mi ′ j = −1

and is 0 otherwise.

Some examples of basic moves in the case of 4 categories are given in Fig. 2. Such moves
have different behavior in terms of agreement. We will discuss all these types of moves in the
next section.

Proposition 1. The set of basic moves in Definition 4 is a Markov basis for the fiber in Eq. (15)
for the two-rater problem.

The basic moves in the multi-rater setting are defined by extending the previous definition to
more than two dimensions. Informally, one takes two +1’s in two cells with at least two distinct
coordinates and then arranges the −1’s in order to have the correct projections in all two-way
margins. More formally, we can state the following definition.

Definition 5. A basic move m for the multi-rater problem is a table with 4 nonzero entries:
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X1

X3

X2

(a)

0 0 0

0 0 0

0 0 0

+1 0 −1

0 0 0

0 0 0

0 0 0

0 0 0

−1 0 +1

X1

X3

X2

(b)

+1 0 0

0 −1 0

0 0 0

0 0 0

0 0 0

0 0 0

−1 0 0

0 +1 0

0 0 0

Figure 3.
Two basic moves for the three-rater problem. A move of type (a) and a move of type (b) from Proposition 2.

• m is equal to+1 in (i1, . . . ir ) and in (i ′1, . . . , i ′r )with at least two different indices.Without
loss of generality, suppose that the distinct indices are i1, . . . , iq , q ≥ 2;

• m is equal to −1 in ( j1, . . . , jq , iq+1, . . . , ir ) and in ( j ′1, . . . , j ′q , iq+1, . . . , ir ) with

(i) js = is , j ′s = i ′s for s ∈ S
(ii) js = i ′s , j ′s = is for s /∈ S

where S is a non-empty subset of {1, . . . , q}.
It is easy to see that this definition reduces to Definition 4 when r = 2. Two examples of

basic moves in the 33 case are illustrated in Fig. 3.
The fact that basic moves are enough to connect the fiber in Eq. (15) can be derived from the

theory of toric fiber products to be found in Sullivant (2007). This allows us to avoid symbolic
computations and to make available the relevant Markov bases also for large-sized tables.

Proposition 2. The set of basic moves in Definition 5 is a Markov basis for the fiber in Eq. (15)
when r > 2.

Proof. First, note that all basic moves in Definition 5 are in the kernel of the marginalization map
T .

Since for r = 2 the basic moves in Definition 5 coincide with the basic moves in 4, the result
is true when r = 2. We proceed by induction on r . Let us suppose that the result holds for r − 1
raters, and we prove it for r raters. We apply Theorem 13 in Sullivant (2007). Given a Markov
basisMr−1 for the problem with (r − 1) raters, a Markov basisMr for the problem with r raters
is the union of the following sets of moves
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(a) split each move of Mr−1 by putting one +1 and one −1 at a given level h of Xr

(h = 1, . . . , k) and the other +1 and −1 at a level h′ of Xr (h′ = h, . . . , k);
(b) for any two distinct cells (i1, . . . , ir−1) and (i ′1, . . . , i ′r−1) on the (r − 1)-dimensional

table, and for any two distinct levels h, h′ of Xr , take the move with +1 in
(i1, . . . , ir−1, h) and in (i ′1, . . . , i ′r−1, h

′) and with −1 in (i1, . . . , ir−1, h′) and in
(i ′1, . . . , i ′r−1, h).

Since all the moves defined in items (a) and (b) above are basic moves, the result is proved. 
�
Asnoticed in Introduction,Markovbases in algebraic statistics are usually defined in algebraic

statistics in order to perform exact tests with a Metropolis–Hastings algorithm, and therefore to
generate all contingency tables with the same value of the sufficient statistics as the observed
table. Here, we simply use Markov bases to compute all the tables with fixed margins.

3. The Effect of the Markov Moves on the Kappa Indices

Now, we use the basic moves of the Markov bases in order to better understand the meaning
of the weighted kappa. The basic idea is to apply the definition ofMarkov basis to analyze the rater
agreement in connection with the weighting schemes. We show here that most of the basic moves
have a precise behavior in terms of their effect on the kappa indices and therefore we analyze
how the rater agreement changes when a Markov move is applied. Moreover, the configuration
of maximum agreement can be reached with a finite number of Markov moves, starting from the
observed table, and the analysis with basic moves helps us in understanding the structure of the
configurations with maximum agreement.

Since our analysis is performed with fixed marginal distributions, the kappa indices are
monotonic with the observed agreement. So, to ease the formulas, we consider the quantities

Ao,w(n) = 1

N

k∑

i, j=1

wi j ni j (16)

in the two-rater setting, and

Ao,w(n) = 2

r(r − 1)

∑

u,v∈{1,...,r},u<v

1

N

k∑

i, j=1

wi j n
(uv)
i j (17)

in the multi-rater setting.
Let us start with some results in the two-rater setting.

Lemma 1. Let n be an observed agreement table, let i �= j be two indices, and let m be the basic
move with

mii = m j j = +1, mi j = m ji = −1 .

If ni j > 0 and n ji > 0, then

Ao,w(n + m) ≥ Ao,w(n) . (18)
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Proof. From Eq. (16) and using the disagreement weights, we get

Ao,w(n + m) − Ao,w(n) = Ao,w(m) = − 1

N

k∑

i, j=1

ui jmi j = 2

N
ui j ≥ 0 .


�
Lemma 1 is valid for all weighting schemes and tells us that if there are positive counts in

symmetric cells, then it is always possible to construct an observed table with higher observed
agreement by applying a simple move. This is quite intuitive, since Eq. (18) roughly says that
moving counts on the diagonal increases the observed agreement.

Nonetheless, apart from the symmetric basic moves as displayed in Fig. 2a, for the other
types of basic moves there is not a common behavior in terms of observed agreement. Remember
that, earlier in the paper, we have noticed that some weighting schemes defines a distance on the
ground set {x1, . . . , xk} while other schemes do not. The following proposition states a partial
result when only one cell of the diagonal is involved in the basic move.

Proposition 3. Let n be an observed agreement table, let i < j < h be three indices, and let m
be the basic move with

mih = m j j = +1, mi j = m jh = −1 .

. If ni j > 0 and n jh > 0 and a distance weighting scheme is used, then

Ao,w(n + m) ≥ Ao,w(n) .

The same holds if i > j > h.

Proof. Let us consider the case i < j < h. (The other case has a similar proof.)
From Eq. (16) and using the disagreement weights, we get

Ao,w(n + m) − Ao,w(n) = Ao,w(m) = − 1

N

k∑

i, j=1

ui jmi j =

= 1

N

(
ui j + u jh − uih

) ≥ 0

by virtue of the triangular inequality. 
�
In Proposition 3, the movem has one nonzero element on the diagonal. In the case i < j < h

the move lies in the upper triangle of the table, while in the case i > j > h lies in the lower one.
Some remarks are now in order. First, note that in Proposition 3 the assumption of distance

weights is essential. For weighting schemes derived or not derived from a distance we observe
opposite behaviors of the weighted kappa. For instance, let us consider the observed table below:

n =

⎛

⎜
⎜
⎝

4 0 0 0
0 4 1 0
0 0 4 1
0 0 0 4

⎞

⎟
⎟
⎠ .
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We can apply the move

m =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 −1 +1
0 0 +1 −1
0 0 0 0

⎞

⎟
⎟
⎠

and we obtain

n′ = n + m =

⎛

⎜
⎜
⎝

4 0 0 0
0 4 0 1
0 0 5 0
0 0 0 4

⎞

⎟
⎟
⎠ .

Comparing the value of κw of n and n′ we note that:
• With a distance weight we have κw(n′) > κw(n) by virtue of Proposition 3;
• With quadratic weights we have κq(n′) < κq(n);
• With linear weights we get κl(n′) = κl(n).

Whilewith distanceweights themaximumagreement is achieved bymaximizing the counts in
the diagonal cells, with quadratic weights a certain amount of moderate disagreement is preferred
to a small amount of strong disagreement.

Moreover, from the above example, we observe there is a special behavior of the linear
weights, because some Markov moves do not change the value of the weighted kappa. This
affects also the problem of finding the configuration with maximum agreement, since in general
such a configuration is not unique. We state below a result for linear weights, and we will discuss
this issue in the next section from the point of view of computations.

Proposition 4. Let us consider four indices i1 < i2 ≤ j1 < j2 or j1 < j2 ≤ i1 < i2, and take the
basic move m with mi1 j1 = mi2 j2 = +1 and mi1 j2 = mi2 j1 = −1. If n is a table with ni1 j2 > 0
and ni2 j1 > 0. Using the linear weights we get

κl(n) = κl(n + m) .

Proof. As in the previous proposition, let us consider only the case i1 < i2 ≤ j1 < j2.
Notice that the conditions ni1 j2 > 0 and ni2 j1 > 0 are needed in order to have a nonnegative

table n′ = n + m. Since n and n′ have the same margins, it is enough to compare the observed
agreement. From Eq. (17), we get:

Ao,w(n′) − Ao,w(n) = Ao,w(m) = − 1

N

k∑

i, j=1

, ui jmi j

= − 1

N
· ( j1 − ii ) + ( j2 − i2) − ( j2 − i1) − ( j1 − i2)

k − 1
= 0 .


�
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Y

1 2 3 4

X

1 5 3 2 1

2 1 4 3 0

3 0 1 5 1

4 0 1 2 4

Y

1 2 3 4

X

1 6 0 1 4

2 0 8 0 0

3 0 0 7 0

4 0 1 4 2

Y

1 2 3 4

X

1 6 5 0 0

2 0 3 5 0

3 0 1 2 4

4 0 0 5 2

(a) (b) (c)

Figure 4.
A synthetic observed table (a) and two tables with the same margins and with the same weighted kappa under linear
weights (b, c).

The condition i1 < i2 ≤ j1 < j2 means that we apply a move on one side of the table w.r.t.
the diagonal, and one nonzero element of the move is on the diagonal when i2 = j1. Under such
a condition, the move does not affect the value of the weighted kappa.

In view of Proposition 4, the uniqueness of the table with a given value of κw is not guaranteed
under any of weighting schemes, but this issue is especially relevant for the linear weights. To
illustrate this, let us consider the table (with synthetic data) in Fig. 4a. By direct enumeration of the
644, 850 tables of the fiber, one finds 1527 tables with the same margins and with the same value
of the weighted kappa with linear weights as the observed table, i.e., κl = 0.5023. Among those
tables, the weighted kappa with quadratic weights ranges from κq = 0.3774 to κq = 0.7406. The
minimum is achieved in 3 tables, one of which is in Fig. 4b, while the maximum is achieved in 3
tables, one of which is in Fig. 4c.

Let us now turn to the multi-rater setting. From Eqs. (10), (8), (9) it is easy to argue that the
effect of a basic move on the value of the Conger’s κC is yielded by the two-way margins of the
move. Each two-way projection applies to a two-way margin and gives its own contribution in
the sum in Eq. (8).

The following proposition collects the properties of the two-way margins of a basic move,
and its proof is immediate.

Proposition 5. Let m be a basic move in the multi-rater case with r raters. Suppose that m is
equal to+1 in (i1, . . . , ir ) and in (i ′1, . . . , i ′r ) and is equal to−1 in ( j1, . . . , jr ) and in ( j ′1, . . . , j ′r ).
The projection of m on the pair (U, V ) is:

• a basic move for the two-way problem, if the four pairs (iu, iv), (i ′u, i ′v), ( ju, jv), ( j ′u, j ′v)
are all distinct;

• a null move, otherwise.

Note that, following the definition of basic move in Definition 5, it is easy to see that a
multi-rater basic movem always yields at least one basic move on some two-dimensional margin.

For example, both the moves for the three-rater problem displayed in Fig. 3 produce a basic
move on two two-way margins and a null move on one margin.

In general, the analysis of the effect of the basic moves on the Conger’s κC is more difficult
than in the two-rater case. Nevertheless, we can state the following lemma, which generalizes
Lemma 1.

Lemma 2. Let i �= j be two indices, and let m be a basic move with

mi ...i = m j ... j = +1 .
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X3

1 2 3

X2

1 2 1 0

2 0 1 0

3 0 0 1

X3

1 2 3

X2

1 0 1 0

2 1 3 1

3 0 0 0

X3

1 2 3

X2

1 0 1 0

2 0 1 0

3 0 0 3

X1 = 1 X1 = 2 X1 = 3

Figure 5.
An observed table with 3 raters and 3 levels.

If n + m is nonnegative, then

Ao,w(n + m) ≥ Ao,w(n) . (19)

Proof. It is enough to observe that all two-way margins of m are either a null move or a basic
move satisfying the hypothesis of Lemma 1. 
�

Also the multi-rater case the issue of non-uniqueness is especially relevant under linear
weights. For instance, let us consider the three way table in Fig. 5. Although the table is rather
sparse (the sample size is 16 in a contingency table with 27 cells), there are 2, 324 tables with the
same value of κC,l = 0.4872. Under quadratic weights, such tables yield values of κC,q ranging
from 0.3364 to 0.6313.

4. Simulated Annealing for Maximum Agreement

In this section, we show how to use a simulated annealing algorithm to determine the maxi-
mum value of the weighted kappa with fixed marginal distributions and to find a table where the
maximum is actually reached. The Markov bases introduced in Sect. 2 are used in the algorithm
to define the neighbors of the contingency tables and to navigate the fiber of an observed table.

While the computation of the maximum agreement is simple for the unweighted κ in the
two-rater setting, the problem is not trivial when the weighted κw is considered, or we use the
Conger’s κC or κCw for the multi-rater problem.

The Markov chain simulated annealing algorithm starts from the observed table and runs at
each step b (b = 1, . . . , B) as follows. First, we choose a move m in the relevant Markov basis
M and we define n′ = n + m; if n′ is a nonnegative table, then we move the chain from n to n′
with a transition probability depending on two factors. On the one hand, the transition probability
is equal to 1 if the move causes an increase in the observed agreement, while it is less than one if
the move causes a decrease in the observed agreement, and this probability is lower the more the
decrease is high. On the other hand, the transition probability decreases with the time.

In practice, in the first part of the walk the Markov chain performs exploration, while in the
second part it performs exploitation, because the probability of an actual move toward a table
with smaller observer agreement decreases with the time. With our notation, the formula for the
transition probability is:

min
{
exp((Ao,w(n′) − Ao,w(n′))/τb), 1

}
,
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Input: The observed table nobs

Output: A table with maximum agreement

Data: Markov basis M; Initial temperature τ ; number of steps B

1 initialize n = nobs

2 for b in 1 : B do

3 Choose a basic move m in M

4 Define n = n + m

5 if n ≥ 0 then

6 Define pt = min {exp((Ao,w(n ) − Ao,w(n))/τ), 1}

7 Generate u ∼ U(0, 1)

8 if pt > u then

9 n = n

10 Decrease τ

11 for each move m with two +1 on the diagonal do

12 while n = n + m ≥ 0 do

13 n = n

14 return n

Figure 6.
Simulated annealing for maximum agreement.

where Ao,w is the observed agreement in the table n, and τb is the temperature at time b.
As a special feature of this algorithm, we have added a final step to apply all possible moves

with two+1 on themain diagonal, thus exploiting the results in Lemmas 1 and 2. The pseudo-code
of the algorithm is in Fig. 6.

The reader can refer to Suman and Kumar (2006) for a general introduction to simulated
annealing in the discrete case and for a discussion on the computational details of the algorithm,
as, for instance, the choice of the temperature function τb. In particular, from our experiments,
the choice of the function for the temperature decrease does not affect the performance of the
algorithm, and thus, we have used a temperature of the form τ = τ0 · db.

Notice that the non-uniqueness of the configuration is still an issue also when finding the
maximum, especially using the linearweights.As an example in the two-rater framework, consider
again the observed table inFig. 4a.With linearweights, there are 5 tableswhich reach themaximum
value of κl = 0.7511, and among these tables the κq ranges from 0.7665 to 0.8703, the latter being
also the maximum with quadratic weights. The maximum with the sqrt weights is κs = 0.7528.
The three configurations obtained with our algorithm are displayed in Fig. 7. In accordance with
the findings in the previous sections, we note that quadratic weights avoid strong disagreement
cells, while sqrt weights fill the diagonal as much as possible. Again, the table with maximum
linear weight is not unique, and in fact, the three tables in Fig. 7 share the same of κl .

The algorithm converges very fast, at least for small- and medium-sized tables, yielding
the maximum value of the weighted kappa and a table where such a maximum is reached in
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Y

1 2 3 4

X

1 6 5 0 0

2 0 4 4 0

3 0 0 7 0

4 0 0 1 6

Y

1 2 3 4

X

1 6 3 2 0

2 0 6 2 0

3 0 0 7 0

4 0 0 1 6

Y

1 2 3 4

X

1 6 1 4 0

2 0 8 0 0

3 0 0 7 0

4 0 0 1 6

κq = 0.8703 (max) κq = 0.8184 κq = 0.7665

κl = 0.7511 κl = 0.7511 (max) κl = 0.7511

κs = 0.6771 κs = 0.7150 κs = 0.7528 (max)

Figure 7.
Configurations with maximumweighted kappa for the observed table in Fig. 4 with quadratic weights (left), linear weights
(center), sqrt weights (right).

less than 1 second on a standard PC. For large tables, the convergence takes long times, and
the problem becomes fast unfeasible when the number of cells is large. In fact, on the one side
large tables are usually sparse, on the other side, the relevant Markov basis is large, and at each
step, the probability of an applicable move is very low. As a consequence, for large tables the
number of Markov chain steps B must be quite large to ensure convergence. Some experiments
are shown through a simulation study in the next section. In our experiments, we have found a
fast convergence: for instance, on a standard PC the algorithm for the two-rater problem runs in
less than 1 s for tables up to k = 10 rating categories (100 cells), and in less than 10 s for tables
up to k = 18 rating categories (324 cells).

Note that one can replace the fixed run length B with a stopping rule, and this is the strategy
implemented in our simulation study. For instance, in small problems one can stop the algorithm
when the algorithm does produce actual moves for 1000 consecutive steps. For large tables, the
stopping rule must take into account also the cardinality of the Markov basis. More details on this
point are discussed in the next section.

In general, the use of algebraic statistics in the case of large tables is problematic, and the
curse of dimensionality is a known issue of this discipline. The definition of new techniques to
speed up the convergence of Markov chain-based algorithms within algebraic statistics is still a
current research topic, see, for instance, Windisch (2016), and only ad hoc solutions for special
problems are currently available.

5. Simulation Study

In order to show the practical applicability of the algorithm introduced in the previous section,
and to study its convergence properties, we have designed and performed a simulation study with
several scenarios. For the two-rater case, we have considered three values of the number of
levels k (k = 3, 5, 7) and two sample sizes (N = 20, 100). Moreover, two types of marginal
distributions are considered: a first case with homogeneous uniform margins and a second case
with non-homogeneous margins. In the first case, the tables are generated from a multinomial
distribution with probabilities given by μ ⊗ μ, with μ = (1/k, . . . , 1/k), while in the second
case the probability parameter of the multinomial distribution is μ ⊗ ν with μ �= ν. In the non-
homogeneous case, the parameters μ and ν are chosen to account for the tendency of a rater to



FABIO RAPALLO 1285

Table 1.
Two-rater case with homogeneous marginal distributions.

Weight k N Mean sd q0.99

Quadratic 3 20 1064.8 32.0 1164
100 1264.5 75.2 1481

5 20 2568.5 277.7 3418
100 3943.6 637.9 5922

7 20 11,300.4 1157.9 14,914
100 15,497.8 2211.2 21,997

Linear 3 20 1049.4 25.3 1126
100 1170.8 47.6 1307

5 20 2407.3 249.1 3233
100 3064.6 428.6 4420

7 20 10,532.5 1042.5 13,784
100 12,358.5 1516.0 16,941

Sqrt 3 20 1055.6 27.3 1139
100 1165.5 44.6 1290

5 20 2499.6 257.1 3298
100 3088.3 401.9 4318

7 20 10,955.3 1018.3 14,054
100 12,872.3 1539.2 18,235

Time to convergence (mean, standard deviation and 99th percentile) of the simulated annealing algorithm
for different numbers of levels k and sample sizes N .

choose rating levels higher or lower than those of the other rater. For instance, in the 3 × 3 case,
we have used μ = (2/5, 2/5, 1/5) and ν = (1/5, 2/5, 2/5).

Notice that, with this procedure, we obtain different observed marginal distributions also
when the parameter of the multinomial distribution is of the form μ ⊗ μ, and thus, the problem
of finding the maximum weighted kappa is not trivial even in these scenarios. Also a simulation
study for the three-rater case is presented, but limited to two numbers of categories k = 3, 5.

The convergence of the algorithm is measured as follows. The algorithm stops when there
is a sufficiently large number c of consecutive steps with no change in the observed agreement
(and therefore without changes in the weighted kappa). The number c must take into account the
number of moves in the Markov basis. We have defined here c = max{10 · #M; 1, 000}. This
choice of c is a reasonable trade-off between accuracy and speed. For each scenario, a sample of
1, 000 tables is generated and the distribution of the stopping time ST is approximated through the
1, 000 observed values. The simulation study has been performed using three weighting schemes:
quadratic, linear, and sqrt.

The results are displayed in Table 1 for the two-rater scenarios and in Table 2 for the there-
rater scenarios. The mean, the standard deviation, and the 99th percentile of the convergence
time ST are reported. In such tables, only the results for tables with homogeneous margins are
considered. Since the results for tables with non-homogeneous margins are very similar, they are
reported as Tables 3 and 4 in “Appendix.”

From the results, we see that the time to convergence increases with the sample size and with
the dimension of the table, and this is particularly relevant in the three-rater case. As discussed
in the previous sections, when the number of raters increases, the number of basic moves in
the Markov basis grows, and the probability of selecting a non-applicable move becomes high,
especially in the case of sparse tables. To overcome this problem, the definition of the stopping time
c requires a large number of steps when the Markov basis is large and consequently the execution
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Table 2.
Three-rater case with homogeneous marginal distributions.

Weight k N Mean sd q0.99

Quadratic 3 20 4227.8 491.8 5778
100 5753.2 830.9 8237

5 20 115,590.4 11,611.1 153,122
100 142,858.7 17,776.5 190,784

Linear 3 20 4057.9 402.7 5619
100 5075.6 629.0 6987

5 20 110,198.5 10,633.9 146,114
100 124,430.1 13,703.3 167,849

Sqrt 3 20 4213.5 508.0 5842
100 5248.2 754.4 7760

5 20 117,436.7 12,774.8 159,911
100 131,752.7 15,281.4 178,512

Time to convergence (mean, standard deviation and 99th percentile) of the simulated annealing algorithm
for different numbers of levels k and sample sizes N .

time increases. For large sparse tables, the algorithm needs special attention in the choice of the
numerical parameters and in the optimization of the selection of the moves. A thorough study in
this direction is beyond the scopes of the present paper. That is why we do not present the case of
7 × 7 × 7 tables. Finally, with regard to the choice of the weights, we observe that the algorithm
is a bit faster with the linear weights.

6. Concluding Remarks

The analysis of the kappa-type indices through basic Markov moves presented in this paper
allows us to better understand the effect of the choice of the weights and, in particular, shows that
the configurationwithmaximumkappa strongly depends on theweights,making the normalization
of the kappa statistics a non-trivial task.Wehave shown that,when theweights satisfy the triangular
inequality, the table with maximum kappa looks quite different from that obtained with quadratic
weights, and therefore, the use of distance weights should be considered as an option when
choosing the weights. Since the basic moves make connected the fiber of all tables with the same
margins, we have implemented a simulated annealing algorithm to actually find the configuration
with maximum kappa with fixed margins in a general framework.

Future works will include the analysis of the maximum agreement when not all raters classify
the same set of objects, and the speed up of the simulated annealing algorithm, especially for large
sparse tables. The convergence of Markov chain-based algorithms with Markov bases for large
sparse tables is a general problem in algebraic statistics, and thus, any advance in this direction
would represent a notable progress also in other fields of application. Finally, we have shown that
the set of all tables with a given value of weighted kappa with linear weights can be a rather large
set, and it can be explored through suitable Markov bases.
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Appendix

In this appendix, the results of the simulation study with non-homogeneous margins are reported.
See Sect. 5 for the description of the simulation study (Tables 3, 4).

Table 3.
Two-rater case with non-homogeneous marginal distributions.

Weight k N Mean sd q0.99

Quadratic 3 20 1064.7 34.0 1172
100 1180.8 66.7 1381

5 20 2572.8 302.0 3599
100 3859.4 698.4 6099

7 20 11,265.9 1192.6 14,957
100 15,247.9 2191.4 22,060

Linear 3 20 1039.0 24.8 1122
100 1106.4 35.8 1205

5 20 2294.0 208.3 3072
100 2514.7 233.7 3283

7 20 9989.9 863.7 13,430
100 10,384.7 874.3 13,437

Sqrt 3 20 1058.8 33.0 1169
100 1222.3 84.9 1457

5 20 2528.4 274.4 3446
100 3438.4 596.2 5350

7 20 11,138.2 1173.5 15,031
100 13,858.6 1982.0 19,791

Time to convergence (mean, standard deviation and 99th percentile) of the simulated annealing algorithm
for different numbers of levels k and sample sizes N .

http://creativecommons.org/licenses/by/4.0/
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Table 4.
Three-rater case with non-homogeneous marginal distributions.

Weight k N Mean sd q0.99

Quadratic 3 20 4210.5 496.6 5881
100 5839.7 868.4 8607

5 20 115,001.6 11,839.8 152,551
100 145,570.5 19,149.3 210,442

Linear 3 20 4085.2 466.1 5825
100 5395.4 775.2 7640

5 20 110,907.2 10,893.4 146,344
100 133,778.4 17,015.5 187,251

Sqrt 3 20 4201.5 519.9 5937
100 5408.6 791.3 7958

5 20 117,136.2 12,284.0 156,774
100 136,924.9 16,926.4 187,861

Time to convergence (mean, standard deviation and 99th percentile) of the simulated annealing algorithm
for different numbers of levels k and sample sizes N .
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