Skip to main content

Advertisement

Log in

Relationship between surfactant proteins B and C and obstructive sleep apnea: is serum SP-B concentration a potential biomarker of obstructive sleep apnea?

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Surfactant proteins B and C are mainly synthesized, secreted by alveolar type II cells, and affected by hypoxia and mechanical stretches. We hypothesized that their serum levels might be altered by intermittent hypoxia and swing of intrathoracic pressure of obstructive sleep apnea (OSA).

Methods

Consecutive 140 middle-aged males, suspicious of OSA determined by polysomnography, were studied. Surfactant proteins B and C were determined by ELISA.

Results

Surfactant protein B (41.39 ± 6.01 vs 44.73 ± 7.62 ng/L, p = 0.005), not C (32.60 ± 6.00 vs 32.43 ± 6.44 ng/L, p = 0.61), significantly lowered in moderate to severe OSA subjects than in non to mild OSA subjects. Severity of OSA is inversely correlated with serum surfactant protein B. Adjusting age, body mass index, and smoking history, compared to subjects with surfactant protein B (SP-B) ≥43.35 ng/L, those with SP-B <43.35 ng/L showed significantly increased 1.528-fold risk for moderate to severe OSA (p = 0.009), whereas no association between surfactant protein C and OSA was observed. Prevalence of moderate to severe OSA in lower SP-B group is higher than that in higher SP-B group (62.7 vs 38.4 %, p = 0.003). Serial and parallel tests on Epworth sleep scale (ESS) and SP-B evaluation can be complementary and prove helpful with high specificity (94.44 %) and sensitivity (84.48 %) to detect moderate to severe OSA.

Conclusions

Serum surfactant protein B, rather than C, is decreased in some individuals with moderate to severe OSA, compared to non to mild OSA subjects. Serum surfactant protein B might be a potential biomarker to diagnose OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

OSA:

Obstructive sleep apnea

ATII:

Alveolar type II cells

PSG:

Polysomnography

BMI:

Body mass index

HbA1C:

Hemoglobin A1C

FBG:

Fasting blood glucose

SPs:

Surfactant proteins

SP-B:

Surfactant protein B

SP-C:

Surfactant protein C

KL-6:

Krebs von den Lungen-6

AHI:

Apnea/hypopnea index

LSaO2 :

Lowest oxyhemoglobin saturation

ODI3 :

Oxygen desaturation index of 3 %

ODI4 :

Oxygen desaturation index of 4 %

BP:

Blood pressure

ESS:

Epworth sleep scale

PPV:

Positive predictive value

NPV:

Negative predictive value

References

  1. Young T, Palta M, Dempsey J et al (2001) The occurrence of sleep-disordered breathing among middle aged adults. N Engl J Med 328:1230–1235

    Article  Google Scholar 

  2. Sánchez-de-la-Torre M, Campos-Rodriguez F, Barbé F (2013) Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med 1:61–72

    Article  PubMed  Google Scholar 

  3. Young T, Evans L, Finn L et al (1997) Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep 20:705–706

    CAS  PubMed  Google Scholar 

  4. Aihara K, Oga T, Chihara Y et al (2013) Analysis of systemic and airway inflammation in obstructive sleep apnea. Sleep Breath 17:597–604

    Article  PubMed  Google Scholar 

  5. Sarıman N, Levent E, Cubuk R et al (2011) Bronchial hyperreactivity and airway wall thickening in obstructive sleep apnea patients. Sleep Breath 15:341–350

    Article  PubMed  Google Scholar 

  6. Boyd JH, Petrof BJ, Hamid Q et al (2004) Upper airway muscle inflammation and denervation changes in obstructive sleep apnea. Am J Respir Crit Care Med 170:541–546

    Article  PubMed  Google Scholar 

  7. Timby J, Reed C, Zeilender S et al (1990) Mechanical causes of pulmonary edema. Chest 98:973–979

    Article  CAS  PubMed  Google Scholar 

  8. Reinke C, Bevans-Fonti S, Grigoryev DN et al (2011) Chronic intermittent hypoxia induces lung growth in adult mice. Am J Physiol Lung Cell Mol Physiol 300:266–273

    Article  Google Scholar 

  9. Lederer DJ, Jelic S, Basner RC et al (2009) Circulating KL-6, a biomarker of lung injury, in obstructive sleep apnoea. Eur Respir J 33:793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jobe AH, Ikegami M (2000) Lung development and function in preterm infants in the surfactant treatment era. Annu Rev Physiol 62:825–846, Review

    Article  CAS  PubMed  Google Scholar 

  11. Nkadi PO, Merritt TA, Pillers DA (2009) An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab 97:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gortner L, Hilgendorff A, Bähner T et al (2005) Hypoxia-induced intrauterine growth retardation: effects on pulmonary development and surfactant protein transcription. Biol Neonate 88:129–135

    Article  CAS  PubMed  Google Scholar 

  13. Tong Q, Zheng L, Dodd-o J et al (2006) Hypoxia-induced mitogenic factor modulates surfactant protein B and C expression in mouse lung. Am J Respir Cell Mol Biol 34:28–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liang S, Li N, Heizhati M, et al. (2015) What do changes in concentrations of serum surfactant proteins A and D in OSA mean? Sleep Breath

  15. White CW, Greene KE, Allen CB et al (2001) Elevated expression of surfactant proteins in newborn rats during adaptation to hyperoxia. Am J Respir Cell Mol Biol 25:51–59

    Article  CAS  PubMed  Google Scholar 

  16. Wirtz HR, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266–1269

    Article  CAS  PubMed  Google Scholar 

  17. Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA (2007) Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 293:259–271

    Article  Google Scholar 

  18. Guo Y, Yang MC, Weissler JC et al (2007) PLAGL2 translocation and SP-C promoter activity—a cellular response of lung cells to hypoxia. Biochem Biophys Res Commun 360:659–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Braems GA, Yao LJ, Inchley K et al (2000) Ovine surfactant protein cDNAs: use in studies on fetal lung growth and maturation after prolonged hypoxemia. Am J Physiol Lung Cell Mol Physiol 278:754–764

    Google Scholar 

  20. Johnston LC, Gonzales LW, Lightfoot RT et al (2010) Opposing regulation of human alveolar type II cell differentiation by nitric oxide and hyperoxia. Pediatr Res 67:521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsao PN, Wei SC (2013) Prenatal hypoxia down regulates the expression of pulmonary vascular endothelial growth factor and its receptors in fetal mice. Neonatology 103:300–307

    Article  CAS  PubMed  Google Scholar 

  22. Nardo L, Zhao L, Green L et al (2005) The effect of repeated umbilical cord occlusions on pulmonary surfactant protein mRNA levels in the ovine fetus. J Soc Gynecol Investig 12:510–517

    Article  CAS  PubMed  Google Scholar 

  23. Whitsett JA, Wert SE, Trapnell BC (2004) Genetic disorders influencing lung formation and function at birth. Hum Mol Genet 13:207–215

    Article  Google Scholar 

  24. Lye M, Wang L, Li E et al (1991) Pulmonary surfactant will secure free airflow through a narrow tube. J Appl Physiol 71:742–748

    Google Scholar 

  25. Enhorning G, Holm BA (1993) Disruption of pulmonary surfactant’s ability to maintain openness of a narrow tube. J Appl Physiol 74:2922–2927

    CAS  PubMed  Google Scholar 

  26. Bayat S, Porra L, Albu G et al (2013) Effect of positive end-expiratory pressure on regional ventilation distribution during mechanical ventilation after surfactant depletion. Anesthesiology 119:89–100

    Article  PubMed  Google Scholar 

  27. Owens RL, Malhotra A, Eckert DJ et al (2010) The influence of end-expiratory lung volume on measurements of pharyngeal collapsibility. J Appl Physiol (1985) 108:445–451

    Article  Google Scholar 

  28. Lancaster LH, Mason WR, Parnell JA et al (2008) Obstructive sleep apnea is common in IPF [abstract]. Am J Respir Crit Care Med 177:A247

    Google Scholar 

  29. Sumita Y, Sugiura T, Kawaguchi Y et al (2010) Genetic polymorphisms in the surfactant proteins in systemic sclerosis in Japanese: T/T genotype at 1580 C/T (Thr131Ile) in the SP-B gene reduces the risk of interstitial lung disease. Pneumonol Alergol Pol 78:224–228

    Google Scholar 

  30. Lam JC, Kairaitis K, Verma M et al (2008) Saliva production and surface tension: influences on patency of the passive upper airway. J Physiol 586:5537–5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant number: 81260017)

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanfang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Li, N., Yao, X. et al. Relationship between surfactant proteins B and C and obstructive sleep apnea: is serum SP-B concentration a potential biomarker of obstructive sleep apnea?. Sleep Breath 20, 25–31 (2016). https://doi.org/10.1007/s11325-015-1179-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-015-1179-x

Keywords

Navigation