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• Ivana Stanimirova2

• Stanisław Deja3
• Wojciech Barg4

•

Aneta Kowal5 • Anna Korzeniewska5
• Magdalena Orczyk-Pawiłowicz6

•

Daniel Baranowski7 • Zofia Gdaniec7
• Renata Jankowska5

• Piotr Młynarz1

Received: 2 January 2015 / Accepted: 9 May 2015 / Published online: 22 May 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Chronic obstructive pulmonary disease, COPD,

affects the condition of the entire human organism and

causes multiple comorbidities. Pathological lung changes

lead to quantitative changes in the composition of the

metabolites in different body fluids. The obstructive sleep

apnea syndrome, OSAS, occurs in conjunction with

chronic obstructive pulmonary disease in about 10–20 % of

individuals who have COPD. Both conditions share the

same comorbidities and this makes differentiating them

difficult. The aim of this study was to investigate whether it

is possible to diagnose a patient with either COPD or the

OSA syndrome using a set of selected metabolites and to

determine whether the metabolites that are present in one

type of biofluid (serum, exhaled breath condensate or

urine) or whether a combination of metabolites that are

present in two biofluids or whether a set of metabolites that

are present in all three biofluids are necessary to correctly

diagnose a patient. A quantitative analysis of the metabo-

lites in all three biofluid samples was performed using 1H

NMR spectroscopy. A multivariate bootstrap approach that

combines partial least squares regression with the variable

importance in projection score (VIP-score) and selectivity

ratio (SR) was adopted in order to construct discriminant

diagnostic models for the groups of individuals with COPD

and OSAS. A comparison study of all of the discriminant

models that were constructed and validated showed that the

discriminant partial least squares model using only ten

urine metabolites (selected with the SR approach) has a

specificity of 100 % and a sensitivity of 86.67 %. This

model (AUCtest = 0.95) presented the best prediction

performance. The main conclusion of this study is that

urine metabolites, among the others, present the highest

probability for correctly identifying patents with COPD

and the lowest probability for an incorrect identification of

the OSA syndrome as developed COPD. Another important

conclusion is that the changes in the metabolite levels of

exhaled breath condensates do not appear to be specific

enough to differentiate between patients with COPD and

OSAS.
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Abbreviations

COPD Chronic obstructive pulmonary disease

HCA Hierarchical clustering analysis

OSAS Obstructive sleep apnea syndrome

NMR Nuclear magnetic resonance

EBC Exhaled breath condensate

GC/LC–MS Gas/liquid chromatography–mass

spectrometry

PCA Principal component analysis

PLS-DA Partial least squares-discriminant analysis

LDA Linear discriminant analysis

OPLS Orthogonal partial least squares

OPLS-DA Orthogonal partial least squares-

discriminant analysis

ANOVA-PCA Analysis of variance-principal component

analysis

ANOVA-SCA Analysis of variance-simultaneous

component analysis

VIP-score Variable importance in projection-score

SR Selectivity ratio

TSP 3-(Trimethylsilyl)-2,20,3,30-
tetradeuteropropionate sodium salt TSP-

d4

AUC Area under the curve

DIVA test Discriminating variable test

L1 LDL CH3–(CH2)n–

L2 VLDL CH3–(CH2)n–

L3 LDL CH3–(CH2)n–/VLDL CH3–(CH2)n–

L4 VLDL –CH2–CH2–C=O–

L5 CH2–CH=CH–

L6 Unsaturated lipids –CH=CH–

NAC1 N-Acetylated glycoprotein 1

NAC2 N-Acetylated glycoprotein 2

1 Introduction

Chronic obstructive pulmonary disease, COPD, is a pre-

ventable and treatable disease that is characterized by a

progressive and persistent airflow limitation which is the

result of chronic inflammation (Global Strategy for Diag-

nosis, Management, and Prevention of COPD 2014).

Pathological changes in COPD occur in small airways,

lung parenchyma and small pulmonary vessels. Morpho-

logical changes in COPD include fibrosis and narrowing of

small airways, together with parenchymal and alveolar

destruction. This results in air trapping, emphysema, per-

sistent lung hyperinflation and impaired exchange of gases

(Hogg 2004; Baraldo et al. 2012). Consequently, patients

with severe COPD suffer from respiratory insufficiency,

pulmonary hypertension and right ventricular failure. A

cornerstone of those morphological changes is an abnormal

inflammatory response to noxious particles or gases with

repeated tissue injury and repair (Górska et al. 2010;

Barnes 2014). Inflammatory infiltrations are characterized

by a cell pattern that has an increased number of alveolar

macrophages, neutrophils and cytotoxic T-lymphocytes,

which release various inflammatory mediators (Pappas

et al. 2013; Barnes et al. 2003). The mechanism of am-

plifications and alterations in the inflammatory response in

COPD patients probably depend on genetic and environ-

mental factors that are not yet fully understood. An im-

balance in proteases–antiproteases and repeated oxidative

stress are involved in the process and biomarkers of ox-

idative stress are usually present in the biofluids (serum,

exhaled breath condensate, sputum and urine) that are

collected from COPD patients (Pillai et al. 2009; Castaldi

et al. 2010; Kohansal et al. 2009; Stockley 2013; Vestbo

and Rennard 2010).

Obstructive sleep apnea syndrome, OSAS, is defined as

a sleep disorder in which an individual has 15 or more

episodes of apnea or hypopnea per hour (apnea/hypopnea

index, AHI C 15) or AHI C 5 with associated symptoms

like fatigue, impaired cognition and/or increased daytime

sleepiness (Park et al. 2011). The episodes of apnea

typically last 20–40 s and result from an obstruction of the

upper airways in adults, which is usually due to a pha-

ryngeal collapse. Obesity is considered to be the most

important predisposing factor as it causes an accumulation

of fat in the peripharyngeal tissues (Romero-Corral et al.

2010; Tuomilehto et al. 2013). The OSA syndrome is often

associated with other anatomical alterations that reduce the

lumen of the pharynx, e.g. a thickening of the lateral

parapharyngeal muscular walls or an increase in the length

of the pharynx. The narrow airways are generally more

prone to collapse than the larger ones (the Venturi effect)

and this causes a further reduction of their lumen. The

pharynx is kept patent mainly by the proper activity of

dilator pharyngeal muscles. It was demonstrated that dur-

ing sleep, this activity declines physiologically due to a

decrease in the reflex mechanisms from chemoreceptors

and mechanoreceptors. Consequently, while sleeping, the

under stimulated muscles cannot always allow airflow in

individuals with narrow upper airways, and the OSA syn-

drome occurs (Jordan and White 2008).

The pathogenic factors in both conditions are different

and do not increase the risk of their incidence. The

prevalence of COPD in the patients with the OSA syn-

drome is in the range of 10–20 %. However, COPD and

OSAS share common comorbidities, especially cardiovas-

cular diseases, which may be linked to the development of

atherosclerosis. For this reason, there has been a growing

interest in finding the chemical compounds (biomarkers)

that reliably and unambiguously indicate COPD or OSAS
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in the recent years. A large number of the research works

that are devoted to the high-throughput analysis of COPD

have mainly been focused on a comparison of the

metabolites in the exhaled breath condensate (EBC) of

individuals with COPD and healthy controls (Bertini et al.

2014; Basanta et al. 2012; Fens et al. 2011; de Laurentiis

et al. 2008). Only a few studies have described the results

of such a comparison using plasma, serum and urine

samples (Wang et al. 2013; McClay et al. 2010; Ubhi et al.

2012). Usually, special attention is paid to the smoking

habits (smokers with or without emphysema) of the sub-

jects who are being investigated (Paige et al. 2011; de

Laurentiis et al. 2013; Ubhi et al. 2012). The collection of

samples is often analyzed using 1H NMR, GC– and/or LC–

MS. A metabolomic approach to the OSA syndrome in-

volves a comparison of the LC–MS fingerprints that are

obtained from plasma samples of patients who have been

diagnosed with the sleep apnea or hypopnea syndrome, and

healthy individuals (Ferrarini et al. 2013). Unsupervised

methods like hierarchical clustering analysis, HCA, and

principal component analysis, PCA, as well as supervised

methods like discriminant partial least squares regression,

PLS-DA, linear discriminant analysis, LDA, orthogonal

partial least squares regression, OPLS-DA, and some re-

cently proposed approaches such as the analysis of vari-

ance-principal component analysis, ANOVA-PCA and the

analysis of variance-simultaneous component analysis have

usually been adopted to describe the data structure or the

discrimination of two or more groups of individuals.

However, the selection of important biomarkers or the

signal intervals that are important for the distinction be-

tween disease entities is often done using a univariate ap-

proach like the t test, the Fisher test or ANOVA.

Subsequently, the set of important variables that has been

selected is used to build a multivariate discriminant/clas-

sification model. Such a univariate approach does not allow

for the selection of a set of potential biomarkers that are

characteristic for the discrimination, because the variable

selection is not performed during the construction of the

discriminant or classification model. In our work, we offer

a more comprehensive approach that uses the principles of

metabolomic data fusion (Bro et al. 2013) and multivariate

variable selection in order to build diagnostic models for

patients with the OSA syndrome and/or COPD. The vari-

ables (metabolites that are analyzed in serum, exhaled

breath condensate and urine) that are relevant to the two-

group discrimination were identified using the bootstrap

PLS-DA procedure combined with the variable importance

in projection score, VIP-score, (Andersen and Bro 2010;

Gosselin et al. 2010) or the selectivity ratio (SR) (Kval-

heim and Karstang 1989; Rajalahti et al. 2009). The SR

approach in PLS-DA has gained much popularity in recent

years (Kvalheim et al. 2014; Kvalheim 2010), because the

possibility of selecting variables that are large in absolute

size, but that are not related to the discrimination of the

model groups, is eliminated throughout the so-called target

projection or target rotation transformation. With the target

projection transformation, several PLS-DA components

(the model’s complexity) are represented by a single pre-

dictive component that is unrelated to the orthogonal var-

iation with the response variable. The same objective is

met by the OPLS method, even though it uses a different

algorithmic procedure. The interest in the SR method can

also be explained by the fact that the predictive component

for OPLS and PLS post-processing by similarity transfor-

mation (Ergon 2005) is identical to the predictive compo-

nent that is obtained from the target projection

transformation except for the scaling factor (Kvalheim

et al. 2009). On the other hand, the variables that are se-

lected using the VIP-score are related to both the response

variable and to the variance of independent variables.

The bootstrap PLS-DA methodology combined with an

estimation of VIP-scores and SRs for different sets of

metabolites was proposed here to investigate: (i) whether it

is possible to diagnose a patient with either the COPD

disease or the OSA syndrome using a set of selected

metabolites and to determine what a probability of false

diagnostic decision is; (ii) whether the metabolites that are

present in one type of biofluid (serum, exhaled breath

condensate or urine) are sufficient enough for this diag-

nosis; (iii) whether a combination of metabolites that are

present in two biofluids or a set of metabolites that is

present in all three biofluids are necessary to correctly di-

agnose a patient (at a certain level of significance).

2 Materials and methods

2.1 Ethics statement

The study was conducted in agreement with the Declara-

tion of Helsinki and was approved by the Ethics Committee

of the Medical University in Wroclaw, Poland. All of the

participants signed an informed consent form (KB-12/

2010).

2.2 Study population comprises

A total of 85 serum, 91 urine and 82 exhaled breath con-

densate samples were collected from adult individuals who

had been diagnosed according to the generally accepted

criteria. Over half of the individuals who were studied have

concomitant cardiovascular disease (CVD) including is-

chemic heart disease and/or arterial hypertension and/or

have suffered a brain stroke. All of these comorbidities

were controlled during the study. Patients with any other
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unstable or acute diseases were excluded from the study.

Finally, 46 individuals (18 patients with COPD and 28

patients with the OSA syndrome) who had had all three

biofluids collected were included in the following targeted

metabolomic data fusion analysis. The demographic data of

those patients are presented in Table 1.

2.3 Preparation of the samples for proton NMR

spectroscopy

Samples of serum, urine and EBC were collected from the

subjects participating in the study in the morning after they

had fasted for at least eight hours. Serum was sampled from

the peripheral vein and centrifuged for 10 min at

40009g. EBC was collected using the EcoScreen Turbo

(VIASYS Healthcare GmbH, Hoechberg, Germany) appa-

ratus according to the manufacturer’s instructions. The

subjects were without a previous oral hygiene and breathed

spontaneously through a mouthpiece while sitting upright

and wearing a nose clip. The sampling procedure was

finished when the EBC sample volume was at least 2 mL.

All of the samples were frozen in liquid nitrogen imme-

diately after collection and stored at -80 �C until the

analysis.

Prior to the metabolomic experiment, the serum samples

were thawed at room temperature and vortexed. Next,

mixtures of 200 lL of serum and 400 lL of saline solution

(prepared from 0.9 % NaCl, 15 % D2O and 3 mM TSP)

were mixed again. After centrifugation (12,0009g,

10 min), an aliquot of 550 lL of each sample supernatant

was subsequently transferred into a 5 mm NMR tubes.

Samples were kept at 4 �C until the measurement.

All urine samples were thawed at room temperature and

mixed using a vortex mixer. The samples were centrifuged

for 10 min at 12,0009g and 400 lL of supernatant was

then transferred into a new Eppendorf tube. Next, the

samples were mixed with 200 lL of PBS (0.5 M, pH 7.00,

33 % D2O, 3 mM NaN3 and 3 mM TSP). The samples

were mixed again and finally, an aliquot of 550 lL was

transferred into a 5 mm NMR tube.

The EBC samples were thawed at room temperature and

mixed using a vortex mixer. Aliquots of 250 lL D2O

(3 mM TSP, 3 mM NaN3) were added to 300 lL EBC.

After centrifugation (10,0009g for 10 min), 500 lL sam-

ples of the clarified solutions were transferred into 5 mm

NMR tubes.

2.4 1H NMR measurements

The NMR spectra of the serum and urine samples were

recorded at 300 K using an Avance II spectrometer

(Bruker, GmBH, Germany) operating at a proton frequency

of 600.58 MHz, while the NMR spectra of the EBC sam-

ples were recorded at 300 K using an Avance III spec-

trometer (Bruker, GmBH, Germany) operating at proton

QCI CryoProbe frequency of 700 MHz.

The NMR spectra of the serums were recorded by using

a CPMG pulse sequence with water presaturation on a

Bruker notation. For each sample, 128 sequential scans

were collected with spin-echo delay of 400 ls; 80 loops; a

relaxation delay of 3.5 s; an acquisition time of 2.73 s; TD

of 64 k; SW of 20.01 ppm.

The NMR spectra of the urine samples were recorded

using nuclear Overhauser effect spectroscopy, NOESY

pulse sequence with water presaturation on a Bruker no-

tation: a relaxation delay of 3.5 s; an acquisition time of

1.36 s; 128 transients; TD of 32 k; SW of 20.01 ppm.

The NMR spectra of the EBC samples were recorded

using the excitation sculpting (ZGESGP) pulse sequence

with water presaturation on a Bruker notation: a relaxation

delay of 3.5 s; an acquisition time of 2.32 s; 256 transients;

TD of 64 k; SW of 20.01 ppm. This excitation sculpting

(ZGESGP) pulse sequence allowed obtaining the best

water signal quenching and recording the high quality 1H

NMR spectra. Spectra were processed with line broadening

of 0.3 Hz and manually phased and baseline corrected

using Topspin 1.3 software (Bruker, GmBH, Germany) and

referenced to a-glucose signal d = 5.225 ppm for the

serum samples and to the TSP resonance at d = 0.0 ppm

for the urine and EBC samples. The correction of peak

positions (alignment) was done using the correlation opti-

mized warping algorithm, COW, and the icoshift algorithm

implemented in Matlab (Matlab v. 8.1, Mathworks Inc.).

The spectra were normalized using the Probabilistic Quo-

tient Normalization (PQN) method. Finally, the dataset was

binned into 14,375 integrals (serum) of an equal width

(0.001 ppm), 14,625 integrals (urine) of equal width

(0.005 ppm) and 14,125 integrals (EBC) of an equal width

(0.001 ppm).

2.5 Preprocessing of variables prior to analysis

A total of 31 serum, 27 urine and 16 EBC metabolites

were analyzed. The concentration of any metabolite was

obtained using NMR as a signal integral of the

Table 1 Demographic data and clinical profiles of patients included

in the study

COPD OSA

Number of patients 18 28

Sex (male/female) 9/9 23/5

Age (mean/range) 64/(49–81) 54/(27–65)

Body mass index

(mean/range)

30/(20–33) 25/(22–41)
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non-overlapping resonances (or a cluster of partly over-

lapping resonances). The metabolite resonances were

identified according to assignments published in the lit-

erature and in on-line databases (Biological Magnetic

Resonance Data Bank and Human Metabolome Data

Base). The median 1H NMR spectra of serum, urine and

EBC in individuals with COPD are presented in Fig. 1.

2.6 Discriminant analysis for the identification

of biomarkers

The discriminant version of the Partial Least Squares re-

gression with the bootstrap procedure for estimating the

quality of the models with selected variables was adopted

and the prediction for a test set was estimated. The model

samples were chosen with the Kennard and Stone algo-

rithm applied separately to each group in order to guarantee

the representativity of the model set and to avoid the

possibility of having outlying samples in the test set. The

autoscaled (variables of all three biofluid blocks) data set

for each group was considered in the Kennard and Stone

algorithm, since the Euclidean distance is used as a simi-

larity measure between two samples. The model set should

also be balanced (containing the same number of samples

from each group) in order to avoid the weighting of the

discriminant cut-off value for the response variable (Br-

ereton and Lloyd 2014). Therefore, 13 samples (75 % of

the samples from the less numerous group) were selected

from each group. The remaining samples (15 OSAS sam-

ples and five COPD samples) formed the test set. As was

mentioned earlier, in order to reduce the chances of over-

fitting due to the larger number of variables with respect to

the number of samples mainly in the two- and three-block

PLS-DA models and to enable the easier interpretation of

the models, variable selection using the VIP-scores (An-

dersen and Bro 2010; Gosselin et al. 2010; Kvalheim and

Karstang 1989) or SR (Rajalahti et al. 2009) was per-

formed. The VIP-score is a quantitative measure that

indicates the contribution of a single variable to the de-

scription of both independent variables and the response

variable, while the SR is ratio of the explained variance to

the residual variance of a variable after target projection

transformation. The VIP-score and SR for each variable

were estimated 1000 times using the bootstrap procedure

with a replacement. The two procedures will be abbrevi-

ated as VIP-PLS-DA or SR-PLS-D in the rest of the text.

The main steps of the data modeling procedure are pre-

sented in Fig. 2. This general methodology was also fol-

lowed in the analysis of data containing the metabolites

that are present in one or two biofluids.

The variables that had an average VIP-scores or SRs

below a given cut-off value were discarded from the final

model. The selection of an appropriate cut-off value for

VIPs or SRs is an important issue. In general, a variable

that has a unitary VIP-score is highly influential since the

average of the squared values of the VIPs is equal to 1.0.

Even though the unitary cut-off value is often used, some

researchers have found it to be too restrictive. Other au-

thors have stressed that this value depends on the data

structure and that an important variable may have a VIP-

score of more than 0.8. Here, we have chosen a cut-off

value of 0.8 after a preliminary investigation of the

uncertainty in the estimation of the VIPs. A similar boot-

strap VIP-PLS-DA methodology was also used for the

selection of wavelengths in a spectral imaging dataset

(Kvalheim and Karstang 1989). Moreover, some authors

(Andersen and Bro 2010) have pointed out that applying a

variable selection that is based on the VIP-scores only once

is usually ineffective due to the large number of variables

that remain and therefore, it has been proposed that the

selection procedure be repeated several times. In this re-

search work, we repeated the whole VIP procedure three

times. Thus, for each bootstrap sample (a sample formed

by re-sampling the original data populations with a re-

placement) of the model set, a PLS-DA model of certain

complexity that was chosen based on a leave-one-out

cross-validation procedure is selected and the VIP-scores

or SR after the target projection transformation (Rajalahti

et al. 2009) were calculated. After considering 1000

bootstrap samples, the average value of the area under the

receiver operating curve (AUC) was calculated as a figure

of merit that described the model’s performance. The

standard error (uncertainty) in the AUC estimation (se)b,

with b bootstrap samples (b = 1 000) is defined as follows:

ðse)b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

b

i¼1

ðh�i � �h�Þ2

b � 1

v

u

u

u

t

ð1Þ

In this equation, h�i is the estimate of the AUC for the

i-th bootstrap sample and �h� is the mean estimate of the

AUC for all of the bootstrap samples.

The variables with average VIP-scores below 0.8 were

removed. The cut-off value for SR can be estimated using

the F-test, since SR is defined as the ratio between the

variable variance that is explained in the PLS-DA model of

a certain complexity and its residual variance after target

projection transformation. Since the values of the F-dis-

tribution tend to 1.0, a unitary cut-off value can be used. In

this work, we selected the cut-off value of SR based on the

so-called discriminating variable test, the DIVA test, and

the SR plots that have been proposed in the literature

(Kvalheim et al. 2014). Unlike the VIP-PLS-DA, the

bootstrap SR-PLS-DA methodology was applied once to

each dataset and variables with an average SRs found be-

low a given cut-of value, which were chosen after an
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inspection of the DIVA and SR plots, were discarded from

the final model. The prediction performance of the final

model was estimated using the independent test set, which

was not used during the construction of the model and

variable selection. The respective AUC value, sensitivity,

specificity and efficiency for the test set were also calcu-

lated. For the two-group problem that was studied in this

work, sensitivity is defined as the percentage of samples

from the OSAS group of patients that were correctly pre-

dicted by the model, while specificity is the percentage of

samples that were collected from patents with COPD that

were properly predicted as having COPD. The best model

would have a sensitivity and a specificity of 100 %. One

can also define the so-called efficiency, also known in the

literature as the non-error rate, which is the total percentage

of test samples that are correctly classified.

Fig. 1 The median of 1H NMR spectra of the a serum COPD

samples: 1a L1; 2a L2; 3a Leucine; 4a Valine; 5a Isoleucine; 6a

Isobutyrate; 7a Unk_1; 8a 3-Hydroxybutyrate; 9a L3; 10a Lactate;

11a Alanine; 12a L4; 13a Acetate; 14a L5; 15a NAC1; 16a NAC2;

17a Unk2; 18a Pyruvate; 19a Succinate; 20a Glutamine; 21a Citrate;

22a Creatine; 23a Creatinine; 24a Choline; 25a GPC ? APC; 26a

Unk_2; 27a Glucose; 28a L6; 29a Tyrosine; 30a Histidine; 31a

Phenylalanine; b urine COPD samples: 1b Isobutyrate; 2b Methyl-

succinate; 3b 3-Aminoisobutyrate; 4b Methylmalonate; 5b 3-Hy-

droxyisovalerate; 6b Lactate; 7b 2-Hydroxyisobutyrate; 8b Alanine;

9b Acetate; 10b Unk_1; 11b Unk_2; 12b Citrate; 13b Dimethylamine;

14b N,N-Dimethylformamide; 15b sn-Glycero-3-phosphocholine; 16b

Creatine; 17b Creatinine; 18b Trimethylamine N-oxide; 19b Glycine;

20b Glycolate; 21b Unk_3; 22b Trigonelline; 23b cis_Aconitate; 24b

Hydroxyphenyl; 25b N-Phenylacetylglycine; 26b Hippurate; 27b

Xanthine; 28b Formate; c EBC COPD samples: 1c Butyrate; 2c

Propionate; 3c Propylene glycol; 4c Ethanol; 5c 3-Hydroxyisovaler-

ate; 6c acetate; 7c Unk_1; 8c Acetate; 9c Acetone; 10c Unk_2; 11c

Methanol; 12c Unk_3; 13c Isopropanol; 14c Phenol; 15c Unk_4; 16c

Formate
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All calculations using in-house implemented routines

were performed with MATLAB 7.0 (R14) on a personal

computer (Intel(R) Pentium(R) M, 1.60 GHz with 2 GB

RAM) using the Microsoft Windows XP (service pack 2)

operating system.

3 Results and discussion

Several discriminant models were built. Firstly the quality

of the models for the individual blocks of variables (EBC,

serum, urine), two blocks of variables and the three-block

variables were evaluated using the bootstrap procedure

with a replacement. The histograms of the AUC values that

were obtained from the bootstrap procedure (the average

AUC value for each model is shown as a vertical red line)

are presented in Fig. 1S (Supplementary materials) and

Table 2, while the sensitivity, specificity and efficiency of

prediction are listed in Table 3.

From the values that are presented in Tables 2 and 3, one

can conclude that the models that solely exploit the serum or

urine variables show relatively good prediction capabilities

(AUCtest(serum) = 0.91 and AUCtest(urine) = 0.93). Four

OSAS samples were incorrectly predicted as COPD samples

using serum variables, which results in a sensitivity of

73.33 %, while only two OSAS samples (a sensitivity of

86.67 %) were wrongly predicted by the model using all of the

urine variables. Both models show the highest specificity of

100 % thus indicating the best prediction of the COPD sam-

ples. The uncertainty in the AUC estimation of the serum

model is larger than the uncertainty that was obtained for the

urine model (Fig. 1S; Table 2). The model using only

EBC variables had a poor prediction performance

(AUCtest = 0.52), which indicates that there are some dif-

ferences between the model and test samples. In fact, the

model has a relatively high sensitivity of 80 %, but a very low

specificity of 20 %. This suggests that the probability of the

correct identification of a patient with the OSA syndrome is

high with this EBC model, although the probability of a cor-

rect COPD identification is very low. Thus, there is a high risk

that a patient with developed COPD may be diagnosed with

the OSA syndrome using this model. The models that combine

the EBC variables with either serum or urine metabolites have

somewhat lower specificities in comparison to the models that

were built using all of the serum or urine metabolites only.

Compared to the model that used only the serum metabolites,
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Fig. 2 A general scheme of the data analysis procedure with the main steps highlighted. The methodology is illustrated on a data set containing

the metabolites of EBC, serum and urine biofluids
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the model using both EBC and serum metabolites had the

same sensitivity and a lower specificity of 80 %. This suggests

that the probability of identifying a COPD patient as a patient

with the OSA syndrome is higher with the model of the two

types of metabolites than the probability that is estimated with

the model using only the serum metabolites. The model using

both EBC and urine metabolites presents a slightly lower

sensitivity of 80 % and a poorer specificity of 60 % in com-

parison to the model that was built for the urine metabolites

only. This indicates that the inclusion of the EBC variables

results in an incorrect prediction of the COPD samples as the

OSA samples. The model using both the serum and urine

metabolites, which had a sensitivity of 73.33 % and a speci-

ficity of 100 %, had a comparable prediction performance

(AUCtest = 0.95) to the models that were built for either the

serum or urine metabolites. However, from a practical point of

view, the analysis of one biofluid is the easiest and the most

preferable. The main question is whether a limited number of

variables (possible biomarkers) would still provide a good

discrimination of the two groups of patients that were studied

and a good prediction performance of the models. The average

AUC values for the model sets and the respective test sets with

different sets of metabolites, which were obtained using the

VIP-PLS-DA and SR-PLS-DA methods, are presented in

Table 4. The cut-off values for the average SRs are also pre-

sented therein. As was mentioned earlier, the cut-off values for

the average SRs were determined using the so-called dis-

criminating variable test, the DIVA test. The DIVA test is a

nonparametric test in which the relation of the mean correct

classification rate, MCCR, for variables found in a given SR

interval is examined. The mean correct classification rate in-

creases with the increasing values of SR which provides a

quantitative measure of the discriminatory ability in the whole

range of SR intervals (Rajalahti et al. 2009). The values of the

prediction figures of merit for the sets of metabolites are

shown in Table 5 and the respective histograms for several

selected models are shown in Fig. 2S (Supplementary

materials).

Reducing the number of EBC metabolites based on the

average VIP-scores and SRs that were obtained from the

bootstrap PLS-DA method did not result in a better iden-

tification of individuals with COPD, which was indicated

by the poor specificities of 20 % (Table 5). The same

predictive performance, a sensitivity of 73.33 % and a

specificity of 80.00 %, was observed for the models that

were constructed with either the serum or urine variables

that were found using VIP-PLS-DA. Compared to VIP-

PLS-DA, the PLS-DA model using a subset of urine

metabolites that was obtained using the SR procedure, had

a slightly improved sensitivity and specificity of 86.67 and

100 %, respectively, while the model that was built for a

subset of serum metabolites had only a slightly improved

sensitivity. Serum and urine body fluids contain different

metabolites, but both of the subsets that were obtained

using VIP-PLS-DA showed the same potential to distin-

guish between individuals with COPD and those that had

been diagnosed with the OSA syndrome. The subsets of

serum metabolites that were found using the SR and VIP

methods contained the same eleven variables (see Table 6),

although it appears that the inclusion of L2, Leucine,

Table 2 The average AUC

values (±uncertainty in the

AUC estimation) for the model

set and the AUC values for the

test set obtained from PLS-DA

with all variables

Variables Average AUC values for model set AUCtest

EBC 0.92 ± 0.05 0.52

Serum 0.88 ± 0.06 0.91

Urine 0.94 ± 0.04 0.93

EBC ? serum 0.94 ± 0.04 0.91

EBC ? urine 0.98 ± 0.02 0.81

Serum ? urine 0.94 ± 0.04 0.95

EBC ? serum ? urine 0.96 ± 0.03 0.91

Table 3 Sensitivity, specificity

and efficiency for the test set of

the PLS-DA model with all

variables

Variables PLS-DA

(complexity)

Sensitivity (%) Specificity (%) Efficiency (%)

EBC 1 80.00 20.00 65.00

Serum 1 73.33 100.00 80.00

Urine 1 86.67 100.00 90.00

EBC ? serum 1 73.33 80.00 75.00

EBC ? urine 1 80.00 60.00 75.00

Serum ? urine 1 73.33 100.00 80.00

EBC ? serum ? u rine 1 66.67 80.00 70.00
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Lactate, L6, NAC1, NAC2 and the removal of L1 and

GPC ? APC serum metabolites leads to an improvement

in the model’s prediction.

Moreover the larger number of urine metabolites that

were selected using the SR approach in comparison to VIP-

PLS-DA as well as the fact that only five variables were

found to be common for both sets of urine metabolites may

explain the improved value of specificity.

Several important observations are apparent when

comparing the prediction abilities of models with all of the

variables and the reduced number of two-block variables.

Compared to the model with all EBC and serum metabo-

lites, the model with the subset of EBC and serum

metabolites that were found using SR-PLS-DA had an

improved sensitivity of 86.67 % and the same specificity of

80.00 %. The model using a subset of serum variables that

were selected using the SR method had the same perfor-

mance. In fact, none of the EBC metabolites were selected

in the PLS-DA model and the serum metabolites were the

same as those found using the SR-PLS-DA that was built

for serum metabolites only. This confirms the previous

observation that the EBC metabolites have a lower poten-

tial for the correct discrimination of COPD and OSAS

patients than the serum metabolites.

The model with the EBC and urine variables that were

selected with the SRs over 0.4 (see Tables 3, 5) had the

same prediction performance as the model using all of the

EBC and urine metabolites. Only two EBC metabolites

(Propylene glycol, Formate ?) were considered in this

model (see Table 6). These two EBC metabolites appear to

be strongly related to the development of the OSA syn-

drome in patients. In contrast, the model with the EBC and

urine metabolites that had the largest VIP scores had a poor

prediction performance (AUCtest = 0.63) with a low sen-

sitivity and specificity of 66.67 and 60.00 %, respectively.

The model that was built for serum and urine metabo-

lites that were selected using SR-PLS-DA had the same

prediction features (sensitivity of 73.33 % and a specificity

Table 4 The AUC values for the model (±uncertainty in the AUC estimation) and test sets with selected variables from VIP-PLS-DA and SR-

PLS-DA

Variables Variable selection using VIP-PLS-DA Variable selection using SR-PLS-DA

Average AUC values for model

set

AUCtest Average AUC values for model

set

AUCtest Cut-off value of SR (MCCR

[%])

EBC 0.93 ± 0.05 0.48 0.90 ± 0.06 0.48 0.3 (60)

Serum 0.87 ± 0.06 0.92 0.97 ± 0.03 0.88 0.8 (62)

Urine 0.98 ± 0.02 0.83 0.90 ± 0.06 0.95 0.4 (60)

EBC ? serum 0.92 ± 0.04 0.85 0.97 ± 0.03 0.88 0.8 (62)

EBC ? urine 0.99 ± 0.01 0.63 0.91 ± 0.05 0.89 0.4 (60)

Serum ? urine 0.92 ± 0.05 0.93 0.88 ± 0.05 0.93 0.5 (61)

EBC ? serum ? urine 0.94 ± 0.03 0.92 0.97 ± 0.03 0.91 0.6 (62)

The mean correct classification rates, MCCRs, which were estimated for the cut-off values of the average SRs, are also listed

Table 5 Sensitivity, specificity and efficiency for the test sets with variables selected by VIP-PLS-DA and SR-PLS-DA

Variables VIP-PLS-DA

(complexity)

SR-PLS-DA

(complexity)

Sensitivity (%) Specificity (%) Efficiency (%)

VIP-PLS-

DA

SR-PLS-

DA

VIP-PLS-

DA

SR-PLS-

DA

VIP-PLS-

DA

SR-PLS-

DA

EBC 1 1 80.00 73.33 20.00 20.00 65.00 60.00

Serum 1 2 73.33 86.67 80.00 80.00 75.00 85.00

Urine 2 1 73.33 86.67 80.00 100.0 75.00 90.00

EBC ? serum 1 2 73.33 86.67 80.00 80.00 75.00 85.00

EBC ? urine 1 1 66.67 80.00 60.00 60.00 65.00 75.00

Serum ? urine 1 1 66.67 73.33 80.00 100.0 70.00 80.00

EBC ? serum ? urine 1 2 60.00 86.67 80.00 60.00 65.00 80.00

The optimal complexities of the final models are also listed
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of 100 %) as the one that was constructed for all of the

serum and urine metabolites. Compared to these models,

the model using only ten urine metabolites that were se-

lected from SR-PLS-DA also showed a specificity of

100 % although it had a better sensitivity of 86.67 %.

Specifically, this model (AUCtest = 0.95) had the best

prediction performance in comparison to all of the other

models that were constructed (Tables 4, 5).

In general, it appears that urine metabolites present the

highest probability for the correct identification of indi-

viduals with COPD and the lowest probability for the in-

correct identification of the OSA syndrome as developed

COPD. Specifically, the results showed that only ten urine

metabolites may be sufficient for the development of a

metabolomic diagnostic procedure. It should be pointed out

that the collection of samples was not large enough to draw

Table 6 Variables selected by the VIP-PLS-DA and SR-PLS-DA methods in all models constructed

Block(s) of

variables

Variables selected using VIP-PLS-DA Variables selected using SR-PLS-DA Percentage

of common

variables

EBC Propylene glycol, ethanol, 3-hydroxyisovalerate, acetone,

methanol, Unk2 (d = 2.90 ppm)a, Unk3

(d = 3.57 ppm), Unk4 (d = 7.07 ppm), formate

Propylene glycol, ethanol, 3-hydroxyisovalerate,

methanol, Unk2 (d = 2.90 ppm), Unk3

(d = 3.57 ppm), isopropanol, formate

44 (7 vars)

Serum L1, L3, L4, L6, isoleucine, Unk1 (d = 1.11 ppm), Unk2

(d = 2.22 ppm), Unk3 (d = 4.26 ppm), acetate,

glutamine, choline, GPC ? APC, histidine,

phenylalanine

L2, L3, L4, L6, leucine, isoleucine, Unk1

(d = 1.11 ppm), Unk2 (d = 2.22 ppm), Unk3

(d = 4.26 ppm), lactate, acetate, L6, NAC1,

NAC2, glutamine, choline, histidine, phenylalanine

39 (12 vars)

Urine Isobutyrate, 3-aminoisobutyrate, 2-hydroxyisobutyrate,

Unk2 (d = 2.35 ppm), N,N-dimethylglycine, sn-

glycero-3-phosphocholine, creatine, creatinine,

xanthine, Formate

Isobutyrate, methylsuccinate, 3-hydroxyisovalerate,

lactate, 2-hydroxyisobutyrate, Unk2

(d = 2.35 ppm), N,N-dimethylglycine, sn-glycero-

3-phosphocholine, cis_Aconitate, Formate

18 (5 vars)

EBC? Propylene glycol, 3-Hydroxyisovalerate, Methanol,

Formate ?

23 (11 vars)

Serum L1, L3, L4, L6, isoleucine, Unk1 (d = 1.11 ppm), Unk3

(d = 4.26 ppm), acetate, choline, glutamine,

GPC ? APC, histidine, phenylalanine

L2, L3, L4, L6, leucine, isoleucine, Unk1

(d = 1.11 ppm), Unk2 (d = 2.22 ppm), Unk3

(d = 4.26 ppm), lactate, acetate, L6, NAC1,

NAC2, glutamine, choline, histidine, phenylalanine

EBC? propylene glycol, ethanol, 3-Hydroxyisovalerate, Unk2

(d = 2.90 ppm), methanol, isopropanol, formate ?

Propylene glycol, formate ? 18 (8 vars)

Urine Isobutyrate, 3-aminoisobutyrate, 2-hydroxyisobutyrate,

Unk2 (d = 2.35 ppm), N,N-dimethylglycine, sn-

glycero-3-phosphocholine, creatine, creatinine,

trimethylamine N-oxide, xanthine, formate

Isobutyrate, methylsuccinate, methylmalonate,

3-hydroxyisovalerate, lactate,

2-hydroxyisobutyrate, Unk2 (d = 2.35 ppm), N,N-

dimethylglycine, sn-glycero-3-phosphocholine,

cis_aconitate, formate

Serum? L1, L3, L4, L6, isoleucine, Unk1 (d = 1.11 ppm), Unk3

(d = 4.26 ppm), acetate, choline, glutamine,

GPC ? APC, histidine, phenylalanine

L2, L3, L4, L6, leucine, isoleucine, Unk1

(d = 1.11 ppm), Unk2 (d = 2.22 ppm), Unk3

(d = 4.26 ppm), isobutyrate, lactate, acetate, L6,

NAC1, NAC2, glutamine, citrate, creatinine,

choline, GPC ? APC, histidine, phenylalanine ?

25 (15 vars)

Urine Isobutyrate, 2-hydroxyisobutyrate, N,N-dimethylglycine,

sn-glycero-3-phosphocholine, creatine, creatinine,

formate

2-Hydroxyisobutyrate, Unk2 (d = 2.35 ppm), N,N-

dimethylglycine, sn-glycero-3-phosphocholine

EBC? Propylene glycol, 3-Hydroxyisovalerate, Methanol,

Formate ?

20 (15 vars)

Serum? L1, L2, L3, L4, L6, valine, isoleucine, Unk1

(d = 1.11 ppm), Unk_2 (d = 2.22 ppm), Unk3

(d = 4.26 ppm), acetate, glutamine, choline,

GPC ? APC, histidine, phenylalanine ?

L1, L2, L3, L4, L6, isoleucine, Unk1

(d = 1.11 ppm), Unk2 (d = 2.22 ppm), Unk3

(d = 4.26 ppm), lactate, acetate, glutamine,

choline, L6, NAC_1,NAC_2, citrate, GPC ? APC,

histidine, phenylalanine ?

Urine Isobutyrate, 2-hydroxyisobutyrate, N,N-dimethylglycine,

sn-glycero-3-phosphocholine, creatine, creatinine,

formate

N,N-Dimethylglycine

a The notation Unk2 (d = 2.90 ppm) means an unknown metabolite at a chemical shift of 2.90 ppm
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general conclusions and a larger set of samples will be

necessary for the further validation of this procedure.

Moreover, several studies have emphasized the possibility

of using changes in the EBC metabolite levels for the

correct identification of individuals with OSAS or indi-

viduals with COPD from healthy individuals. The results of

this study indicate that changes in the level of EBC

metabolites may not be specific enough to correctly iden-

tify COPD patients from individuals with OSAS and

therefore, a large number of false positive identifications

may occur.

4 Concluding remarks

The main conclusion of this study is that only ten urine

metabolites are enough to distinguish COPD patients from

those with the OSA syndrome. The urine metabolites were

selected using the SR approach. The model with a speci-

ficity of 100 % and a sensitivity of 86.67 % also presents

the best prediction performance (AUCtest = 0.95) in com-

parison to all of the other models that were constructed. It

appears that a combination of two biofluid metabolites or

metabolites of all three types of biofluids is unnecessary to

obtain a diagnostic model with improved predictive abil-

ities. Perhaps a surprising conclusion is that changes in the

concentration in the EBC metabolites were not specific

enough to predict correctly the COPD or OSAS in indi-

viduals, which was illustrated by the poor performance of

the discriminant models that were constructed for those

variables.
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