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Abstract Metabolomics plays an important role in phy-

tochemical genomics and crop breeding; however, metabo-

lite annotation is a significant bottleneck in metabolomic

studies. In particular, in liquid chromatography–mass spec-

trometry (MS)-based metabolomics, which has become a

routine technology for the profiling of plant-specialized

metabolites, a substantial number of metabolites detected as

MS peaks are still not assigned properly to a single metab-

olite. Oryza sativa (rice) is one of the most important staple

crops in the world. In the present study, we isolated and

elucidated the structures of specialized metabolites from rice

by using MS/MS and NMR. Thirty-six compounds, includ-

ing five new flavonoids and eight rare flavonolignan isomers,

were isolated from the rice leaves. The MS/MS spectral data

of the isolated compounds, with a detailed interpretation of

MS fragmentation data, will facilitate metabolite annotation

of the related phytochemicals by enriching the public mass

spectral data depositories, including the plant-specific MS/

MS-based database, ReSpect.

Keywords Oryza sativa � Rice � Tandem mass

spectrometry (MS/MS) � Nuclear magnetic resonance

(NMR) � Specialized metabolites � Flavonoid

1 Introduction

Metabolomics is an ‘‘omics’’ approach that allows research-

ers to chemically assign a set of metabolites in a given bio-

logical system (cell, tissue, or organism). In recent years, the

use of metabolomics has rapidly developed in the fields of

phytochemical genomics and crop breeding. It has been used

in the investigation of plant biological mechanisms related to

genetic and/or environmental factors (Roessner et al. 2001;

Dixon et al. 2006; Saito and Matsuda 2010; Matsuda et al.

2012; Quanbeck et al. 2012; Saito 2013). Liquid chroma-

tography (LC)–mass spectrometry (MS) is a common

approach for metabolite identification using authentic stan-

dards by applying fragment patterns of tandem mass spec-

trometry (MS/MS) spectra in combination with the retention

time or on-line UV spectrum data (Sumner et al. 2003; De

Vos et al. 2007). High-resolution MS can provide an accurate

mass of a molecule based on its precursor ion, and the specific

fragment patterns of MS/MS can help reduce the number of

potential molecular formulas for a metabolic peak, which can

improve the speed and efficiency of metabolome studies

(Matsuda et al. 2009; Sawada et al. 2012; Tautenhahn et al.

2012). Several MS/MS databases have been established to

facilitate metabolite annotation, such as MassBank (http://

www.massbank.jp/index.html?lang=en) (Horai et al. 2010),

METLIN (http://metlin.scripps.edu/index.php) (Tautenhahn
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et al. 2012), HMDB (http://www.hmdb.ca/) (Wishart et al.

2009), LipidBlast (http://fiehnlab.ucdavis.edu/projects/

LipidBlast/) (Kind et al. 2013), and ReSpect (http://spectra.

psc.riken.jp) (Sawada et al. 2012). Moreover, databases for

plant metabolomics have also been developed, which include

KNApSAcK (http://kanaya.naist.jp/KNApSAcK/) (Afendi

et al. 2012), MetaCyc (http://metacyc.org) (Zhang et al.

2005), PlantMetabolomics.org (http://www.plantmetabo

lomics.org) (Bais et al. 2010), KEGG (http://www.genome.

jp/kegg/) (Kanehisa et al. 2010), and PRIMe (http://prime.

psc.riken.jp/) (Sakurai et al. 2013).

Currently, metabolite identification is the major bottle-

neck in metabolomic studies (Matsuda et al. 2009; Dunn

et al. 2012). It is estimated that there are over 200,000 to

1,000,000 different metabolites in the plant kingdom (Dixon

and Strack 2003; Afendi et al. 2012). Many of plant sec-

ondary metabolites have been demonstrated to have ‘spe-

cialized’ roles for adaptive significance in protection against

predator and microbial infection. Thus, these metabolites

have recently been termed ‘specialized metabolites’, in

addition, avoiding the impression of less important than

‘primary’ by the word ‘secondary’ (Pichersky and Lewin-

sohn 2011; Saito 2013). Identification of specialized

metabolites still largely remains unknown, and many known

metabolites are commercially unavailable. In untargeted

metabolite profiling, most metabolites cannot be confidently

identified due to the lack of authentic standards. These

metabolites are often putatively annotated by comparison of

their accurate mass and MS/MS patterns in the literature or

databases (Sumner et al. 2007). However, the MS/MS

spectra of plant-specialized metabolites in databases are

especially limited. It is essential to acquire many MS/MS

spectra to develop such databases. Isomers of many metab-

olites show similar chromatographic or mass spectrometric

characteristics; therefore, substantial numbers of metabo-

lites detected as MS peaks have not been unambiguously

assigned to a single metabolite in MS-based metabolite

profiling (Matsuda et al. 2009; Lei et al. 2011). Nuclear

magnetic resonance (NMR) is a very powerful method for

structural analysis, especially for stereoisomers. Hence,

purification and structural elucidation of (un)known metab-

olites by combining a variety of spectroscopic methods such

as MS/MS and NMR are useful for unambiguous identifi-

cation of (un)known phytochemicals in plant metabolomics

(Nakabayashi et al. 2009; Van der Hooft et al. 2013).

To enable better annotation in plant metabolomics, we

aimed to isolate and identify specialized metabolites from

model plants, like Arabidopsis thaliana (Nakabayashi et al.

2009), by using MS/MS and NMR methods. Recently,

metabolome studies have attracted increasing attention in

the case of Oryza sativa (rice) (Kusano et al. 2007; Suzuki

et al. 2009; Calingacion et al. 2011; Redestig et al. 2011;

Matsuda et al. 2012; Chen et al. 2013; Jung et al. 2013),

which is one of the most important staple crops worldwide.

Therefore, it is important to enrich the libraries of standard

compounds and reference MS/MS spectra for specialized

metabolites of rice. Habataki (indica variety) is one of elite

Japanese cultivars, which has high yields. Previous studies

have indicated that the rice leaves contain various flavo-

noids, and Habataki has high level production of a flavo-

noid C-glycoside (apigenin-6,8-di-C-a-L-arabinoside) due

to the genetic polymorphism. Unequivocal structures of

such metabolites are useful for understanding gene-to-

metabolite correlations (Matsuda et al. 2012). In the pres-

ent study, we performed isolation and identification of

specialized metabolites from rice leaves (cultivar Haba-

taki). On the basis of the accurate mass of the precursor ion

and fragmentation patterns of collision-induced dissocia-

tion (CID) MS/MS, together with NMR spectra, 36 com-

pounds, including five new flavonoids, were isolated and

assigned from rice leaves. Most of the isolated compounds

were flavonoid glycosides with tricin, apigenin, and chry-

soeriol as the aglycones. The MS/MS data have been

uploaded to the ReSpect database (http://spectra.psc.riken.

jp), which will help to analyze metabolomic studies of rice

and its related species, and facilitate the annotation of plant

metabolites (Sawada et al. 2012).

2 Materials and methods

2.1 Plant material

Rice plants (cultivar Habataki) were grown in plastic pots

containing granular soil (Bonsoru No.2; Sumitomo Chemi-

cal, Tokyo); after approximately 10 weeks of incubation,

shoots were collected, lyophilized, and stored at -80 �C

until use (Matsuda et al. 2012).

2.2 Isolation of specialized metabolites

The leaf powder of rice (90 g) was extracted with 90 %

methanol as described in a previous study (Matsuda et al.

2012). The extract was dissolved, suspended in water, and

partitioned into a hexane and water layer. The water layer

was subjected to ODS column chromatography and eluted

with CH3OH–H2O (0:100 ? 100:0 v/v; containing 0.05 %

formic acid) to afford nine fractions (Fr.1–9). These fractions

were purified using semipreparative HPLC performed under

the following conditions: column, Cadenza CD-C18 or

Unison UK-C18 columns, Imtakt 150 9 10 mm i.d.; parti-

cle size, 3 lm; solvents, water and methanol or acetonitrile,

containing 0.1 % v/v formic acid; and flow rate, 3.0 mL/min.

The following compounds were obtained: 1 (4.52 mg), 2

(12.69 mg), 3 (2.07 mg), 4 (2.57 mg), 5 (1.15 mg), 6

(0.94 mg), 7 (1.51 mg), 8 (1.23 mg), 9 (0.71 mg), 10
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(2.53 mg), 11 (1.63 mg), 12 (3.93 mg), 13 (2.74 mg), 14

(0.58 mg), 15 (0.96 mg), 16 (1.89 mg), 17 (0.22 mg), 18

(0.09 mg), 19 (0.65 mg), 20 (0.20 mg), 21 (0.28 mg), 22

(0.64 mg), 23 (1.04 mg), 24 (0.76 mg), 25 (2.31 mg), 26

(2.20 mg), 27 (2.04 mg), 28 (1.25 mg), 29 (0.64 mg), 30

(0.29 mg), 31 (0.63 mg), 32 (2.29 mg), 33 (4.84 mg), 34

(4.99 mg), 35 (1.13 mg), and 36 (2.70 mg). For details

regarding the isolation procedures from rice, see Supple-

mentary data file S1.

2.3 LC–quadrupole time-of-flight-tandem mass

spectrometry (LC–QTOF-MS/MS) analysis

LC analysis was performed on the Waters ACQUITY

UPLCTM System. Samples were injected into an ACQUI-

TY bridged ethyl hybrid (BEH) C18 column

(100 9 2.1 mm i.d., 1.7 lm; Waters, Milford, MA, USA),

and the column temperature was set at 40 �C. The mobile

phase consisted of A (0.1 % v/v formic acid in water) and

B (0.1 % v/v formic acid in acetonitrile). The gradient

conditions of the mobile phase were as follows: 0 min,

99.5 % A; 10.0 min, 20 % A; 10.01 min, 0.5 % A;

12.0 min, 0.5 % A; 12.1 min, 99.5 % A; and 14.5 min,

99.5 % A. The flow rate was 0.30 mL/min. UV–visible

absorption spectra of samples were determined using a

photodiode array (PDA) detector in the range of

200–600 nm. The sample injection volume was 1 lL.

MS detection was performed on a Waters Xevo G2

QTOF mass spectrometer with an electrospray ionization

(ESI) interface (Waters). Full scan mass spectra were

recorded through a range of 50–1,500 m/z. Nitrogen was

used as the nebulizer and auxiliary gas; argon was utilized

as the collision gas. The ESI source was operated in

positive and negative ionization modes with a capillary

voltage of 3 kV, sampling cone voltage of 25 V, cone gas

flow of 50 L/h, desolvation gas flow of 800 L/h, desolva-

tion temperature of 450 �C, source temperature of 120 �C,

and CID energy ramped from 10 to 50 eV. Tandem MS

analysis was performed using fast data directed analysis

(FastDDA), which is rapid automated, intelligent MS/MS

data acquisition for targeted qualitative analyses. Data

acquisition and processing were performed with the

MassLynx 4.1 software.

2.4 NMR analysis

The NMR spectra were recorded on a Bruker 600 MHz

spectrometer with a DCH CryoProbe (Bruker BioSpin

GmbH, Rheinstetten, Germany). One-dimensional (1D)
1H-NMR was measured of 64 or 128 scans and at a receiver

gain of 11.3 using standard pulse sequences. 1D 13C-NMR,

and two-dimensional (2D) NMR experiments, 1H–1H cor-

relation spectroscopy (COSY), 1H–13C heteronuclear

single quantum coherence spectroscopy (HSQC), and
1H–13C heteronuclear multiple bond connectivity spec-

troscopy (HMBC) were obtained using standard pulse

sequences. Dimethylsulfoxide-d6 or methanol-d4 was used

as solvent, and tetramethylsilane (TMS) was used as an

internal standard. The samples were added to 5 mm Shi-

gemi micro NMR tubes (Shigemi, DMS-005B and MMS-

005B, Tokyo). NMR data were acquired and processed

with the TopSpin software (Bruker BioSpin GmbH,

Rheinstetten, Germany).

2.5 Data upload

All data acquired by LC–QTOF-MS/MS were uploaded to

DROP Met in PRIMe (http://prime.psc.riken.jp/) and are

freely available.

3 Results and discussion

In this study, to achieve better metabolite identification,

namely improving the metabolite annotation level in gen-

eral metabolomics research community, we mainly focused

on and selected the flavonoids and flavonolignans for fur-

ther isolation and structure elucidation from initial LC–MS

experiments, indicating those as the representative detect-

able metabolites. 36 compounds, including five new

flavonoids (6–9 and 24), were isolated and assigned from

the leaves of rice using MS/MS and NMR methods

(Fig. 1). To our knowledge, this is the first time that 18 of

the known compounds (4, 5, 12, 13, 17–23, 29–33, 35, and

36) have been isolated from rice leaves. Those 36 com-

pounds have been assigned in LC-PDA chromatogram of

rice leaves extract (Supplementary Figure S1). Herein, we

report the structural elucidation of new flavonoids and

analysis of the MS/MS fragmentation patterns of isolated

compounds by using high-resolution QTOF mass spec-

trometry with an ESI source. In the MS/MS analysis, the

ramped collision energies mode was used to obtain a

combined spectrum from fragments detected at various

collision energies (Matsuda et al. 2009) because the frag-

mentation patterns observed in MS/MS spectra depend on

many factors, including the mass spectrometer instrument

and its operating conditions, especially collision energy. In

addition, the structures of known compounds were identi-

fied by 1H, 13C-NMR analyses.

3.1 Structure elucidation of new compounds 6–9

and 24

Compound 6 was obtained as a yellow amorphous powder.

The molecular formula of compound 6 was established as

C29H32O18 by HR-ESI-QTOF-MS. The MS/MS spectra of
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the precursor ion at m/z 669 [M ? H]? gave a product ion

at m/z 507 [(M ? H)-162]?, corresponding to the loss of a

hexose group, and a major product ion at m/z 331

[(M ? H)-162-176]?, representing the loss of hexose and

glucuronosyl groups. The 1H-NMR spectrum of compound

6 indicated an A2-type aromatic proton signal at d 7.37

(2H, s); meta-coupled proton signals at d 6.52 (1H, d,

J = 2.0 Hz) and 7.01 (1H, d, J = 2.0 Hz); an aromatic

proton signal at d 7.07 (1H, s); two methoxy proton signals

at d 3.89 (6H, s); and two anomeric proton signals at d 5.33

(1H, d, J = 5.7 Hz) and 4.48 (1H, d, J = 7.9 Hz)

(Table 1). Furthermore, in combination with the 13C-NMR

and 2D NMR (COSY, HSQC, and HMBC) spectra,

these data indicated that compound 6 was tricin

Fig. 1 Structures of

compounds 1–36. Glc b-D-

glucopyranosyl, Rut rutinosyl,

Neo neohesperidosyl, GluA

glucuronopyranosyl, Ara

arabinosyl, erythro and threo

the forms of lignan parts of

flavonolignans, asterisk new

compound
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glucopyranosyl-glucuronopyranoside. The relatively large

coupling constant values of anomeric protons suggested

that the configuration of glucose and glucuronic acid were

b forms. In addition, in the HMBC spectrum, the anomeric

proton signals d 5.33 (H-100) and 4.48 (H-1000) showed long-

range correlation with the carbon signals at d 162.5 (C-7)

and 82.5 (C-200), respectively, suggesting that the glucur-

onosyl was located at the C-7 of aglycone and that glucose

was located at the C-2 of glucuronosyl (Fig. 2). Based on

these findings, compound 6 was assigned as tricin 7-O-(200-
O-b-D-glucopyranosyl)-b-D-glucuronopyranoside.

Compound 7 was obtained as a yellow amorphous

powder. HR-ESI-QTOF-MS gave the molecular formula

C26H26O15. The MS/MS spectra of the precursor ion at

m/z 579 [M ? H]? showed a product ion at m/z 493

[(M ? H)-86]?, corresponding to the loss of a malonyl

group, and a major product ion at m/z 331 [(M ? H)-86-

162]?, corresponding to the loss of malonyl and hexose

groups. The 1H-NMR spectrum of compound 7 indicated

an A2-type aromatic proton signal at d 7.37 (2H, s); three

aromatic proton signals at d 6.45 (1H, brs), 6.73 (1H, brs),

and 7.06 (1H, s); two methoxy proton signals at d 3.89 (6H,

Table 1 1H- and 13C-NMR

spectral data of compounds 6, 7
and 8 [(600/150 MHz, in

DMSO-d6, 25 �C, TMS, d
(ppm) (J = Hz)]

s Singlet, m multilet, d doublet,

dd double doublet, br s broad

singlet

Position 6 7 8

dH dC dH dC dH dC

2 – 164.1 – 164.0 – 163.9

3 7.07 (s) 103.7 7.06 (s) 103.9 6.96 (s) 103.3

4 – 182.0 – 181.8 – 181.9

4a – 105.4 – 105.5 – 105.3

5 – 161.0 – 161.2 – 161.1

6 6.52 (d 2.0) 99.4 6.49 (br s) 99.4 6.52 (d 1.9) 99.3

7 – 162.5 – 162.7 – 162.6

8 7.01 (d 2.0) 95.7 6.86 (br s) 95.2 6.85 (d 1.9) 95.1

8a – 156.7 – 156.9 – 156.6

10 – 120.1 – 120.2 – 119.8

20 7.37 (s) 104.7 7.37 (s) 104.6 7.28 (s) 104.3

30 – 148.1 – 148.2 – 148.0

40 – 140.0 – 140.0 – 140.1

50 – 148.1 – 148.2 – 148.0

60 7.37 (s) 104.7 7.37 (s) 104.6 7.28 (s) 104.3

30,50-OMe 3.89 (s) 56.3 3.89 (s) 56.4 3.88 (s) 56.2

5-OH 12.97 (br s) – 13.05 (br s) – 13.01 (br s) –

10 0 5.33 (d 5.7) 98.3 5.10 (d 7.4) 99.7 5.15 (d 7.3) 99.5

20 0 3.55 (m) 82.5 3.30 (m) 73.0 3.32 (m) 72.9

30 0 3.19 (m) 77.0 3.32 (m) 76.1 3.37 (m) 76.2

40 0 3.44 (m) 70.9 3.17 (m) 69.6 3.26 (m) 70.0

50 0 3.98 (m) 74.6 3.75 (m) 73.8 3.82 (m) 73.7

60 0 – 170.0 4.34 (d 11.6) 63.8 4.57 (d 11.9) 63.2

4.15 (dd 11.9, 6.5) 4.10 (dd 11.9, 7.3)

10 0 0 4.48 (d 7.9) 104.7 – 167.4 – 124.1

20 0 0 2.99 (m) 74.6 3.27 (s) 42.3 6.80 (s) 105.7

30 0 0 3.16 (m) 76.1 – 167.7 – 147.8

40 0 0 3.10 (m) 69.6 – – – 138.1

50 0 0 3.55 (m) 75.0 – – – 147.8

60 0 0 3.53 (m) 60.6 – – 6.80 (s) 105.7

3.44 (m)

70 0 0 – – – – 7.47 (d 15.9) 145.4

80 0 0 – – – – 6.44 (d 15.9) 114.3

90 0 0 – – – – – 166.2

30 0 0,50 0 0-OMe – – – – 3.71 (s) 55.7
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s); and a sugar of the anomeric proton signal at d 5.10 (1H,

d, J = 7.4 Hz) (Table 1). These data, together with the
13C-NMR and 2D NMR (COSY, HSQC, and HMBC)

spectra, indicated that compound 7 was tricin malonyl-

glucopyranoside. Furthermore, in the HMBC spectrum, the

anomeric proton signal d 5.10 (H-100) showed long-range

correlation with the carbon signal at d 162.7 (C-7), sug-

gesting that the glucose was located at C-7. The sugar

proton signal at d 4.15 (H-600) showed correlation with the

carbon signal at d 167.4 (C-1000), suggesting that the mal-

onyl moiety was located at the C-6 of glucose (Fig. 2).

Thus, compound 7 was assigned as tricin 7-O-(600-O-mal-

onyl)-b-D-glucopyranoside.

Compound 8 was obtained as a yellow amorphous

powder. The molecular formula of compound 8 was

determined as C34H34O16 with HR-ESI-QTOF-MS. The

MS/MS spectra of the precursor ion at m/z 699 [M ? H]?

gave a major product ion at m/z 331 [(M ? H)-206-162]?,

representing the loss of sinapoyl and hexose groups. The

fragment ion of the sinapoyl moiety at m/z 207 was also

observed (Cuyckens and Claeys 2004). The 1H-NMR

spectrum of compound 8 indicated an A2-type aromatic

proton signal at d 7.28 (2H, s); meta-coupled proton signals

at d 6.52 (1H, d, J = 1.9 Hz) and 6.89 (1H, d, J = 1.9 Hz);

an aromatic proton signal at d 6.96 (1H, s); two methoxy

proton signals at d 3.88 (6H, s); and an anomeric proton

signal at d 5.15 (1H, d, J = 7.3 Hz), which were similar to

those of compounds 6 and 7 (Table 1). In addition, we

observed an A2-type aromatic proton signal at d 6.80 (2H,

s); two methoxy proton signals at d 3.71 (6H, s); and two

olefinic proton signals at d 6.44 (1H, d, J = 15.9 Hz) and

7.47 (1H, d, J = 15.9 Hz), suggesting the presence of a

trans-sinapoyl moiety. Furthermore, in the HMBC spec-

trum, the anomeric proton signal d 5.15 (H-100) showed a

long-range correlation with the carbon signal at d 162.6 (C-

7), suggesting that the glucose was located at C-7. The

sugar proton signal at d 4.10 (H-600) showed correlation

with the carbon signal at d 166.2 (C-9000), suggesting that

the sinapoyl moiety was located at the C-6 of glucose

(Fig. 2). Thus, compound 8 was assigned as tricin 7-O-(600-
(E)-sinapoyl)-b-D-glucopyranoside.

Compound 9 was obtained as a yellow amorphous pow-

der. The molecular formula of compound 9 was established

as C34H38O17 by HR-ESI-QTOF-MS. The MS/MS spectra

of the precursor ion at m/z 719 [M ? H]? gave a product ion

at m/z 557 [(M ? H)-162]?, corresponding to the loss of a

hexose group, and a product ion at m/z 331 [(M ? H)-226-

162]?, corresponding to the loss of syringylglyceryl and

hexose groups. The product ion at m/z 539 was formed by the

loss of glucose and a water molecule from the precursor ion

at m/z 719. In addition, a major product ion was observed at

m/z 209, which was formed by the loss of a water molecule

from the syringylglyceryl moiety. The 1H-NMR spectrum of

compound 9 indicated an A2-type aromatic proton signal at d
7.26 (2H, s); meta-coupled proton signals at d 6.10 (1H, d,

J = 2.0 Hz) and 6.34 (1H, d, J = 2.0 Hz); an aromatic

proton signal at d 6.64 (1H, s); two methoxy proton signals at

d 3.96 (6H, s); and an anomeric proton signal at d 4.57 (1H, d,

J = 7.5 Hz). Moreover, the 1H-NMR spectrum of com-

pound 9 was similar to that of compound 15, except for an

A2-type aromatic proton signal at d 6.81 (2H, s) and six

proton signals at d 3.84 (6H, s), corresponding to two

methoxyl groups of the syringylglyceryl moiety (Table 2).

Furthermore, in combination with the 13C-NMR and 2D

NMR (COSY, HSQC, and HMBC) spectra, these data

indicated that compound 9 was a flavonolignan glycoside

with tricin as the aglycone. In addition, the coupling constant

of JH-70 0, H-80 0 was 5.5 Hz, suggesting that compound 9 was of

Fig. 2 Key HMBC correlations

of compounds 6–9 and 24
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the threo type because the coupling constant between the

adjacent protons of the threo form is known to be larger than

that of the erythro form (Bouaziz et al. 2002). To determine

the absolute configuration of the syringylglyceryl and gua-

iacylglyceryl moieties of flavonolignans 9–17, we measured

the circular dichroism (CD) spectra. However, these

compounds did not exhibit Cotton effects, presumably due to

conformational mobility (Wenzig et al. 2005). Furthermore,

in the HMBC spectrum, the anomeric proton signal d 4.57

(H-1000) showed long-range correlation with the carbon sig-

nal at d 82.0 (C-700), suggesting that the glucose was located

at C-700. The syringylglyceryl proton signal at d 4.55 (H-800)
showed correlation with the carbon signal at d 140.7 (C-40),
suggesting that the location of the syringylglyceryl moiety

was at C-40 (Fig. 2). Thus, compound 9 was assigned as

tricin 40-O-(threo-b-syringylglyceryl) ether 700-O-b-D-

glucopyranoside.

Compound 24 was obtained as a yellow amorphous

powder. The molecular formula was found to be C26H28O15

by HR-ESI-QTOF-MS. The MS/MS spectra of the pre-

cursor ion at m/z 581 [M ? H]? showed a product ion at

m/z 419 [(M ? H)-162]?, corresponding to the loss of a

hexose group. In addition, characteristic fragment ions of

C-glycoside were also observed. The fragment ions at m/z

401, 383, and 365 were formed by the loss of water mol-

ecules from the C-glycoside fragment at m/z 419. Product

ions at m/z 329 [(M ? H)-162-90]? (0.2X?) and 353

[(M ? H)-162-66]? (0.4X?-2H2O) were formed by cross-

ring cleavages of a sugar residue from m/z 419. The 1H-

NMR spectrum of compound 24 indicated ortho-coupled

proton signals at d 6.87 (1H, d, J = 8.0 Hz) and 7.382 (1H,

d, J = 8.0 Hz); three aromatic proton signals at d 6.37 (1H,

s), 6.56 (1H, s), and 7.375 (1H, s); and two anomeric proton

signals at d 4.58 (1H, d, J = 9.4 Hz) and 4.19 (1H, d,

J = 7.7 Hz) (Table 2). Furthermore, in combination with

the 13C-NMR and 2D NMR (COSY, HSQC, and HMBC)

spectra, these data indicated that compound 24 was luteolin

glucopyranosyl-arabinoside. The relatively large coupling

constant values of anomeric protons suggested that the

configuration of the glucose was the b form and of the

arabinose was the a form (Xie et al. 2003). In addition, in

the HMBC spectrum, the anomeric proton signals d 4.58

(H-100) and 4.19 (H-1000) showed a long-range correlation

with the carbon signals at d 108.3 (C-6) and 78.7 (C-200),
respectively, suggesting that the arabinosyl moiety was

located at the C-6 of aglycone and glucosyl at the C-2 of

arabinose (Fig. 2). Based on these data, compound 24 was

assigned as luteolin 6-C-(200-O-b-D-glucopyranosyl)-a-L-

arabinoside.

3.2 Structure identification of known compounds 1–5,

10–23, and 25–36

3.2.1 Flavonoids

MS spectra of compound 1 in the positive and negative

ionization modes showed a protonated molecular ion at m/z

331 and a deprotonated molecular ion at m/z 329, respec-

tively. MS/MS spectra of compounds 2–5 and 10–17 in the

Table 2 1H- and 13C-NMR spectral data of compounds 9 and 24
[(600/150 MHz, TMS, d (ppm) (J = Hz)]

Position 9a 24b

dH dC dH dC

2 – 165.3 – 163.5

3 6.64 (s) 106.08 6.56 (s) 102.6

4 – 183.9 – 181.6

4a – 105.5 – 103.1

5 – 163.4 – 156.5

6 6.10 (d 2.0) 100.4 – 108.3

7 – 166.4 – 163.9

8 6.34 (d 2.0) 95.3 6.37 (s) 93.6

8a – 159.6 – 160.7

10 – 128.1 – 121.4

20 7.26 (s) 105.3 7.375 (s) 113.1

30 – 154.8 – 145.8

40 – 140.7 – 150.0

50 – 154.8 6.87 (d 8.0) 116.0

60 7.26 (s) 105.3 7.382 (d 8.0) 118.8

30,50-OMe 3.96 (s) 57.1 –

5-OH – – 13.55 (br s)

10 0 – 130.9 4.58 (d 9.4) 72.2

20 0 6.81 (s) 106.13 4.60 (m) 78.7

30 0 – 148.9 3.61 (d 5.9) 74.5

40 0 – 136.2 3.80 (m) 68.6

50 0 – 148.9 3.75 (d 11.5) 70.2

3.52 (d 11.7)

60 0 6.81 (s) 106.13 – –

70 0 5.17 (d 5.5) 82.0 – –

80 0 4.55 (m) 86.9 – –

90 0 3.72 (dd 12.1, 4.3) 61.8 – –

3.39 (m)

30 0,50 0-OMe 3.84 (s) 56.9 – –

10 0 0 4.57 (d 7.5) 104.9 4.19 (d 7.7) 104.9

20 0 0 4.33 (m) 75.7 2.87 (t 8.3, 8.6) 74.6

30 0 0 3.42 (m) 78.2 3.06 (t 8.9) 76.5

40 0 0 3.19 (m) 71.5 2.97 (t 8.9, 9.3) 69.8

50 0 0 3.37 (m) 77.9 2.70 (t 9.3) 76.2

60 0 0 3.75 (dd 11.9, 2.3) 62.6 3.16 (m) 60.8

3.60 (dd 11.9, 5.3)

s Singlet, m multilet, d doublet, dd double doublet, br s broad singlet,

t triplet
a in CD3OD, 25 �C
b in DMSO-d6, 45 �C
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positive mode showed diagnostic fragment ions of tricin at

m/z 331, suggesting that these compounds were tricin

derivatives. For the detailed MS/MS analysis of these

compounds, see Sect. 3.3. Furthermore, on comparison of

the 1H- and 13C-NMR spectral data (Supplementary data

file S2) with those in the literature, these compounds were

assigned as tricin (1) (Jiao et al. 2007), tricin 7-O-b-D-

glucopyranoside (2) (Kong et al. 2007), tricin 5-O-b-D-

glucopyranoside (3) (Adjei-Afriyie et al. 2000), tricin 7-O-

rutinoside (4) (Hirai et al. 1986), tricin 7-O-neohesperi-

doside (5) (Zhang et al. 2009), tricin 40-O-(erythro-b-gua-

iacylglyceryl) ether (10) (Bouaziz et al. 2002), tricin 40-O-

(threo-b-guaiacylglyceryl) ether (11) (Bouaziz et al. 2002),

tricin 40-O-(erythro-b-guaiacylglyceryl) ether 7-O-b-D-

glucopyranoside (12) (Bouaziz et al. 2002), tricin 40-O-

(threo-b-guaiacylglyceryl) ether 7-O-b-D-glucopyranoside

(13) (Bouaziz et al. 2002), tricin 40-O-(erythro-b-guaia-

cylglyceryl) ether 700-O-b-D-glucopyranoside (14) (Baek

et al. 2012), tricin 40-O-(threo-b-guaiacylglyceryl) ether

700-O-b-D-glucopyranoside (15) (Baek et al. 2012), tricin

40-O-(erythro-b-guaiacylglyceryl) ether 900-O-b-D-gluco-

pyranoside (16) (Baek et al. 2012), and tricin 40-O-(threo-

b-4-hydroxyphenylglyceryl) ether (17) (Chang et al. 2010).

The MS spectra of compounds 18 and 19 in the positive

ionization mode showed protonated molecular ions at m/z

509 and 655, respectively. The MS/MS spectra of compound

18 showed a major fragment ion at m/z 347 [(M ? H)-162]?,

corresponding to the loss of a hexose group. MS/MS spectra

of compound 19 showed major fragment ions at m/z 509

[(M ? H)-146]? and 347 [(M ? H)-146-162]?, indicating

the loss of deoxyhexose and hexose groups. Furthermore,

comparing the 1H-NMR spectral data with those in the lit-

erature, they were assigned as syringetin 3-O-b-D-glucopy-

ranoside (18) (Guo et al. 2010) and syringetin 3-O-rutinoside

(19) (Victoire et al. 1988).

The MS/MS spectra of compounds 20–23 and 25–28

showed characteristic fragment ions of C-glycosides. For

the detailed MS/MS analysis of these compounds, see Sect.

3.3. Comparing the 1H-NMR spectral data with those in the

literature, four flavonoid C-glycosides (compounds 20–23)

were assigned as apigenin 6-C-a-L-arabinosyl-8-C-b-L-

arabinoside (20) (Xie et al. 2003), chrysoeriol 6-C-a-L-

arabinosyl-8-C-b-L-arabinoside (21) (Shie et al. 2010),

swertisin (22) (Cheng et al. 2000), and isoorientin 7,30-
dimethyl ether (23) (Zhu et al. 2010). Moreover, comparing

the 1H- and 13C-NMR spectral data with those in the lit-

erature, four O,C-glycosides (compounds 25–28) were

assigned as isoscoparin 200-O-(6000-(E)-feruloyl)-glucopy-

ranoside (25) (Besson et al. 1985), isoscoparin 200-O-(6000-
(E)-p-coumaroyl)-glucopyranoside (26) (Besson et al.

1985), isovitexin 200-O-(6000-(E)-feruloyl)-glucopyranoside

(27) (Markham et al. 1998), and isovitexin 200-O-(6000-(E)-

p-coumaroyl)-glucopyranoside (28) (Markham et al. 1998).

3.2.2 Phenylpropanoids and salicylic acid glycoside

The MS spectra of compounds 29, 30, 31, 32, and 33 in the

negative ionization mode showed precursor ions at m/z

443, 355, 385, 337, and 367, respectively. The MS/MS

spectra of compounds 29, 30, and 33 gave the same char-

acteristic fragment ions at m/z 193 [ferulic acid-H]-, indi-

cating the presence of a feruloyl moiety in these

compounds. Similarly, in the MS/MS spectra of com-

pounds 31 and 32, fragment ions of sinapic acid were

observed at m/z 223 and of coumaric acid at m/z 163. On

comparing the 1H- and 13C-NMR spectral data with those

in the literature, these compounds were assigned as 1,3-O-

diferuloylglycerol (29) (Luo et al. 2012), 1-O-feruloyl-b-D-

glucose (30) (Miyake et al. 2007), 1-O-sinapoyl-b-D-glu-

cose (31) (Miyake et al. 2007), 3-O-p-coumaroylquinic

acid (32) (Ma et al. 2007), and 3-O-feruloylquinic acid (33)

(Ida et al. 1994). The MS spectra of compound 34 in the

negative ionization mode showed a deprotonated molecular

ion at m/z 299. The MS/MS spectra of the precursor ion at

m/z 299 gave a major fragment ion at m/z 137 [(M - H)-

162]-, suggesting the presence of a hexose group. Com-

pound 34 was assigned as salicylic acid 2-O-b-D-gluco-

pyranoside (Grynkiewicz et al. 1993) by comparing the 1H-

and 13C-NMR spectral data with those in the literature.

3.2.3 Alkaloids

The MS spectra of compound 35 in the positive and neg-

ative ionization modes showed precursor ions at m/z 190

and 188, respectively. The MS/MS spectra of the precursor

ion at m/z 190 produced major fragment ions at m/z 172

and 144. This compound was assigned as kynurenic acid

(35) (Beretta et al. 2007) by comparing the MS/MS and 1H-

, 13C-NMR spectral data with those in the literature. The

MS spectra of compound 36 in the positive and negative

ionization modes showed a protonated molecular ion at m/z

217 and a deprotonated molecular ion at m/z 215, respec-

tively. On comparing the 1H-NMR spectral data with those

in the literature, compound 36 was assigned as lycopero-

dine-1 (Yahara et al. 2004).

3.3 MS/MS data acquisition of isolated compounds

Certain classes of specialized metabolites with similar

structures in plants show characteristic fragments or neutral

losses in their MS/MS spectra. Flavonoids, a major class of

plant-specialized metabolites, include subclasses such as

flavonol, flavone, flavan-3-ol, isoflavone, and anthocyanin.

Many flavonoids are positional isomers or homologues,

which have a basic C6-C3-C6 skeleton, with two aromatic

rings linked by a three-carbon chain (Dixon and Steele

1999). Flavonoids are commonly present as O- or C-
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glycosides. The flavonoid O-glycosides usually have sugar

moieties bonded to the 40-, 3-, and 7-hydroxyl groups of the

aglycone. The flavonoid C-glycosides have sugar substit-

uents directly linked to the aglycone by C–C bonds. The

C-6 and C-8 positions are the common locations in

C-glycosides. The flavonoid O,C-glycosides have sugar

moieties linked to the hydroxyl group of the aglycone or

C-glycosyl residue. Numerous flavonoid glycosides have

been identified or characterized using the LC–MS approach

(Cuyckens and Claeys 2004; de Rijke et al. 2006; Farag

et al. 2007; Kachlicki et al. 2008; Van der Hooft et al.

2012; Wojakowska et al. 2013). To aid in the annotation of

phytochemicals, we have reported the characteristic MS/

MS fragmentation patterns of the isolated compounds.

3.3.1 Fragmentation of flavonoid O-glycosides

and flavonolignans

In the MS/MS analysis of O-glycosides, the neutral loss of

hexose (m/z 162) and deoxyhexose (m/z 146) from the

precursor ion are common fragmentations, which are

formed by rearrangement reactions at the interglycosidic

bonds (Cuyckens and Claeys 2004). Here, we focused on

the comparison of fragmentation patterns of isobaric and

isomeric flavonoid O-glycosides and flavonolignans.

Tricin 5-O-b-D-glucopyranoside (3) showed a higher

relative abundance of a tricin aglycone fragment ion at m/z

331 [(M ? H)-162]? (Y0
?) than tricin 7-O-b-D-glucopy-

ranoside (2) in their MS spectra and lower relative abun-

dance of ions at m/z 493 than compound 2 in the MS and

MS/MS spectra (Supplementary Figure S2). These results

suggested that the glucose at the 5-position was lost more

readily than at the 7-position. Our results are in agreement

with earlier studies on luteolin 5-O-glucoside and luteolin

7-O-glucoside (Grayer et al. 2000).

The MS/MS spectra of tricin 7-O-rutinoside (4) in the

positive ionization mode showed a major fragment ion at m/z

493 [(M ? H)-146]? (Y1
?), which was formed by the loss of

rhamnose, whereas tricin 7-O-neohesperidoside (5) produced

only a very low abundance of the Y1
? ion. Compounds 4 and 5

both showed the base peak of aglycone fragment ions at m/z

331 (Y0
?), which were formed by the loss of rutinose and

neohesperidose moieties, respectively. These results indi-

cated that the Y0
?/Y1

? ratio was higher for 1 ? 2 linked

neohesperidose [rhamnosyl (1 ? 2)-glucose] than for 1 ? 6

linked rutinose [rhamnosyl (1 ? 6)-glucose] in the positive

ionization mode (Ma et al. 2001). However, in the negative

ionization mode, compounds 4 and 5 showed the aglycone

fragment ions at m/z 329 (Y0
-). The fragment ions (Y1

-)

formed by the loss of rhamnose were not observed. Com-

pound 4 produced a relatively higher level of the aglycone

fragment ion than compound 5, suggesting that the rutinose

was more readily lost than the neohesperidose in the negative

ionization mode (Supplementary Figure S3).

The MS/MS spectra of the flavonolignans tricin 40-O-

(erythro-b-guaiacylglyceryl) ether (10) and tricin 40-O-

(threo-b-guaiacylglyceryl) ether (11) in the positive ioni-

zation mode showed the same protonated molecular ions at

m/z 527. Both MS/MS spectra showed major fragment ions

of aglycone at m/z 331 [(M ? H)-196]?, corresponding to

the loss of a guaiacylglyceryl group. Similarly, MS/MS

data of tricin 40-O-(erythro-b-guaiacylglyceryl) ether 7-O-

b-D-glucopyranoside (12) and tricin 40-O-(threo-b-guaia-

cylglyceryl) ether 7-O-b-D-glucopyranoside (13) showed
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guaiacylglyceryl) ether 7-O-b-D-glucopyranoside (13) (m/z 688) at ramped collision energy from 10 to 50 eV in positive ionization mode
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major product ions at m/z 527 [(M ? H)-162]?, corre-

sponding to the loss of glucose and aglycone fragment ions,

and at m/z 331 [(M ? H)-162-196]?, indicating the loss of

glucose and guaiacylglyceryl groups (Fig. 3 and Supple-

mentary Figure S4). The MS/MS spectra of tricin 40-O-

(erythro-b-guaiacylglyceryl) ether 700-O-b-D-glucopyrano-

side (14), tricin 40-O-(threo-b-guaiacylglyceryl) ether 700-
O-b-D-glucopyranoside (15), and tricin 40-O-(erythro-b-

guaiacylglyceryl) ether 900-O-b-D-glucopyranoside (16)

showed major aglycone fragment ions at m/z 331 and a

lower amount of product ions at m/z 527. In addition,

compounds 14, 15, and 16 showed fragment ions at m/z 509

[(M ? H)-162-18]?, which were formed by the loss of one

water molecule from ions at m/z 527 (Supplementary

Figure S4). These results suggested that fragment ions at m/

z 509 were characteristic fragments of flavonolignans 14,

15, and 16, which have a glucose located at the 700- or 900-
position of the guaiacylglyceryl group. In the negative

ionization mode, flavonolignans 10–16 also showed similar

fragment patterns with neutral loss of guaiacylglyceryl and

glucose groups (Supplementary Figure S4).

3.3.2 Fragmentation of flavonoid C-glycosides and O,C-

glycosides

In the MS/MS spectra, the fragmentation patterns of

C-glycosides differ from those of O-glycosides; loss of

water molecules and cross-ring cleavages of sugar residues

are characteristic fragments of C-glycosides, whereas the

neutral loss of a sugar moiety can be observed in O,C-

glycosides (Cuyckens and Claeys 2004).

The MS/MS spectra of the flavonoid C-glycosides api-

genin 6-C-a-L-arabinosyl-8-C-b-L-arabinoside (20) and

chrysoeriol 6-C-a-L-arabinosyl-8-C-b-L-arabinoside (21) in

the positive ionization mode showed the loss of one, two,

and three water molecules from precursor ions at m/z 535

and 565, leading to product ions at m/z 517, 499, and 481,

respectively, for compound 20 and product ions at m/z 547,

529, and 511, respectively, for compound 21. The cross-

ring cleavage of the sugar residue of C-glycoside yielded

many characteristic product ions, such as m/z 445 (0.2X?)

and 469 (0.4X?-2H2O) of compound 20 as well as m/z 475

(0.2X?) and 499 (0.4X?-2H2O) of compound 21 (Vukics

25 MS/MS
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and Guttman 2010). In the negative ionization mode, the

MS/MS spectra showed fewer but characteristic products

ions such as m/z 473 (0.3X-), 443 (0.2X-), 383 (0.3X--90 or
0.2X--60), and 353 (0.2X--90) of compound 20 as well as

m/z 503 (0.3X-), 473 (0.2X-), 413 (0.3X--90 or 0.2X--60),

and 383 (0.2X--90) of compound 21 (Supplementary Fig-

ure S5). These results suggested that the loss of m/z 90

(0.2X) and 60 (0.3X) are characteristics of flavonoid

C-pentosides (Vukics and Guttman 2010).

The MS/MS spectra of the flavonoid O,C-glycosides iso-

scoparin 200-O-(6000-(E)-feruloyl)-glucopyranoside (25), iso-

scoparin 200-O-(6000-(E)-p-coumaroyl)-glucopyranoside (26),

isovitexin 200-O-(6000-(E)-feruloyl)-glucopyranoside (27), and

isovitexin 200-O-(6000-(E)-p-coumaroyl)-glucopyranoside (28)

in the positive ionization mode showed fragment ions of the

C-glycoside at m/z 463 and 433, which were formed by the

neutral loss of glucose and acyl substituents (feruloyl or

coumaroyl moiety). Fragment ions of the feruloyl moiety at

m/z 177 and coumaroyl moiety at m/z 147 were also observed

(Fig. 4 and Supplementary Figure S6). Compounds 25 and 26

showed fragment ions at m/z 445, 427, and 409, which were

formed by the loss of water molecules from C-glycoside

fragment ions at m/z 463. Compounds 25 and 26 also gave

fragment ions at m/z 397 (2.3X?-2H2O), 367 (0.4X?-2H2O),

and 343 (0.2X?), which were formed by the cross-ring

cleavage of the sugar residue of the C-glycoside fragment at

m/z 463 (Vukics and Guttman 2010). Compounds 27 and 28

showed similar fragment patterns due to the loss of water

molecules and cross-ring cleavages of sugar residues from

C-glycoside fragments at m/z 433 (Supplementary Figure S6).

However, the MS/MS spectra of compounds 25–28 in the

negative ionization mode showed different fragment patterns

compared with those for the positive ionization mode (Sup-

plementary Figure S7). Product ions at m/z 623 and 593 were

formed by the loss of feruloyl or coumaroyl moieties.

C-glycoside fragment ions at m/z 443 and 413 were formed by

the neutral loss of glucose and a water molecule from ions at

m/z 623 and 593, respectively. The MS/MS spectra also

showed ferulic acid and coumaric acid ions at m/z 193 and

163, respectively. The major fragment ions at m/z 323 and 293

(0.2X-) were formed by cross-ring cleavages of sugar residues

of C-glycoside fragments at m/z 443 and 413, respectively,

which are similar to those observed in the positive ion mode.

These results suggested that the loss of m/z 120 (0.2X) is

characteristic of flavonoid C-hexosides (Waridel et al. 2001;

Vukics and Guttman 2010).

4 Concluding remarks

Metabolomics aims to identify and quantify all the metabo-

lites in biological samples. The LC–MS/MS approach can

generate structural information from precursor and product

ions, which can be combined with NMR for unambiguous

identification of (un)known phytochemicals. Using this

strategy, 36 compounds, including five new flavonoids and

eight rare flavonolignan isomers, were isolated and identified

from rice. The unique MS/MS fragment patterns of flavonoid

O-glycosides, C-glycosides, and O,C-glycosides will facili-

tate annotation of these plant-specialized metabolites in future

studies. Moreover, isolation and structure elucidation of

metabolites can enhance the understanding of gene-to-

metabolite correlations in phytochemical genomics studies

(Nakabayashi et al. 2009; Saito 2013) by integrating meta-

bolomics information with the genomic information.

Unequivocal structures of metabolites are also useful for

metabolome quantitative trait loci (mQTL) analysis (Matsuda

et al. 2012) and genome-wide association studies (GWAS)

(Yonemaru et al. 2012). The genomic region and genes

potentially responsible for the biosynthesis of specialized

metabolites can be presented by mQTL analysis (Matsuda

et al. 2012). The obtained compounds and their MS/MS

spectra can be used not only for metabolite annotation but also

to investigate the relationships between gene expression and

metabolite accumulation in rice and other plant metabolic

systems.
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