Skip to main content

Advertisement

Log in

Dynamic Contrast-Enhanced Folate-Receptor-Targeted MR Imaging Using a Gd-loaded PEG-Dendrimer–Folate Conjugate in a Mouse Xenograft Tumor Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to validate a folate-receptor (FR)-targeted dendrimer, PEG-G3-(Gd-DTPA)11-(folate)5, for its ability to detect FR-positive tumors, by using dynamic contrast-enhanced MRI.

Procedures

KB cells, FR siRNA knockdown KB cells, and FR negative HT-1080 cells, were incubated with fluorescein-labeled dendrimer and their cellular uptake was observed. Dynamic contrast-enhanced MRI was performed on mice-bearing KB and HT-1080 tumors and the enhancement patterns and parameters were analyzed.

Results

Green fluorescence was found in the KB cells in the cellular uptake experiment, but was not seen in other settings. In the dynamic contrast-enhanced MRI, the 30-min washout percentage was −4 ± 18% in the KB tumors and 39 ± 23% in the HT-1080 tumors. A 17% cut-off point gave a sensitivity of 94.4% and a specificity of 93.8%.

Conclusions

We have demonstrated the targeting ability of PEG-G3-(Gd-DTPA)11-(folate)5 in vitro and in vivo. A 17% cut-off point for a 30-min washout percentage can be a useful parameter for the diagnosis of FR-positive tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campbell IG, Jones TA, Foulkes WD, Trowsdale J (1991) Folate-binding protein is a marker for ovarian cancer. Cancer Res 51:5329–5338

    CAS  PubMed  Google Scholar 

  2. Wu M, Gunning W, Ratnam M (1999) Expression of folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomarkers Prev 8:775–782

    CAS  PubMed  Google Scholar 

  3. Iwakiri S, Sonobe M, Nagai S et al (2008) Expression status of folate receptor alpha is significantly correlated with prognosis in non-small-cell lung cancers. Ann Surg Oncol 15:889–899

    Article  PubMed  Google Scholar 

  4. Parker N, Turk MJ, Westrick E et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293

    Article  CAS  PubMed  Google Scholar 

  5. Antony AC (1992) The biological chemistry of folate receptors. Blood 79:2807–2820

    CAS  PubMed  Google Scholar 

  6. Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269:3198–3204

    CAS  PubMed  Google Scholar 

  7. Mathias CJ, Wang S, Lee RJ et al (1996) Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 37:1003–1008

    CAS  PubMed  Google Scholar 

  8. Leamon CP, Low PS (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 6:44–51

    Article  CAS  PubMed  Google Scholar 

  9. McHugh M, Cheng YC (1979) Demonstration of a high affinity folate binder in human cell membranes and its characterization in cultured human KB cells. J Biol Chem 254:11312–11318

    CAS  PubMed  Google Scholar 

  10. Hu XF, Xing PX (2003) Discovery and validation of new molecular targets for ovarian cancer. Curr Opin Mol Ther 5:625–630

    CAS  PubMed  Google Scholar 

  11. Bettio A, Honer M, Muller C et al (2006) Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. J Nucl Med 47:1153–1160

    CAS  PubMed  Google Scholar 

  12. Saborowski O, Simon GH, Raatschen HJ et al (2007) MR imaging of antigen-induced arthritis with a new, folate receptor-targeted contrast agent. Contrast Media Mol Imaging 2:72–81

    Article  CAS  PubMed  Google Scholar 

  13. Sun C, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 78:550–557

    PubMed  Google Scholar 

  14. Swanson SD, Kukowska-Latallo JF, Patri AK et al (2008) Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine 3:201–210

    Article  CAS  PubMed  Google Scholar 

  15. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC (2001) Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. MAGMA 12:104–113

    Article  CAS  PubMed  Google Scholar 

  16. Artemov D, Mori N, Ravi R, Bhujwalla ZM (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63:2723–2727

    CAS  PubMed  Google Scholar 

  17. Towner RA, Smith N, Doblas S et al (2008) In vivo detection of c-Met expression in a rat C6 glioma model. J Cell Mol Med 12:174–186

    Article  CAS  PubMed  Google Scholar 

  18. Chen TJ, Cheng TH, Hung YC et al (2008) Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J Biomed Mater Res A 87:165–175

    PubMed  Google Scholar 

  19. Kawashima H, Matsui O, Suzuki M et al (2000) Breast cancer in dense breast: detection with contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 11:233–243

    Article  CAS  PubMed  Google Scholar 

  20. Muramoto S, Uematsu H, Kimura H et al (2002) Differentiation of prostate cancer from benign prostate hypertrophy using dual-echo dynamic contrast MR imaging. Eur J Radiol 44:52–58

    Article  PubMed  Google Scholar 

  21. Ihre H, Padilla De Jesus OL, Frechet JM (2001) Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. J Am Chem Soc 123:5908–5917

    Article  CAS  PubMed  Google Scholar 

  22. Chen WT, Shih TT, Chen RC et al (2002) Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging 15:308–314

    Article  PubMed  Google Scholar 

  23. Holm J, Hansen SI, Hoier-Madsen M, Birn H, Helkjaer PE (1999) High-affinity folate receptor in human ovary, serous ovarian adenocarcinoma, and ascites: radioligand binding mechanism, molecular size, ionic properties, hydrophobic domain, and immunoreactivity. Arch Biochem Biophys 366:183–191

    Article  CAS  PubMed  Google Scholar 

  24. Leamon CP, Reddy JA (2004) Folate-targeted chemotherapy. Adv Drug Deliv Rev 56:1127–1141

    Article  CAS  PubMed  Google Scholar 

  25. Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53:39–48

    Article  CAS  PubMed  Google Scholar 

  26. Beduneau A, Ma Z, Grotepas CB et al (2009) Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles. PLoS ONE 4:e4343

    Article  PubMed  Google Scholar 

  27. Glunde K, Bhujwalla ZM (2008) Will magnetic resonance imaging (MRI)-based contrast agents for molecular receptor imaging make their way into the clinic? J Cell Mol Med 12:187–188

    Article  PubMed  Google Scholar 

  28. Brasch RC (1991) Rationale and applications for macromolecular Gd-based contrast agents. Magn Reson Med 22:282–287 discussion 300-283

    Article  CAS  PubMed  Google Scholar 

  29. Zhou XL, Zhi; Tang, Dazong; Xia, Liming; Meng, Liping; Xiang, Guangya. (2007) Preparation of targeted Gd3+ contrast agent based on folate—receptor and its relaxation. Zhongguo Yaoxue Zazhi 42:1640–1644

    Google Scholar 

  30. Yuan Z, Liu SY, Xiao XS, Zhong GR, Jiang QJ (2007) Folate-poly-l-lysine-Gd-DTPA as MR contrast agent for tumor imaging via folate receptor-targeted delivery. Zhonghua Yi Xue Za Zhi 87:673–678

    CAS  PubMed  Google Scholar 

  31. Bathke W (1967) On intravenous injections into the retrobulbar venous plexus of white mice in bacteriological studies. Z Med Labortech 8:318–321

    CAS  PubMed  Google Scholar 

  32. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by National Science Council grants 95-2314-B-532-005 and 96-2321-B-532-0001. We thank Mr. Hsiau Yu Yo and Mr. Wei Ju Hsu for their diligent laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany Ting-Fang Shih.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary figure 1

Immunoperoxidase KB cell staining for the folate receptor. Positive immunoreactions appeared as dark brown staining on the KB cell surfaces. Magnification, ×400. (JPG 101 KB)

Supplementary figure 2

The 1H NMR spectrum of the PEG-bis[G-3]-(OH)8. The spikes of G1and G2 methyl protons merged together at δ 1.61. However, the intensity ratio of the merged spike and the singlet of G3 methyl protons was 3:4 [(a + b):c = (1 + 2):4]. (GIF 182 KB)

High resolution image file (TIF 216 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WT., Thirumalai, D., Shih, T.TF. et al. Dynamic Contrast-Enhanced Folate-Receptor-Targeted MR Imaging Using a Gd-loaded PEG-Dendrimer–Folate Conjugate in a Mouse Xenograft Tumor Model. Mol Imaging Biol 12, 145–154 (2010). https://doi.org/10.1007/s11307-009-0248-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0248-6

Key words

Navigation