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Proof of principle study: diagnostic accuracy of a novel
algorithm for the estimation of sleep stages and disease severity
in patients with sleep-disordered breathing based on actigraphy
and respiratory inductance plethysmography
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Abstract
Purpose In this proof of principle study, we evaluated the diagnostic accuracy of the novel Nox BodySleepTM 1.0 algorithm
(Nox Medical, Iceland) for the estimation of disease severity and sleep stages based on features extracted from actigraphy and
respiratory inductance plethysmography (RIP) belts. Validation was performed against in-lab polysomnography (PSG) in pa-
tients with sleep-disordered breathing (SDB).
Methods Patients received PSG according to AASM. Sleep stages were manually scored using the AASM criteria and the
recording was evaluated by the novel algorithm. The results were analyzed by descriptive statistics methods (IBM SPSS
Statistics 25.0).
Results We found a strong Pearson correlation (r=0.91) with a bias of 0.2/h for AHI estimation as well as a good correlation
(r=0.81) and an overestimation of 14 min for total sleep time (TST). Sleep efficiency (SE) was also valued with a good Pearson
correlation (r=0.73) and an overestimation of 2.1%. Wake epochs were estimated with a sensitivity of 0.65 and a specificity of
0.59 while REM and non-REM (NREM) phases were evaluated a sensitivity of 0.72 and 0.74, respectively. Specificity was 0.74
for NREM and 0.68 for REM. Additionally, a Cohen’s kappa of 0.62 was found for this 3-class classification problem.
Conclusion The algorithm shows a moderate diagnostic accuracy for the estimation of sleep. In addition, the algorithm deter-
mines the AHI with good agreement with the manual scoring and it shows good diagnostic accuracy in estimating wake-sleep
transition. The presented algorithm seems to be an appropriate tool to increase the diagnostic accuracy of portable monitoring.
The validated diagnostic algorithm promises a more appropriate and cost-effective method if integrated in out-of-center (OOC)
testing of patients with suspicion for SDB.
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Introduction

Sleep-disordered breathing (SDB) shows a high prevalence in
the general population [1]. SDB leads to repetitive arousals and
activation of the sympathetic nervous system resulting in surges
of blood pressure and heart rate and stressing the cardiovascular
system. The long-term risk of developing cardiovascular diseases
is significantly increased [1]. Affected patients often complain of
snoring, non-restorative sleep, or daytime sleepiness. This can
increase the risk of road traffic accidents [2]. Current epidemio-
logical studies show a high prevalence of SDB. In Germany, for
instance, 29.7% of all men and 13.2% of all women are
suspected to suffer from moderate to severe sleep apnea. If
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adding those with low-grade sleep apnea, the prevalence figures
are 59.4% and 33.2% respectively [3].However, therapy formild
sleep apnea is only necessary in the case of cardiovascular risk or
associated daytime sleepiness [4]. Due to limited diagnostic ca-
pacities, a high number of unrecognized cases have to be as-
sumed. An undetected and therefore untreated SDB is associated
with high direct and indirect costs [5]. The economic implica-
tions of SDB are strongly underestimated [6]. In 2016, Frost and
Sullivan showed that, for example in the USA, the estimated
burden of cost for undiagnosed OSA was $149.6 billion. They
estimated that an additional $49.5 billion would be necessary to
diagnose and treat every American adult who has OSA [7]. In
clinical routine, a patient with suspicion for SDB will get a por-
table monitoring for a one-night examination of respiratory pa-
rameters in the home environment. In general, most portable
monitoring systems are not able to assess sleep time; numbers
of apneas or hypopneas are related to recording time leading to
an overall underestimation of real SDB-severity. Thus, in the
case of inclusive findings in portable monitoring (e.g., not rele-
vant increased AHI), guidelines recommend a full
polysomnography (PSG) in a sleep lab as diagnostic gold stan-
dard. Currently, many patients are sent for an in-center PSGwho
could otherwise have been diagnosed in a more accurate way by
a more sophisticated home sleep testing. Smart diagnostic de-
vices integrating automatic data processing algorithms could en-
able a more accurate detection of SDB in a home setting without
a time, personnel, and cost consuming PSG examination.
Undoubtedly, PSG is a necessary tool for patients with complex
comorbidities for an accurate clinical diagnosis. Thus, using new
diagnostic approaches could lead to a more efficient exploitation
of existing sleep lab capacities for patients really requiring those
resources. An increase of diagnostic accuracy of home sleep
testing by smarter diagnostic techniques compared to gold stan-
dard PSG could help to narrow the gap between the high prev-
alence of SDB and limited diagnostic capacities.

In this proof of principle study, we analyzed an artificial
intelligence (AI)–based algorithm to differentiate between
wake, rapid eye movement sleep (REM), and non-rapid eye
movement (NREM) sleep based on features extracted from
actigraphy and respiratory inductance plethysmography
(RIP) belts (Nox Medical, Iceland). The algorithm presented
here is a machine learning (ML) algorithm based on an artifi-
cial recurrent neural network (RNN) trained using supervised
learning. The RNN contains three fully connected dense
layers that feed into a recurrent layer. This method may sig-
nificantly simplify the diagnostic pathway for SDB by
allowing the clinician to differentiate between sleep states
without collecting and analyzing data with full PSG equip-
ment. Additionally, the use of this algorithm may help to
increase the diagnostic accuracy for the estimation of sleep
time resulting in a more accurate estimation of sleep-related
parameters like apnea-hypopnea index (AHI), total sleep time
(TST), or sleep efficiency (SE).

Methods

Patients

Between October 2019 and January 2020, we included 128
patients referred to our sleep lab due to suspected sleep-
disordered breathing. We excluded all pregnant women ac-
cording to the declaration of Helsinki (2013). We excluded
17 patients due to artifacts in one or more PSG channels.

This study was approved by the ethics committee of the
University Duisburg-Essen and all participating subjects pro-
vided informed consent (19-8963-BO).

Polysomnography

All study patients were examined by means of a digital
polysomnography (Nox A1®, Nox Medical, Iceland) including
electroencephalography (EEG), electrooculography (EOG), elec-
tromyography (EMG) of submental and tibialis muscles, rib cage
and abdominal Respiratory Inductance Plethysmography (RIP),
pulse oximetry (Nonin 3150, Minnesota, USA), measurement of
respiratory flow by nasal cannula at a sample frequency of
200 Hz and body position [8, 9].

Apnea and hypopnea events were scored according to
AASM 2012 [10].

Nox BodySleepTM 1.0 algorithm

The Nox BodySleepTM 1.0 (NoxMedical, Island) algorithm is
a machine learning algorithm utilizing a feature-based artifi-
cial neural network to classify 30 s epochs into sleep states.
The neural network is comprised of three dense layers, each
with 70 nodes, followed by a recurrent layer with 50 gated
recurrent units (GRU) blocks. The classification layer consists
of 3 nodes, representing each of the three sleep states: wake,
REM, and NREM. A SoftMax function is used to select the
class by selecting the output of the classification layer with the
highest score. The activation function used for the hidden
layers and the gated recurrent unit (GRU) is the so-called
rectifier or Rectified Linear Unit (ReLu) function (Fig. 1).
The ReLu function is depicted showing that negative inputs
result in an output value of zero, while positive inputs result in
an output value equal to the input. The GRU is a special
mechanism used in artificial neural networks to introduce an
element which can retain a memory of previous inputs to be
used with current inputs for prediction. The GRUs act as a sort
of memory elements in the artificial neural networks.

The Nox BodySleepTM 1.0 algorithm training, validation,
and testing data consisted of 365 manually scored sleep stud-
ies originating from two sources. The 365 studies were split
into a training and a validation set of 310 studies as well as a
hidden test set of 55 studies. The hidden test set was only used
for the final internal validation of the model before it was
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implemented into the Noxturnal software and used for the
current external validation. The 310 studies used for training
and validation were randomly split into training and validation
sets with an 80/20 split during 5-fold cross validations during
the model development. During training, a drop out of 0.22
was used in each of the three dense and the GRU layers for
regularization. The three output classes were given different
weights accounting for their prevalence in the training set:
wake 1, REM 0.7, and NREM 0.6.

The input signals to the algorithm are the abdominal and
thoracic RIP signals, respiratory rate and activity. Features
such as amplitude, standard deviation, changes in amplitude,
signal correlations, breathing durations, and other statistical
metrics were derived from the signals. The features were nor-
malized in a robust way, subtracting the median and dividing
by the inter quartile range for each study.

When using the algorithm, the same features are calculated
and the normalization is performed for each study. The model
input consists of the features calculated for 25-time steps,
where each timestep represents a 30 s sleep epoch. The output
is taken as the predicted sleep state of the 23rd time step.
Therefore, of the 25 input timesteps, 22 represent past epochs,
1 represents the current epoch of interest, and 2 represent
future epochs.

During training, the Adam optimizer was used with categor-
ical cross entropy loss. The model was trained with a batch size
of 120 over 50 training epochs. The learning rate was set to
0.0001 (Fig. 2).

We tested the diacnostic accuracy of the novel Nox
BodySleepTM 1.0 algorithm for the estimation of sleep based
on actigraphy and RIP belts. Validation was performed against
manually scored polysomnography recordings.

Statistics

Methods of descriptive statistics (frequency, mean ± standard
deviation, range, sensitivity, and specificity) were used for the
analysis of sleep variables. We performed Pearson correlation
analysis and constructed Bland-Altman plots. The Mann-
WhitneyU test was used to analyze the significance of the agree-
ment of the examined distributions. Additionally, Cohen’s kap-
pa, which measures the agreement between two raters or
methods, as well as sensitivity and specificity, was calculated.
For the analysis of differences between different subgroups, the
Kruskal-Wallis test was conducted. Statistical analysis was per-
formed using SPSS 22.0 (IBM SPSS Statistics, Armonk, New

Fig. 1 The BodySleepTM 1.0 network architecture. Connections between nodes are not drawn; the network is fully connected during prediction. Twenty-
two percent dropout was used during training for regularization. The time step (n) refers to the epoch number of the study being analyzed

Fig. 2 The training and validation pipeline for the BodySleepTM 1.0 algorithm
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York, USA). A p value ≤ 0.05 was considered to be statistically
significant.

Results

Our study population consisted of 128 patients in total (79 men,
49 women, median age 62±13 years). Table 1 depicts patient
characteristics. All included patients showed sleep-disordered
breathing. The presence of another sleep disorder was excluded
by the use of questionnaires as well as the examination by an
experienced sleep physician. Furthermore, there was no hint for
another sleep disorder according to polysomnographic results.
Both diagnostic and therapeutic nights were included in the
assessment.

We analyzed a total of 77,940 epochs of 30 s in length. The
comparison between manual scored epochs and epochs scored
by Nox BodySleepTM 1.0 is shown in Fig. 3. We obtained a
Cohen’s kappa of 0.62, indicating a substantial agreement
between the Nox BodySleepTM 1.0 and the manual scoring.

Additionally, we analyzed the diagnostic accuracy, repre-
sented by sensitivity and specificity, of the Nox BodySleepTM

1.0 sleep/wake estimation compared to an experienced tech-
nician who manually scored sleep/wake stages for a total of
128 patients (Table 2).

We also calculated Pearson correlation coefficient r and the
bias for estimation of AHI, SE, and TST by Nox
BodySleepTM 1.0 for four different AHI-groups. Group 1 in-
cludes patients with an AHI below 5 events/h, group 2 in-
cludes the range of 5–15 events/h, while group 3 includes
the AHI between 15 and 30 events/h and group 4 includes
all patients with an AHI above 30/h.

Results are summarized in Fig. 4 and Table 3.
Comparing AHI scored byBodySleep™1.0 algorithmwith

PSG-based manually scored AHI, we found an overall corre-
lation of r=0.91 with an overestimation of 0.2/h, received by
Bland-Altman analysis (Supplementary Material).
Additionally, we found an overall correlation of r=0.73 with
an overestimation of 2.1% for sleep efficiency (SE) and a
correlation of r=0.81 with an overestimation of 14 min for
total sleep time (TST), respectively.

To analyze diagnostic accuracy of BodySleep™1.0 algo-
rithm depending on different severity grades of SDB, we di-
vided the sample into 4 subgroups based on manually scored
AHI values: AHI group 1 with AHI <5/h showing no relevant
SDB, AHI group 2 with AHI between 5/h and 15/h
representing mild graded SDB, AHI group 3 with AHI be-
tween 15 and 30/h showing moderate graded SDB and AHI
group 4 with AHI≥30/h representing severe graded SDB.

Total sleep time is estimated to be of good diagnostic qual-
ity in all investigated subgroups, which is also confirmed by
the Kruska-Wallis analysis.

Sleep efficiency is more likely to be overestimated by the
BodySleepTM 1.0 in patients with mild and severe sleep apnea
than in healthy subjects or patients with moderate sleep apnea.

Table 1 Patient characteristics (n=128) of the studied cohort (BMI:
body mass index; AHI: apnea-hypopnea index; ODI: oxygen
desaturation index)

Metrics Mean Std Min Max

Age [years] 61.5 13.4 18 86

Height [cm] 173.8 9.9 149 196

Weight [kg] 99.2 24.0 49 180.0

BMI [mg/m2] 31.0 7.2 18 58.8

AHI [/h] 19.0 18.8 0 84.3

ODI [/h] 21.3 19.6 0 92.1

Analysis duration [min] 304.4 261.1 288 510.25
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Fig. 3 Comparison of the number
of scored epochs via Nox
BodySleepTM 1.0 versus manual
scoring of 128 sleep lab patients
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This difference is shown to be significant in the Kruska-Wallis
analysis (Table 3).

The cross-sectional analysis of the AHI subgroups resulted
in the BodySleepTM1.0 classifying patients into the analyzed
AHI threshold groups with strong sensitivities and specific-
ities (Table 4).

We also examined the diagnostic accuracy of the
BodySleepTM 1.0 is for estimating the sleep states in order
to identify wake-sleep transitions. For this purpose, we
searched for the first epoch scored as sleep in the manually
analyzed PSGs. From this epoch, we went ten epochs forward
and backward and compared these epochs with the
BodySleepTM 1.0 scoring results using four fields chart anal-
ysis. We found a sensitivity of 81%, a specificity of 96%, and
a F1 score of 74%, indicating that the BodySleepTM 1.0 esti-
mates the first occurrence of sleep during waking-sleep tran-
sition with good clinical accuracy.

Discussion

Due to the high prevalence of SDB and related diseases as
well as limited diagnostic capacities, the development and
validation of novel technologies like BodySleep™ 1.0 will
enable a more accurate out of center (OOC) testing and is a
major research priority in sleep medicine.

This is the first study to evaluate the diagnostic accuracy of
Nox BodySleepTM 1.0, a novel AI-based algorithm for the
estimation of sleep states, for the determination of AHI and
of sleep quality parameters (TST and SE) in different AHI
subgroups.

First, we found a substantial agreement between Nox
BodySleepTM 1.0 scored epochs with manually scored epochs
and a strong Cohen’s Kappa of 0.62.

Second, we observed an excellent agreement for AHI esti-
mation (r=0.91) and an appropriate agreement between

manually scored PSG and Nox BodySleepTM 1.0TM for the
estimation of TST and SE with r=0.81 and r=0.73,
respectively.

The BodySleepTM 1.0 seems to be a convenient algorithm
for OOC testing as it detects different, clinically relevant AHI
thresholds with high diagnostic accuracy. In addition, the
BodySleepTM 1.0 also estimates first occurrence of sleep with
good diagnostic accuracy leading to an improved diagnostic
value of outpatient portable monitoring.

However, our findings should be discussed with existing
evidence on diagnostic approaches using AI mechanisms.
Regarding automatic sleep/wake stage classification in pa-
tients with obstructive sleep apnea, Ucar et al. [11] analyzed
the diagnostic accuracy of an algorithm for automatic sleep
staging based on heart rate variability (HRV) derived from
photoplethysmography (PPG) by feature extraction followed
by the k-nearest neighbors classification and support vector
machines (SVM) on a total of 10 patients. They found an
accuracy of 73.36%, a sensitivity of 0.81, a specificity of
0.77, a Cohen’s kappa of 0.59, and an F-measurement of
0.79, indicating the strong clinical accuracy of the presented
algorithm. This is comparable to the results gained with the
presented 3 class classification algorithm.

Korkalainen et al. [12] presented a deep learning algorithm for
sleep staging based on PPG data in 894 patients with suspected
sleep-disordered breathing. They analyzed a three-stage
(wake/NREM/REM), a four-stage (wake/N1+N2/N3/REM),
and a five-stage (wake/N1/N2/N3/REM) model with strong
epoch-by-epoch accuracies of 80.1%, 68.5%, and 64.1%, respec-
tively, resulting in a moderate agreement compared to manual
EEG scoring. Additionally, this deep learning algorithm estimat-
ed clinical parameters like total sleep time (TST), sleep efficiency
(SE), sleep stage percentage, and AHI with low bias. This algo-
rithm is superior to the one presented here, because it allows a
finer distinction up to the 5 class classification. It is to be
discussed whether the BodysleepTM 1.0 can achieve an even
better performance by adding further channels or features, for
example, by using the HRV. A study of Fonseca et al. [13]
investigated a machine-learning based sleep-staging method
using HRV features derived from PPG and features from the
RIP belts. They found a strong accuracy of 80% for the
abovementioned three-class task as well as a slight overestima-
tion of TST and SE of 13.4 min and 2.9%, respectively.
Additionally, they found a high inter-individual variability re-
garding the accuracy of the algorithm. This is comparable to
the results of the algorithm investigated in this study.

Table 2 Sensitivity and
specificity of sleep stage
estimation by Nox
BodySleepTM 1.0

Stage Sensitivity Specificity

Wake 0.65 0.59

REM 0.72 0.68

NREM 0.74 0.70

Average 0.70 0.66

Table 3 Pearson correlation for
the analyzed AHI subgroups.
*p<0.005, **p<0.001. AHI,
apnoea hypopnoea index; TST,
total sleep time; SE, sleep
efficiency

AHI group 1 AHI group 2 AHI group 3 AHI group 4 Overall Kruska-Wallis p

TST [min] 0.79** 0.87** 0.85** 0.63** 0.81* 0.26

SE [%] 0.84** 0.60** 0.84** 0.588** 0.73* 0.01
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Beattie et al. [14] also presented an automated algorithm
for sleep stage estimation based on PPG and accelerometry
features in a total of 60 adults. They found a moderate overall
accuracy of 59% and a Cohen’s kappa of 0.52 and no observ-
able bias for the estimation of the different sleep stages’ dura-
tions. In comparison, the BodysleepTM 1.0 shows a better
clinical accuracy. A study of Motin et al. [15] investigated a
PPG-based supervised Machine learning sleep-wake classifi-
cation algorithm using SVMs with cubic kernel. They extract-
ed time-domain features from PPG signals and PPG-based
surrogate values for cardiac parameters to classify wake and
sleep stages, resulting in a strong accuracy of 81.10%, a sen-
sitivity of 81.06%, a specificity of 82.50%, a precision of
99.37%, and an F score of 81.74%, indicating high diagnostic
quality. This is also consistent with our results, showing that
the BodysleepTM 1.0 is comparable to the other 3 class clas-
sification algorithms in terms of performance and clinical
accuracy.

Another study of Fonseca et al. [16] dealed with an auto-
matic sleep staging based on heart rate variability and body
movements. They found a substantial agreement of the algo-
rithm with four-class sleep staging with a Cohen’s kappa of
0.60 and an accuracy of 75.9%. For sleep/wake classification,
they found a Cohen’s kappa of 0.65 and a sensitivity to wake
of 72.8% and a sensitivity of 94.0%, which is consistent to the
results presented here. BodySleepTM 1.0

Lyon et al. [17] used a sonar smartphone technology app to
estimate sleep states and to screen for SDB patterns based on
respiration and movement in a database including 94 over-
night measurements. They found a sensitivity of 94% and a

specificity of 97% for an AHI threshold above 15/h. These
values are comparable to the AHI estimations gained by
BodysleepTM 1.0.

Schade et al. [18] presented a consumer-marketed non-con-
tact device which algorithm estimates sleep states (5-class
classification) based on movements and respiration. They
found an overall accuracy of 87%, a sensitivity for sleep state
of 96%, and a sensitivity for wake of 73% as well as good
estimations for sleep-related parameter like TST or wake after
sleep onset (WASO). The performance of this algorithm is
slightly better than the one of the algorithm presented here.

Yang et al. [19, 20] presented a sleep state estimation algo-
rithm for wake, rapid eye movement (REM), and non-REM
(NREM) sleep detection (3-class classification) using two re-
spiratory variability (RV) features extracted from oro-nasal
airflow signals provided in the sleep-EDF database. They
found an overall accuracy of 74.0% and Cohen’s kappa coef-
ficient of 0.49, indicating that this algorithm has a comparable
diagnostic accuracy to the BodysleepTM 1.0 algorithm pre-
sented here.

Fig. 4 Scatter plot of a AHI, b
TST, and b SE

Table 4 Sensitivity and specificity for the analyzed AHI subgroups

AHI group Sensitivity [%] Specificity [%] N

1 72.7 91.0 33

2 85.3 92.8 41

3 72.7 97.2 26

4 72.4 92.1 28
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A current study of Lauteslager et al. [10] aims to evaluate the
sleep staging performance of the radar-based Circadia
Contactless Breathing Monitor (model C100) and its underlying
sleep analysis algorithm on a group of healthy sleepers. They
trained the algorithm on PSG data obtained in the initial dataset
(n=17), and validated it using leave-one-subject-out cross-valida-
tion. An epoch-by-epoch accuracy of 75.0%, 59.9%, 74.8%, and
57.1% was found for “deep,” “light,” “REM,” and “wake” re-
spectively, indicating that this algorithm solves the 4-class clas-
sification problem with good clinical accuracy. Compared to this
algorithm, BodysleepTM 1.0 performed slightly weaker, as it
currently leaks the distinction between light and deep NREM
sleep.

Table 5 summarizes the results of abovementioned refer-
ence studies compared with our study results regarding differ-
ent classes of sleep-stage-discrimination.

The presented method has an important impact as the evalu-
ation of sleep does not require EEG and EMG, since it is solely
based on the evaluation of physiological parameters affected by
sleep. A portable monitoring with such integrated algorithm
would be much more comfortable for the patient compared to
the full PSG setting. Furthermore, it could be less error-prone, as
no electrodes can slip or get lost. While showing a comparable
diagnostic accuracy to the algorithms presented above,
BodySleepTM 1.0 algorithm does not include data from PPG.
Therefore, this algorithm is independent of signal quality of pulse
oximetry which is often disturbed by loss of contact during out-
patient recordings.

However, we have to acknowledge some limitations. Nox
BodySleepTM 1.0 lacks heart rate variability analysis which
could reflect autonomic changes during disturbed sleep.
Therefore, we propose the inclusion of heart rate variability
in the neural network of the Nox BodySleepTM 1.0 algorithm,
as this is likely to significantly increase the diagnostic accura-
cy. Additionally, the current algorithms should be adapted in
order to get more appropriate diagnostic accuracy also for
patients with other sleep disorders like periodic limb move-
ment disorder (PLMD).

In summary, Nox BodySleepTM 1.0 algorithm can the di-
agnostic value of outpatient portable monitoring by estimating
sleep in an appropriate way leading to a more reliable finding

of apnea-hypopnea index. The diagnostic accuracy is compa-
rable to other validated algorithms. Nox BodySleepTM 1.0 is
easy to use and could help to increase the diagnostic accuracy
of home sleep testing promising a more efficient and econom-
ic diagnostic pathway.

Conclusion

The algorithm shows a moderate diagnostic accuracy for the
estimation of sleep. In addition, the algorithm determines the
AHI with a good agreement to the manual scoring and it
shows a good diagnostic accuracy in estimating wake-sleep
transition. The presented algorithm seems to be an appropriate
tool to increase the diagnostic accuracy of portable monitor-
ing. The validated diagnostic algorithm promises a more ap-
propriate and cost-effective method if integrated in Out-of-
center (OOC) testing of patients with suspicion for SDB.
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