Skip to main content
Log in

The effect of 12 weeks of aerobic exercise on mitochondrial dynamics in cardiac myocytes of type 2 diabetic rats

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

Mitochondrial dynamics disorders contribute to the pathogenesis of many diseases involving type 2 diabetes. It appears that exercise training is a strategy for reversing the unbalance between fusion and fission, but, to our understanding, effects of aerobic exercise on this particular issue have not been studied in cardiac myocytes.

Aims

To demonstrate if 12 weeks of aerobic exercise has a significant impact on Dynamin Related Protein 1 (DRP1), Mitofusin2 (MFN2) and Optic Atrophy 1 (OPA1) expressions in cardiac muscle of type 2 diabetic rats.

Methods

10 Wistar rats with an average age of 10 weeks were divided randomly into two groups of five: diabetic control and diabetic exercise. The latter was submitted to a 12-week (5 days a week, 30 min/day) aerobic exercise. 48 h after the last session of exercise, cardiac samples were obtained for genetic experiments. T-test was used for data analysis at p ≤ 0.05.

Results

OPA1 expression was increased significantly (p = 0.03) while MFN2 and DRP1 expressions were elevated insignificantly (p = 0.165, p = 0.19).

Conclusion

This study shows that aerobic training is likely to regulate mitochondrial fission and fusion in cardiac muscle of type 2 diabetic rats. Although more research is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Prolyl-hydroxylases.

  2. Body weight.

  3. Streptozotocin.

  4. Enzyme-linked immunosorbent assay.

  5. AMP-activated protein kinase.

  6. Oxidative phosphorylation.

References

  1. Archer SL (2013) Mitochondrial dynamics–mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251. https://doi.org/10.1056/NEJMra1215233

    Article  PubMed  CAS  Google Scholar 

  2. Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12:537–577. https://doi.org/10.1089/ars.2009.2531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ishihara N, Otera H, Oka T, Mihara K (2012) Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxid Redox Signal 19:121001062245003. https://doi.org/10.1089/ars.2012.4830

    Article  CAS  Google Scholar 

  4. Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420. https://doi.org/10.1128/MCB.23.15.5409-5420.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101:15927–15932. https://doi.org/10.1073/pnas.0407043101

    Article  PubMed  CAS  Google Scholar 

  6. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200. https://doi.org/10.1083/jcb.200211046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114:867–874

    PubMed  CAS  Google Scholar 

  8. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065. https://doi.org/10.1126/science.1219855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, Daugaard JR, Lloberas J, Camps M, Zierath JR, Rabasa-Lhoret R, Wallberg-Henriksson H, Laville M, Palacín M, Vidal H, Rivera F, Brand M, Zorzano A (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: a novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197. https://doi.org/10.1074/jbc.M212754200

    Article  PubMed  Google Scholar 

  10. Bakeeva LE, Chentsov YS, Skulachev VP (1978) Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. BBA Bioenerg 501:349–369. https://doi.org/10.1016/0005-2728(78)90104-4

    Article  CAS  Google Scholar 

  11. Kirkwood SP, Munn EA, Brooks GA (1986) Mitochondrial reticulum in limb skeletal muscle. Am J Physiol 251:C395–402

    Article  PubMed  CAS  Google Scholar 

  12. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117. https://doi.org/10.1016/j.tem.2015.12.001

    Article  PubMed  CAS  Google Scholar 

  13. Lee Y, Jeong S, Karbowski M, Smith C, Youle R (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ikeda Y, Sciarretta S, Nagarajan N, Rubattu S, Volpe M, Frati G, Sadoshima J (2014) New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. Oxid Med Cell Longev. https://doi.org/10.1155/2014/210934

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950. https://doi.org/10.2337/diabetes.51.10.2944

    Article  PubMed  CAS  Google Scholar 

  16. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273. https://doi.org/10.1038/ng1180

    Article  PubMed  CAS  Google Scholar 

  17. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471. https://doi.org/10.1073/pnas.1032913100

    Article  PubMed  CAS  Google Scholar 

  18. Bach D, Naon D, Pich S, Soriano FX, Vega N, Rieusset J, Laville M, Guillet C, Boirie Y, Wallberg-Henriksson H, Manco M, Calvani M, Castagneto M, Palacín M, Mingrone G, Zierath JR, Vidal H, Zorzano A (2005) Expression of Mfn2, the charcot-marie-tooth neuropathy type 2A gene, in human skeletal muscle. Diabetes 54:2685–2693. https://doi.org/10.2337/diabetes.54.9.2685

    Article  PubMed  CAS  Google Scholar 

  19. Zorzano A, Hernández-Alvarez MI, Palacín M, Mingrone G (2010) Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1α or PGC-1β and mitofusin 2 in skeletal muscle in type 2 diabetes. Biochim Biophys Acta Bioenerg 1797:1028–1033. https://doi.org/10.1016/j.bbabio.2010.02.017

    Article  CAS  Google Scholar 

  20. Sebastián D, Hernández-Alvarez MI, Segalés J, Sorianello E, Muñoz JP, Sala D, Waget A, Liesa M, Paz JC, Gopalacharyulu P, Orešič M, Pich S, Burcelin R, Palacín M, Zorzano A (2012) Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci USA 109:5523–5528. https://doi.org/10.1073/pnas.1108220109

    Article  PubMed  Google Scholar 

  21. Nochez Y, Arsene S, Gueguen N, Chevrollier A, Ferré M, Guillet V, Desquiret V, Toutain A, Bonneau D, Procaccio V, Amati-Bonneau P, Pisella P-J, Reynier P (2009) Acute and late-onset optic atrophy due to a novel OPA1 mutation leading to a mitochondrial coupling defect. Mol Vis 15:598–608

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 52:1–8. https://doi.org/10.2337/diabetes.52.1.1

    Article  PubMed  CAS  Google Scholar 

  23. Favier FB, Britto FA, Poncon B, Begue G, Chabi B, Reboul C, Meyer G, Py G (2015) Endurance training prevents negative effects of the hypoxia mimetic dimethyloxalylglycine on cardiac and skeletal muscle function. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00171.2015

    Article  PubMed  Google Scholar 

  24. Perry CGR, Lally J, Holloway GP, Heigenhauser GJF, Bonen A, Spriet LL (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588:4795–4810. https://doi.org/10.1113/jphysiol.2010.199448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bo H, Zhang Y, Ji LL (2010) Redefining the role of mitochondria in exercise: a dynamic remodeling. Ann N Y Acad Sci 1201:121–128. https://doi.org/10.1111/j.1749-6632.2010.05618.x

    Article  PubMed  CAS  Google Scholar 

  26. Ding H, Jiang N, Liu H, Liu X, Liu D, Zhao F, Wen L, Liu S, Ji LL, Zhang Y (2010) Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochim Biophys Acta Gen Subj 1800:250–256. https://doi.org/10.1016/j.bbagen.2009.08.007

    Article  CAS  Google Scholar 

  27. Jiang HK, Wang YH, Sun L, He X, Zhao M, Feng ZH, Yu XJ, Zang WJ (2014) Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: roles of mitochondrial network dynamics. Int J Mol Sci 15:5304–5322. https://doi.org/10.3390/ijms15045304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Szkudelski T (2012) Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med (Maywood) 237(5):481–490. https://doi.org/10.1258/ebm.2012.011372

    Article  CAS  Google Scholar 

  29. Pierre W, Gildas AJH, Ulrich MC, Modeste W-N, Benoît NT, Albert K (2012) Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats. BMC Complement Altern Med 12:264. https://doi.org/10.1186/1472-6882-12-264

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mogharnasi M, Gaeini A, Sheikholeslami Vatani D, Rahnama N, Arjmandi B, Bambaeichi E (2011) Effect of acute and prolonged periods of aerobic training and detraining on novel inflammatory marker: the predictive of cardiovascular disease in Wistar rats. Gazz Medica Ital Arch Per Le Sci Mediche 170:307–313

    Google Scholar 

  31. Lawler JM, Powers SK, Hammeren J, Martin AD (1993) Oxygen cost of treadmill running in 24-month-old Fischer-344 rats. Med Sci Sports Exerc 25:1259–1264. https://doi.org/10.1249/00005768-199311000-00009

    Article  PubMed  CAS  Google Scholar 

  32. Taji Tabas A, Mogharnasi M (2015) The effect of 10 week resistance exercise training on serum levels of nesfatin-1 and insulin resistance index in woman with type 2 diabetes. Iran J Diabetes Metab 14:179–188

    Google Scholar 

  33. Cheng K-CC, Asakawa A, Li Y-XX, Chung H-HH, Amitani H, Ueki T, Cheng J-TT, Inui A (2014) Silymarin induces insulin resistance through an increase of phosphatase and tensin homolog in wistar rats. PLoS ONE 9:e84550. https://doi.org/10.1371/journal.pone.0084550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410. https://doi.org/10.1210/jc.85.7.2402

    Article  PubMed  CAS  Google Scholar 

  35. Gaeini AA, Bahramian A, Javidi M (2013) The effect of eight weeks of resistance training on stimulatory and inhibitory factors of cardiac microvascular injuries in Wistar diabetic rats. JME 3:21–32

    Article  Google Scholar 

  36. Jorge L, Paulini J, Silva C, Rampaso R, Luiz R, Lima W, Scavasin G, Schor N (2013) Exercise training improves cardiac mitofusin 2 expression in diabetes. Hypertension 62:613

    Google Scholar 

  37. Fealy CE, Mulya A, Lai N, Kirwan JP (2014) Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin resistant human skeletal muscle. J Appl Physiol. https://doi.org/10.1152/japplphysiol.01064.2013

    Article  PubMed  PubMed Central  Google Scholar 

  38. Walder K, Kerr-Bayles L, Civitarese A, Jowett J, Curran J, Elliott K, Trevaskis J, Bishara N, Zimmet P, Mandarino L, Ravussin E, Blangero J, Kissebah A, Collier GR (2005) The mitochondrial rhomboid protease PSARL is a new candidate gene for type 2 diabetes. Diabetologia 48:459–468. https://doi.org/10.1007/s00125-005-1675-9

    Article  PubMed  CAS  Google Scholar 

  39. Hernandez-Alvarez MI, Thabit H, Burns N, Shah S, Brema I, Hatunic M, Finucane F, Liesa M, Chiellini C, Naon D, Zorzano A, Nolan JJ (2010) Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1α/mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care 33:645–651. https://doi.org/10.2337/dc09-1305

    Article  PubMed  CAS  Google Scholar 

  40. Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838

    Article  PubMed  CAS  Google Scholar 

  41. Cartoni R, Leger B, Hock MB, Praz M, Crettenand A, Pich S, Ziltener JL, Luthi F, Deriaz O, Zorzano A, Gobelet C, Kralli A, Russell AP (2005) Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise. J Physiol 567:349–358. https://doi.org/10.1113/jphysiol.2005.092031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Joseph A-M, Joanisse DR, Baillot RG, Hood DA (2012) mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res. https://doi.org/10.1155/2012/642038

    Article  PubMed  Google Scholar 

  43. Shen T, Zheng M, Cao C, Chen C, Tang J, Zhang W, Cheng H, Chen KH, Xiao RP (2007) Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem 282:23354–23361. https://doi.org/10.1074/jbc.M702657200

    Article  PubMed  CAS  Google Scholar 

  44. Ikeda Y, Sciarretta S, Nagarajan N, Rubattu S, Volpe M, Frati G, Sadoshima J (2014) New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. Oxid Med Cell Longev. https://doi.org/10.1155/2014/210934

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ziolkowski W, Flis DJ, Halon M, Vadhana DMS, Olek RA, Carloni M, Antosiewicz J, Kaczor JJ, Gabbianelli R (2015) Prolonged swimming promotes cellular oxidative stress and p66Shc phosphorylation, but does not induce oxidative stress in mitochondria in the rat heart. Free Radic Res 49:7–16. https://doi.org/10.3109/10715762.2014.968147

    Article  PubMed  CAS  Google Scholar 

  46. Benedini S, Caimi A, Alberti G, Terruzzi I, Dellerma N, La Torre A, Luzi L (2010) Increase in homocysteine levels after a half-marathon running: a detrimental metabolic effect of sport? Sport Sci Health 6:35–42. https://doi.org/10.1007/s11332-010-0094-6

    Article  Google Scholar 

  47. Wang K, Klionsky DJ (2011) Mitochondria removal by autophagy. Autophagy 7:297–300. https://doi.org/10.4161/auto.7.3.14502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sciarretta S, Zhai P, Volpe M, Sadoshima J (2012) Pharmacological modulation of autophagy during cardiac stress. J Cardiovasc Pharmacol 60:235–241. https://doi.org/10.1097/FJC.0b013e3182575f61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Melov S, Hinerfeld D, Esposito L, Wallace DC (1997) Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res 25:974–982. https://doi.org/10.1093/nar/25.5.974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yan Z, Lira VA, Greene NP (2012) Exercise training-induced regulation of mitochondrial quality. Exerc Sport Sci Rev 40:159–164. https://doi.org/10.1097/JES.0b013e3182575599

    Article  PubMed  PubMed Central  Google Scholar 

  51. Finkel T, Holbrook NJ, Alberti A, Bolognini L, Macciantelli D, Caratelli M, Aviram M, Bełtowski J, Wójcicka G, Marciniak A, Capeillère-Blandin C, Gausson V, Descamps-Latscha B, Witko-Sarsat V, Chen S, Nilsen J, Brinton RD, Droge W, Erel O, Finkel T, Holbrook NJ, Jacobs AH, Winkler A, Castro MG, Lowenstein P, Johnson GL, Lapadat R, Khersonsky O, Tawfik DS, Gu X, Huang Y, Levison BS, Gerstenecker G, DiDonato AJ, Hazen LB, Lee J, Gogonea V, DiDonato JA, Hazen SL, Wu Z, Riwanto M, Gao S, Levison BS, Gu X, Fu X, Wagner MA, Besler C, Gerstenecker G, Zhang R, Li X, DiDonato AJ, Gogonea V, Tang WHW, Smith JD, Plow EF, Fox PL, Shih DM, Lusis AJ, Fisher EA, DiDonato JA, Landmesser U, Hazen SL, Matsuoka Y, Picciano M, La Francois J, Duff K, Mtsuokaa Y, Picciano M, La Francois J, Duff K, Mills E, Dong X, Fudi W, Xu H, Praticò D, Rosenblat M, Gaidukov L, Khersonsky O, Vaya J, Oren R, Tawfik DS, Aviram M, Yin F, Yao J, Sancheti H, Feng T, Melcangi RC, Morgan TE, Finch CE, Pike CJ, Mack WJ, Cadenas E, Brinton RD, McGrath LT, McGleenon BM, Brennan S, McColl D, McILroy S, Passmore AP, Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE, Hayashi H, Gupta A, Iadecola C, Vitali C, Wellington CL, Calabresi L, Cervellati C, Bergamini CM, Mckhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carillo MC, Thies B, Weintraub S, Phelps CH, Gu X, Huang Y, Levison BS, Gerstenecker G, DiDonato AJ, Hazen LB, Lee J, Gogonea V, DiDonato JA, Hazen SL, Klosinski LP, Yao J, Yin F, Fonteh AN, Harrington MG, Christensen TA, Trushina E, Diaz R, Qm C, Simulations MM, Oxon MC, Furlong CE, Richter RJ, Seidel SL, Motulsky AG, Wojtunik-kulesza KA, Oniszczuk A, Oniszczuk T, Waksmundzka-hajnos M (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. https://doi.org/10.1038/35041687

    Article  PubMed  CAS  Google Scholar 

  52. Parone PA, Da Druz S, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, Martinou JC (2008) Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE. https://doi.org/10.1371/journal.pone.0003257

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saghi Zafaranieh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest relevant to this article.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafaranieh, S., Choobineh, S. & Soori, R. The effect of 12 weeks of aerobic exercise on mitochondrial dynamics in cardiac myocytes of type 2 diabetic rats. Sport Sci Health 14, 305–312 (2018). https://doi.org/10.1007/s11332-018-0430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-018-0430-9

Keywords

Navigation