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Abstract

Purpose: Many neurological diseases affect small structures in the brain and, as such, reliable
visual evaluation and accurate quantification are required. Recent technological developments
made the clinical use of hybrid positron emission tomography/magnetic resonance (PET/MR)
systems possible, providing both functional and anatomical information in a single imaging
session. Nevertheless, there is a trade-off between spatial resolution and image quality (contrast
and noise), which is dictated mainly by the chosen acquisition and reconstruction protocols.
Image reconstruction algorithms using spherical symmetric basis functions (blobs) for image
representation have a number of additional parameters that impact both the qualitative and
quantitative image characteristics. Hence, a detailed investigation of the blob-based reconstruc-
tion characteristics using different parameters is needed to achieve optimal reconstruction
results.

Procedures: This work evaluated the impact of a range of blob parameters on image quality
and quantitative accuracy of brain PET images acquired on the Ingenuity Time-of-Flight
(TOF) PET/MR system. Two different phantoms were used to simulate brain imaging
applications. Image contrast and noise characteristics were assessed using an image
quality phantom. Quantitative performance in a clinical setting was investigated using the
Hoffman 3D brain phantom at various count levels. Furthermore, the visual quality of four
clinical studies was scored blindly by two experienced physicians to qualitatively evaluate
the influence of different reconstruction protocols, hereby providing indications on
parameters producing the best image quality.

Results: Quantitative evaluation using the image quality phantom showed that larger basis
function radii result in lower contrast recovery (~2 %) and lower variance levels (~15 %). The
brain phantom and clinical studies confirmed these observations since lower contrast was seen
between anatomical structures. High and low count statistics gave comparable values. The
qualitative evaluation of the clinical studies, based on the assessment performed by the

Electronic supplementary material The online version of this article
(doi:10.1007/s11307-015-0824-x) contains supplementary material, which
is available to authorized users.

Correspondence to: Habib Zaidi; e-mail: habib.zaidi@hcuge.ch



E.L. Leemans et al.: Evaluation of image reconstruction in brain PET 705

physicians, showed a preference towards lower image variance levels with a slightly lower

contrast, favoring higher radii and four iterations.

Conclusion: This study systematically evaluated a number of basis function parameters and
their quantitative and qualitative effect within PET image reconstruction in the context of brain
imaging. A range of blob parameters can minimize error and provided optimal image quality,
where the anatomical structures could be recognized but the exact delineation of these
structures is simplified in scans with lower image variance levels and thus, higher radii should be
preferred. With the optimization of blob parameters, the reconstructed images were found to be
qualitatively improved (optimum parameters {d=2.0375, alpha=10.4101, radius=3.9451}) as
assessed by the physicians compared to the current clinical protocol. However, this qualitative
improvement is task specific, depending on the desired image characteristics to be extracted.
Finally, this work could be used as a guide for application-specific optimal parameter selection.
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Introduction

A dementia, or brain tumors, produce important alter-
ations in small brain structures that are frequently not
detectable using conventional anatomical imaging techni-
ques [1]. Both magnetic resonance imaging (MRI) and x-ray
computed tomography (CT) imaging provide detailed
anatomic information with CT being faster, easily accessi-
ble, and able to visualize bone structures; however, MRI has
several advantages over CT including the higher soft tissue
contrast of MRI and the absence of radiation exposure in
addition to providing useful functional information [2, 3].
Positron emission tomography (PET) imaging provides
biochemical and molecular information at the cellular level.
Therefore, hybrid or fusion PET/MR imaging could become
the de facto standard procedure, offering unique capabilities
for the clinical neuroimaging community and neuroscience
research at large [4].

The recent development of MR-compatible PET compo-
nents made hybrid PET/MR systems a reality. These systems
facilitate co-registration of structural and functional images
and enable simultaneous in vivo assessment of multimodality
imaging probes. Such acquisition protocols potentially create
a more convenient workflow for the patients as they undergo
two examinations within a single scanning session. More-
over, multiple studies have shown potential clinical benefits
of such hybrid imaging protocols, such as improved
diagnostic accuracy [2—4]. However, the actual combination
of PET and MRI faces two major technical challenges,
namely reducing the potential interference between the two
systems and developing reliable and robust MR-based
attenuation correction (MRAC) schemes [5, 6].

Throughout this work, the Philips Ingenuity TOF PET/
MR system, combining the Gemini TOF PET and the
Achieva 3T X-series MRI scanners and arranged in a tandem
geometry with a ~3 m physical separation, was used,

number of neurological diseases, such as epilepsy,

allowing sequential acquisition of PET and MR images. To
minimize the interference between the two components,
additional shielding of the photodetectors was used. MRI-
based attenuation correction is performed through intensity-
based tissue segmentation and classification into three
categories: air, lung, and soft tissue [7]. Combination of
these modalities in a single device could alter image
characteristics, such as spatial resolution due to the magnetic
field or bias due to the MR derived attenuation correction
[8]. However, previous studies, using phantom and clinical
data, have shown that the performance of the PET-
subsystem was comparable to the Gemini TOF PET-CT
system [9].

Quantitative and semi-quantitative metrics, such as the
standardized uptake value (SUV), are often used for accurate
clinical diagnosis, staging, restaging, disease monitoring,
and assessment of response to treatment. In addition, it is
important to differentiate small structures from neighboring
structures due to their functional role in certain neurological
diseases. This requires high spatial resolution with a high
contrast between small brain structures and a high signal-to-
noise ratio. These imaging characteristics impact visual
interpretation as well as semi-quantitative and fully quanti-
tative indices in brain PET imaging.

Traditionally, space modeling for image representation is
carried out by means of cubic basis functions (voxels).
Voxels are mainly used for simplicity reasons and due to the
uniform sampling they provide for visualization. However,
due to statistical noise, filtering is often required at the
expense of reduced contrast and spatial resolution loss. The
use of spherically symmetric basis functions (blobs) as
opposed to voxels improves upon the former, with the blob-
based reconstruction resulting in less image noise, without
loss of resolution within a range of basis function parameters
[10-13]. In addition, the smoother, overlaying spatial
distribution of blobs will better represent the smoother
biological transitions compared to the discontinuous sharp
boundaries of voxels [14].
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The blob density function can be altered by a set of
parameters enabling the user to control the characteristics of
the reconstructed image [11]. The chosen parameters could
affect both the qualitative and quantitative performances of
the reconstructed images [15]. Parameter selection depends
on the task at hand, since the images should be individually
optimized in terms of spatial resolution, contrast, and
variance characteristics to suit a particular application. In
addition, it is important to achieve comparable results in
single- and multi-center trials by minimizing differences
between image processing protocols [16]. Previous research
investigated only a few blob parameter sets and assessed
their effect on quantification [11, 12]. Hence, a detailed
investigation of image reconstruction characteristics with a
range of blob parameters is needed.

In this work, we quantitatively evaluated the impact
of a range of blob parameters. Two different phantoms
were used, simulating brain imaging applications. Using
an image quality phantom, we systematically assessed
the image contrast and noise characteristics. The Hoff-
man 3D brain phantom was also used to evaluate more
realistically the different reconstruction parameters for
brain imaging applications. The last part of this study
was consisted of qualitative evaluation of clinical studies
to assess which parameter set best represents the clinical
need. The results of this study could be used to search
and implement optimal reconstruction parameters for
specific applications.

Materials and Methods

Theory

As mentioned above, the image space is modeled by a set of basis
functions. Instead of cubic basis functions, other overlapping
functions could be used and freely modified to reflect certain
properties such as bias, variance, and spatial resolution. In this
work, we use a common spherically symmetric basis function, the
Kaiser—Bessel window function [14]. This function could be
described as follows:

b(m, o, R;r)

_(R 2 m
n(a/0) ("
_— 7 1- , if 0<R<r (1)
0, otherwise

where m is the order of the modified Bessel function (/,,), R is the
radial distance from the blob center, 7 is the blob radius, while the
alpha (a) parameter affects the blob shape. The second order is
selected (m=2) as lower values give discontinuous blobs, while
higher values create smoother basis functions but require longer
computational i. The blob radius also influences the computational
time, with a larger radius requiring more time since more lines of
response (LORs) coincide with the blob. Alpha is the only

parameter that does not influence the computational time. A large
alpha results in an amplitude dropping close to the blob center and
therefore a smoother transition.

Both alpha and radius parameters influence the spatial resolu-
tion defined as the full width at half maximum (FWHM) of the
point spread function (PSF) and thus the variance characteristics of
the reconstructed images. It should be kept in mind that the blob
FWHM must be kept smaller than the FWHM of the scanner’s PSF.
If this requirement is not met, the overshoot of high frequencies
could cause ringing artefacts. To minimize the mean square error in
the reconstructed image, the Fourier transform of the basis function
must be zero (or as close to zero as possible) at a distance equal to
multiples of the sampling distance of the image grid, as this ensures
optimum overlapping between adjacent blobs. This requirement
results in another parameter, the sampling distance (d). To fulfil this
condition, Eq. 2 must be satisfied, which is a modified formula for
a blob basis function grid based on the more generic formula for a
cubic grid [11].
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where u; is the parameter at which the i zero crossing of the 3-
dimensional Bessel function occurs. The exact value of u; can be
obtained from lookup tables. When the conditions set in this
equation are satisfied, the error of the images is minimized for a
certain combination of parameters.

Phantom Studies

Two different phantoms were used to evaluate the impact of
the basis function parameters on image quality in brain PET
imaging, namely an image quality phantom [17] and the more
realistic Hoffmann 3D brain phantom [18]. The image quality
phantom consists of a 20-cm diameter cylinder containing six
spheres of different size (diameters ranging between 9.98 and
31.27 mm). The phantom was filled with 20 MBq of Fluorine-
18 solution with a 5:1 ratio between the spheres and the warm
background compartment.

The second phantom, the Hoffman brain phantom, provides an
anatomical simulation of the radioisotope distribution found in the
normal brain. Made out of sturdy plastic, it consists of 19 inserts made
up of five thinner slices. Through thickness differences of the inner
slices, a 4:1 ratio between the gray matter (GM) and white matter (WM)
is mimicked. The phantom was filled with 43.9 MBq Fluorine-18 at the
time of acquisition. To achieve a reliable MR signal with improved
contrast, 350 mg copper sulfate was added to the fluorine solution.

The phantoms were carefully placed at the center of the field-of-
view using built-in laser guides. All scans were acquired on the
Philips Ingenuity TOF PET/MR system in list-mode format for
10 min (~100 M events) and 45 min (~430 M events) for the image
quality phantom and the Hoffman 3D brain phantom, respectively
(two separate scanning sessions). In order to assess the influence of
counting statistics, the list mode data of the Hoffman phantom were
rebinned to consider only the last 10 min of the scan, consisting of
~85 M counts, thus mimicking counting statistics on the low count
side of a typical brain scan.
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Clinical Studies

Four clinical brain studies of patients referred for dementia were
used for visual qualitative evaluation. The patients were scanned
using the usual protocol applied in clinical routine (waiting in a
darkened room, low ambient noise level 15 min prior to injection,
and scanning in supine position without the use of head fixation
devices). The patients were injected with 2-deoxy-2-['*F]fluoro-D-
glucose (['®F]-FDG) activities ranging between 205 and 263 MBg,
followed by a 15 min data acquisition 30 min post-injection, hereby
collecting between 118 and 145 M events.

Image Reconstruction

All images were reconstructed using a list-mode time-of-flight ordered
subsets expectation maximization (TOF-OSEM) algorithm following
3-class segmentation-based MRI-guided attenuation correction [19]
with the exception of the Hoffman phantom data in which TOF
information was not used. Scatter correction was performed using a
TOF-dependent single scatter simulation technique. Images were
reconstructed on a blob grid and subsequently sampled on a
288x288x%90 image grid with a voxel size of 2x2x2 mm.

The image quality phantom scans were reconstructed using the
combination of parameters displayed in Table 1. To cover all
possible combinations, representative parameters were derived from
the first (1,=6.988), second (#,=10.417), and third (#3=13.698)
zero crossings. This resulted in 15 different parameter combina-
tions, all satisfying Eq. 2. In all cases, the blob sampling distance
was set at 2.0375. The data were reconstructed with various
iterations (1, 2, 4, 8, and 12) using 32 subsets. For the Hoffman 3D
brain phantom and the clinical studies, seven representative
parameter combinations with 1, 4, and 12 iterations were used for
reconstruction. These combinations are marked with a star in
Table 1. The clinical studies were also reconstructed with the
current protocol used in clinical routine, namely two iterations, an
alpha value of 6.3716, a radius of 2.8, and blob spacing of 2.0375.

Evaluation Strategy

The image quality phantom was used to examine the influence of
the blob parameters on the contrast and variance characteristics of
the reconstructed images [20]. Image contrast is estimated by
calculating the contrast recovery coefficient (CRC) for each sphere.
Image variance is estimated through the image roughness (IR) and
background variability (BV) metrics. IR reflects the variations

Table 1. Chosen radius parameters for given alpha values, used for the
phantom studies satisfying conditions of Eq. 2. The blobs spacing (d) is set
at 2.0375 (relative units)

Alpha r;
Satisfying first
Zero crossing

r3
Satisfying third
Zero crossing

2
Satisfying second
Zero crossing

1.3084 1.6302" 24074 3.1552"
23664 1.6917 2.4495 3.1875
42799 1.8790 2.5824" 3.2907
7.7408 23912 2.9759 3.6078
10.4101 2.8750" 3.3769" 3.9451"

*combination used for Hoffmann brain phantom and clinical studies

within a region of interest (ROI) while BV reflects the variation
between the background ROIs of the same size. Equations 3, 4, and
5 display the quantities involved in the calculation of these indices.

Mpr

1
CRC=""__ 4100 (3)

where my is the mean value of the hot sphere with size s at the
target plane, my is the mean value of the background sphere with
size s, t is the actual contrast recovery between the hot sphere and
the background. In our experiment, ¢ equals 5.

1
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IRk =

ms k
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where my is the mean value of the K" background ROI with size s,
i is the pixel number, and f; is the intensity of pixel i. To generate
the final image roughness, the value is averaged over the 60 ROIs:

K
1
IR, =" IR
K

= %100 (5)

where my is the mean value of the K" background ROI with size s
and__ | K
ms =¥ 2 M k.
k=1
To calculate these characteristics, a central slice containing all
the hot spheres and four neighboring slices (10 and 20 mm from
each side) were used. In each slice, 12 background ROIs were
drawn, resulting in a total of 60 background ROIs for each sphere
size. In the central slice, six hot sphere ROIs were also drawn.
Supplemental Fig. 1a shows the ROIs overlaid on the target slice.
The Hoffman phantom was qualitatively and quantitatively
analyzed. Quantitative analysis was performed using two indices:
the radioactivity concentration ratio (RCR) and the contrast (C).
The RCR (Eq. 6) evaluates the ratio between the estimated
radioactivity concentration in the GM (mgy) and the WM (mwy).

RCR ="M (6)
mwm

The contrast (Eq. 7) evaluates the contrast between the cold
regions (cerebrospinal fluid (CSF) (m.y)) and the hot regions
(mgm)- The theoretical RCR for the Hoffman phantom is equal to 4
whereas the theoretical C is equal to 1.

C = MmGM—Mesf (7)
mcem

To calculate these characteristics, a central slice was selected at
the level of the basal ganglia and the lateral ventricle, containing
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GM, WM, and CSF. Representative ROIs were then drawn on this
slice (14 on the GM, nine on the WM, and four on the CSF)
(Supplemental Fig. 1b).

The clinical studies were also evaluated qualitatively and
quantitatively. Qualitative evaluation was performed blindly by
two experienced nuclear medicine physicians (over 10 years
experience). For each patient, the image reconstructed using
optimal parameters was identified. The subsequent images recon-
structed using different parameter combinations were visually
graded based on overall image quality with a ranking system using
a 4-step scale:

1. Excellent

2. Good

3. Moderate

4. Poor, not diagnostically useful

Quantitative evaluation was performed using the same indices
used in the Hoffman phantom study, namely the RCR and C
(Supplemental Fig. 1c).

Results
Image Quality Phantom

Figure 1 shows reconstructed images using 1, 4, and 12
iterations for two extreme combinations of reconstruction
parameters (alpha=1.3084, =1.6302, d=2.0375 and al-
pha=10.4101, =3.9451, d=2.0375). Visual inspection clear-
ly shows different noise textures between iterations chosen
parameter combinations. The amount of noise increases with
iterations and the second combination of parameters
(Fig. 1ii) showing lower noise levels compared to the first
(Fig. 1i). Differences in contrast recovery are also observed
between images reconstructed using different iterations and
combination of parameters. The contrast slightly increases

1

Bl 100 10 140 W0 180 0 w0

- 100 120 140 E0 180 20 w 100
Fig. 1 Reconstructed images centered at the hot spheres plane using from left to right, 1, 4, and 12 iterations with two
parameter combinations: alpha=1.3084, r=1.6302, d=2.0375 (j) and alpha=10.4101, r=3.9451, d=2.0375 (ji).
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with increasing iterations, but overall the second set provides
a lower contrast recovery. These differences, quantified in
Fig. 2, are caused by the difference in the FWHM of the
used blobs. The second set results correspond to a basis
function with a larger FWHM, resulting in an increased
smoothing of the images.

Contrast Recovery Coefficient

Figure 2a shows the quantitative CRC values for three
representative sphere sizes (smaller, middle, and larger
sphere) based on different reconstruction parameters. As
the sphere size increases, so does the CRC values. For the
first parameter set and 12 iterations, the maximum CRC is
83 and 47 % for the large and small sphere, respectively.
Absolute differences between parameter sets are small,
approximately 2 % but several patterns could be recognized.
The CRC decreases with larger radius values, but increases
by 5-15 % with increasing iterations. Larger radius values
result in a CRC decrease of approximately 1-2 % due to the
fact that the blobs have a larger FWHM, also causing
resolution degradation [15].

It can be observed that the reconstructions are grouped
based on the radius representing first, second, and third zero
crossings. In addition, the radii representing the first zero
crossing have larger differences within the group. This
finding is consistent with the errors found by Matej et al.,
with parameters in the first zero crossing resulting in errors
up to 1 %, while the maximum error in the third crossing is
substantially lower [11].

Image Roughness and Background Variability

Figure 2b and c shows the calculated quantitative noise
metrics; image roughness; and background variability

4 12

10 120 1@ 160 180 200

100 120 14 160 180 200
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Fig. 2 a Contrast recovery coefficients, b background variability, and ¢ image roughness for a large (left), medium (middle),
and small (right) sphere sizes using different reconstruction parameters. The different alpha values are represented by different
colors while the first, second, and third zero crossing radius are defined by different line styles. The y-axis scale of each sphere

size is adjusted for optimal representation.

(Egs. 4 and 5). The BV values appear to decrease with
sphere size. For smaller sphere sizes, larger BV variations
are observed, substantiating that noise reduction is larger in
smaller regions when using parameters from the third zero
crossing. In contrast, IR is similar for all sphere sizes since
the pixel to pixel variability depends less on sphere size.

For all sphere sizes, the IR increases by 5-15 % with
iterations. The BV also show a small increase (0.3-3 %);
however, for large sphere sizes and larger radii (third
zero crossing), the BV stays almost constant. After 12
iterations, the largest difference between parameter sets is
approximately 15 and 3 % for the IR and BV,
respectively.

<« 3

00 120 2 3

Similar groups are seen in both BV and IR as in the CRC
results, representing the first, second, and third zero
crossing. The variability within the first group is the largest
(~0.3-1 % and ~5 % for BV and IR, respectively), the
variability within the last group the smallest (0-0.25 % and
1 % for the BV and IR, respectively) probably due to larger
errors for smaller blobs.

Hoffmann Phantom Study

Visual Quality Assessment Representative images of the
Hoffman phantom with high and low count statistics are
shown in Figs. 3 and 4, respectively. Similar differences are

J 20 3 3 100 120

Fig. 3 Reconstructed images of the Hoffman phantom with high count statistics using from left to right, 1, 4, and 12 iterations
and two parameter combinations: alpha=1.3084, r=1.6302, d=2.0375 (i) and alpha=10.4101, r=3.9451, d=2.0375 (ji).
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Fig. 4 Reconstructed images of the Hoffman phantom with low count statistics using from left to right 1, 4, and 12 iterations
with two parameter combinations: alpha=1.3084, r=1.6302, d=2.0375 (j) and alpha=10.4101, r=3.9451, d=2.0375 (ji).

seen when using different iterations and parameter combi-
nations as in the previous image quality phantom study. The
images show an increased amount of noise with higher
iterations and the second parameter set, with a larger radius
and alpha values producing smoother and less noisy images
owing to the larger FWHM of the blob. In all images, the
anatomical structures could be recognized but their exact
delineation is more straightforward in images reconstructed
with a higher number of iterations. The images with low
count statistics clearly show an increased noise texture. The
recognition of anatomical boundaries is also more
challenging.
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Quantitative Analysis Two measures, representing the
contrast between GM, WM, and the CSF, were used for
quantitative analysis. The RCR and C are displayed in
Fig. 5a and b, respectively. Theoretically, the RCR is equal
to 4 whereas the C is equal to 1. High and low count
statistics give comparable values for both metrics. It can be
seen that both contrast ratios increase with higher iterations;
the RCR increases from 2.7 to 3.5 and the C from 0.82 to
0.92. Again, grouping of the first and second zero crossing
radii is observed. However, the differences between the
groups are small (0.2 and 0.02 for the RCR and C,
respectively).
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Fig. 5 Radioactivity concentration ratio (top) and contrast for the Hoffman phantom (bottom) with a high and b low count

statistics. Same metric for the clinical study shown in Fig. 6.
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Fig. 6 Reconstructed images of a clinical FDG-PET

Clinical Studies

Comparison with Hoffman Phantom Qualitative evaluation
of a clinical FDG-PET brain study (Fig. 6) shows similar
differences between reconstruction parameters and iterations
as observed in the phantom studies. The overall activity
distribution is similar to the Hoffman phantom but the basal
ganglia show higher uptake. Moreover, the clinical images
display similar noise texture as the low count Hoffman
phantom images.

The quantitative evaluation of the clinical study is
displayed in Fig. 5c. The RCR and C values are lower than
the Hoffman phantom due to different and more complex
activity distribution in the patients presenting with different
neurological diseases. However, they follow the same trend,
namely, the values increase with increasing iterations from
1.8 to 2.15 and from 0.74 to 0.82 for the RCR and C,
respectively.

Visual Quality Assessment Two physicians scored sepa-
rately the clinical images blindly. Table 2 summarizes the
frequencies of the ranking scores per observer. The overall
observer agreement is 48 % but the second observer
assigned lower scores more often. However, there was a
moderate correlation between the two observers (spearman
correlation coefficient of 0.661 (p<0.0005)).

Figure 7 summarizes the visual quality assessment as a
function of the number of iterations, alpha, and radius.
Several patterns could be recognized. The scores improve
with increasing iterations as better scores were assigned.
Higher scores were assigned to images reconstructed using
four iterations than 12 iterations owing to lower variance
characteristics of the reconstructed images. Larger radii and
higher alpha values increased the scores. Thus, smooth

» g ) ® ® E3

brain study using from left to right 1, 4, and 12 iterations with two
parameter combinations: alpha=1.3084, r=1.6302, d=2.0375 (/) and alpha=10.4101, r=3.9451, d=2.0375 (ji).

images with lower noise texture and a slightly lower contrast
were preferred.

A more detailed analysis of the results revealed that
several scans scored better than the current clinical protocol
(one time excellent, four times good, and three times
moderate). The parameters corresponding to the scan with
the best score were four iterations, alpha of 10.4101, and the
third zero crossing (two times excellent and six times good).

Discussion

This study aimed to achieve optimal image characteristics
with an emphasis on brain PET imaging application and
focusing on evaluating the contrast and noise properties for a
variety of image reconstruction parameters. The Ingenuity
TOF PET/MR system uses Kaiser—Bessel window function
instead of conventional voxels to represent images during
the reconstruction process. Blobs are controlled by a set of
basis function parameters which influence the reconstructed
image properties. Parameter optimization plays a pivotal role
in the successful implementation and clinical use of blob-
based reconstruction in PET imaging. Therefore, this study
investigated the qualitative and quantitative image character-
istics produced with a representative range of reconstruction
parameters.

Table 2. Summary of the assessment of clinical studies by the two
observers

Observer 1
Observer Excellent Good Moderate Poor  Total
2 Excellent 0 0 0 0 0
Good 8 15 2 0 25
Moderate 5 20 19 1 45
Poor 0 0 10 8 18
Total 13 35 31 9 88
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Fig. 7 Distribution of scores as a function of iterations (left), alpha (middle), or radius (right). 1 is the highest score (excellent

quality), 4 the lowest (poor quality).

The phantom results show that larger blob radii better
suppress the noise but produces lower contrast recovery.
This pattern, observed in both phantom and clinical studies,
is consistent with the root mean square error metric reported
in previous studies [11, 21]. Although previous quantitative
evaluation studies used only a few blob parameters, the
overall results are consistent with those reported in this
work, though the convergence rate was slower in the former
studies [11, 12]. These discrepancies could be explained by
differences in the iterative reconstruction algorithms used
(the use of raw action maximum likelihood algorithm
(RAMLA) instead of OSEM and different numbers of
subsets) as well as their algorithmic implementations.

Absolute differences in contrast recovery are small, thus a
larger blob with a slight decrease in CRC and increased
noise suppression might be more optimal for visual
evaluation. The visual interpretation of clinical studies by
physicians showed a preference towards reconstructions
using four iterations. Compared to higher number of
iterations, these images have a slightly lower contrast but
the image quality is improved due to lower noise levels. It is
also observed that higher radii are preferred. Thus, in a
clinical setting, lower variance levels are preferred over a
slightly higher contrast. Overall, blob-based reconstructions
using optimal parameters proved to produce images with a
better visual quality compared to the current reconstruction
protocol used in the clinic (data not shown).

These findings might depend on the type and pattern of
tracer distribution in the organ of interest as well as on the
type of information sought. In this work, we used FDG-PET
brain studies with a high signal throughout the brain in order
to identify diffuse patterns of hypometabolism, which are
typical for neurodegenerative disorders. Other parameters
might be more favorable in various indications using
different tracers, such as aminoacidic tracers for character-
ization of focal brain lesions. One of the limitations of the
current study is the relatively small number of clinical
studies used for clinical evaluation by physicians. A larger
cohort could potentially strengthen the findings of this work.

Spherical symmetric basis functions require longer
computational time compared to traditional voxels due to

overlapping basis functions. This study showed that all
reconstructions up to four iterations are executed within
30 min and almost all combinations could be executed
within an hour. These results are consistent with previous
studies [13]. Therefore, all proposed parameter combinations
could be used in a clinical setting. However, reconstruction
times could be further optimized. Cabello et al. showed that
the use of graphical processing unit (GPU) technology
instead of central processing unit (CPU) technology was
~four times faster [13]. Hu et al. followed a different
approach to accelerate the reconstruction by ~three times
through exploitation of the scanner symmetry and alignment
of the blob matrix with the crystal rings for LOR-based
reconstruction [22].

This study only used the standard blob increment
(d=2.0375). A smaller increment could also be investigated
at the expense of computational time. Previous studies
reported resolution degradation for a basis function having
a FWHM higher than the FWHM of the scanner [15]. This
resolution degradation occurs sooner with a larger incre-
ment. Nevertheless, this work showed that for a range of
blob parameters, the resulting images provide an acceptable
visual and quantitative quality.

Conclusion

A range of blob parameters hypothetically provide optimal
image quality. The results of the phantom studies demon-
strated that larger blob radii result in higher noise suppres-
sion but lower contrast recovery. Absolute contrast recovery
differences are small, thus a larger blob with a slight
decrease in CRC but with increased noise suppression might
be more optimal. Although this work emphasized on brain
imaging applications using the Ingenuity PET/MR, the
findings could be applicable to other PET/MR and PET/CT
systems using spherical symmetric elements for image
representation. Furthermore, whole-body applications are
also expected to benefit from this investigation as although
certain parameters differ compared to brain applications
(e.g., voxel size), these are not expected to substantially
influence the underlying performance of the blob-based
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algorithms used. Finally, it should be emphasized that such
an investigation should only be used as a guide and not as
the de facto optimum solution. Ultimately, the optimal
reconstruction parameters and the desired image character-
istics should be evaluated on an application- and task-
specific basis, depending on the quantitative or qualitative
nature of the task.
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