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Abstract Mass peak alignment (ion-wise alignment) has

recently become a popular method for unsupervised data

analysis in untargeted metabolic profiling. Here we present

MSClust—a software tool for analysis GC–MS and

LC–MS datasets derived from untargeted profiling. MSC-

lust performs data reduction using unsupervised clustering

and extraction of putative metabolite mass spectra from

ion-wise chromatographic alignment data. The algorithm is

based on the subtractive fuzzy clustering method that

allows unsupervised determination of a number of metab-

olites in a data set and can deal with uncertain member-

ships of mass peaks in overlapping mass spectra. This

approach is based purely on the actual information present

in the data and does not require any prior metabolite

knowledge. MSClust can be applied for both GC–MS and

LC–MS alignment data sets.
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1 Introduction

In both GC–MS and LC–MS-based metabolomics plat-

forms, untargeted data analysis using unbiased mass peak

acquisition followed by their chromatographic alignment,

i.e. ion-wise alignment, has become a popular approach for

comparative metabolomics. Software tools that can

implement this approach, such as MetAlign (Bamba and

Fukusaki 2006; Boccard et al. 2010; De Vos et al. 2007;

Ducruix et al. 2008; Keurentjes et al. 2006; Lommen 2009;

Lommen et al. 2007; Mal et al. 2009; Peters et al. 2009;

Rijk et al. 2009; Tikunov et al. 2005; Tikunov et al. 2010;

Vorst et al. 2005), MZMine (Katajamaa et al. 2006), or

XCMS (Kind et al. 2007; Nordström et al. 2006; Smith

et al. 2006; Wikoff et al. 2007), are nowadays widely used

in metabolomics studies. They are used for primary pro-

cessing of raw GC–MS or LC–MS chromatograms (Fig. 1)

and they enable a comprehensive comparative analysis

of complex metabolic mixtures by aligning quantitative

values of individual mass peaks across samples analyzed.

Resulting data matrices can be directly subjected to com-

parative analysis using various statistical tools. However,

this approach has a few drawbacks. Firstly, the resulting

mass peak alignment matrices are often extremely large

with a disproportionate variable-to-sample ratio, as the

amount of variables (i.e. detected mass peaks) may reach

Availability and implementation MSClust is freely available for
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tens of thousands. Up to 90% of the variables may be

redundant, since each metabolite will be represented by a

number of different mass peaks, including molecular

fragments, adducts, molecular fragments and isotopes

thereof. Moreover, this redundancy may vary between

profiling platforms and metabolites, depending upon their

concentration, ionization efficiency and specific chemical

nature. This leads to an unequal representation of metab-

olites in the dataset and complicates subsequent multivar-

iate or statistical analyses. Secondly, a direct interpretation

of the experimental results is hardly possible, because both

the structural information of a metabolite, such as a mass

spectrum in case of GC–MS and in-source fragments in

case of LC–MS, is not provided directly as a result of the

alignment.

Previously, we have reported a mass signal correlation

analysis approach that can reduce the metabolite signal

redundancy in untargeted ion-wise aligned GC–MS data-

sets and to extract mass spectra of individual metabolites

without using mass spectral libraries or other structural

sources (Tikunov et al. 2005). Here we present a compu-

tational implementation of this approach—MSClust. In an

untargeted metabolomics data analysis workflow it can be

placed between the mass peak alignment step and metab-

olite identification followed by data interpretation.

MSClust clusters the aligned mass peaks into reconstructed

metabolites, thereby (i) reducing the signal redundancy per

metabolite into single representative variables, and (ii)

reconstructing original mass spectra, thus providing struc-

tural information of the metabolites. This MSClust soft-

ware tool can be applied to both GC–MS and LC–MS-

derived datasets, and for both nominal mass and accurate

mass data. The MSClust tool aligns with the Metabolomics

Standards Initiative for data processing.

2 Method and implementation

The MSClust algorithm aims to remove metabolite signal

redundancy in aligned mass peaks tables and to retrieve mass

spectral information of metabolites using mass peak clus-

tering. Many clustering methods, e.g. k-means or c-means

clustering, self-organizing maps etc., require prior knowledge

about a number of clusters in the data. Therefore, these

methods cannot be used for chromatography-mass spec-

trometry data clustering as a number of metabolites is

unknown and may vary from tens to hundreds from experi-

ment to experiment. The subtractive fuzzy clustering (Chiu

1994) implemented in the MSClust algorithm allows unsu-

pervised determination of a number of clusters and simulta-

neous clustering of mass peaks in the mass peak alignment

data. The algorithm of MSClust performs clustering of

ion-fragments in the dataset that originate from a single

metabolite, based on two properties: (i) similarity of

chromatography, i.e. retention time span covered by a chro-

matographic peak of a metabolite, and (ii) quantitative sim-

ilarity of ion-fragment patterns across a number of samples

analyzed. The algorithm performs the following tasks:

(1) A number of mass peak clusters (putative metabo-

lites) present in an ion-wise alignment data matrix

and cluster centers (centrotype mass peaks) are

determined in an unsupervised manner using the

potential density (PD) method (Chiu 1994) (Fig. 2A,

B) (for detailed explanation of the algorithm see User

Manual, Supplemental Data).

(2) All mass peaks are clustered around the centers of

their cluster (centrotypes) using a subtractive fuzzy

clustering method (Chiu 1994). This clustering

approach allows each mass signal to have multiple

cluster memberships, which resembles situations

where two or more co-eluting compounds produce

similar masses, so that the quantitative information of

these common masses can be mixed and membership

in the overlapping compound mass spectra is uncer-

tain (fuzzy) (Fig. 2C). A conventional binary (‘cer-

tain’) clustering would assign an ion-fragment

common to all overlapping compounds only to the

Fig. 1 A general workflow of a comparative metabolomics data

analysis which is based on mass peak alignment approach. MSClust

receives a mass peak alignment data matrix of size M 9 S, where M is

a number of mass peaks (often tens thousands) aligned across a number

of samples profiled S. As the result it produces a reduced data matrix of

size C 9 S, where C a number of putative compounds each represented

by a single mass peak (normally a few hundred) aligned across the

same number of samples S. Besides, it extracts a mass spectra for each

of the compounds C, that in case of GC–MS data is compatible with the

NIST MSSearch compound identification software
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single mass spectrum to which it correlates the most,

resulting in incomplete mass spectra of the other

overlapping compounds. The fuzzy clustering method

enables sharing of common ion-fragments between

overlapping mass spectra by allowing multiple cluster

memberships.

(3) Mass peak clusters are converted into a putative

compound mass spectra list that in case of GC–MS is

directly compatible with the NIST mass spectra

library search tool (Fig. 2D).

(4) A single representative mass peak is selected from

each putative mass spectrum based on its abundance

and cluster membership, so that each putative com-

pound extracted from the biological sample can be

represented by one representative variable in further

multivariate statistical analysis (Fig. 2D).

The algorithm was implemented in C?? as a Microsoft

Windows application and the graphical user interface was

created using Borland C?? Builder, version 6.

3 Results

The performance of MSClust was evaluated using two dif-

ferent types of chromatography-mass spectrometry datasets,

originating from untargeted metabolic profiling of ripe fruits

of 94 different tomato cultivars: (i) nominal mass GC–MS

data of volatile compounds originating from GC separation

coupled to quadrupole-MS with 70 eV electron impact

ionization (Tikunov et al. 2005; 2010); (ii) accurate mass

LC–MS data of semi-polar non-volatile compounds origi-

nating from C18-reversed phase HPLC separation coupled to

high resolution QTOF-MS operating in negative mode with

10 eV electrospray ionization (De Vos et al. 2007; Tikunov

et al. 2010). Both the GC–MS and LC–MS mass peaks were

extracted from the chromatograms and aligned using Met-

Align software. Resulting outputs of other alignment pro-

grams were not tested, but we anticipate that their outputs

can be readily processed by MSClust after convertion to the

text format used by MSClust (see User Manual).

Fig. 2 The schema illustrates

basic steps of the MSClust

algorithm. A—computing PD of

each ion fragment based on two

distances: the retention time

distance between mass peak

peak apices (determined by an

alignment software) (X-axis of

A, B and C) and an intensity

pattern similarity distance

(Y-axis of A, B and C). The

more close neighbours an mass

peak has in the two-dimensional

feature space, the higher its PD

is (the darker its dot in plot A).

B—selection of ‘centrotype’ ion

fragments as centres of clusters

(cA and cB). C—classification:

computing memberships of each

ion fragment in the cluster

centers. The dots depicted in

brown have uncertain

(intermediate) membership and

can represent mass peaks

common for cA and cB.

D—conversion of clustering

results into reconstructed mass

spectra (‘ms A’ and ‘ms B’) and

selection of most representative

mass peaks (‘qA’ and ‘qB’). The

red-green color scale below

reflects the membership of mass

peaks in cluster A (green) and

B (red)
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3.1 GC–MS dataset

The MetAlign-assisted alignment of the 94 GC–MS chro-

matograms obtained by headspace analysis of tomato fruits

and subsequent data filtering (see Supplemental User

Manual) resulted in a data matrix with the relative abun-

dances of 6,618 mass signals aligned across all samples.

Using MSClust, 237 mass signal clusters, representing 237

reconstructed compounds and their mass spectra, in this

experiment with a threshold of at least five ion-fragments

per spectrum, were extracted from the complete data

matrix within 10 s. The mass spectra retrieved were then

subjected to putative identification by matching to the

NIST07 mass spectral library using the NIST MSSearch

software. Of the 45 volatile compounds previously identi-

fied using authentic standards (Tikunov et al. 2005), 42

compounds (i.e. 93%) were found back by matching their

reconstructed MSClust mass spectra to the NIST07 mass

spectral library. Using a reference series of alkanes, the

experimental retention indices (RI) were determined for all

237 putative compounds and for 114 compounds their RIs

were also provided by the NIST library. For 87% of these

114 compounds the deviation of the experimentally

observed RI from the published NIST library RI was less

than 3.3%, which was about the largest RI deviation we

measured within the series of 45 unambiguously identified

compounds (Supplemental Table I).

3.2 LC–MS dataset

Despite using a lower ionization energy, there is unavoidably

some mass redundancy in LC–MS data sets due to the

presence of natural isotopes as well as to unintended but

inevitably occurring metabolite fragmentation and/or adduct

formation. This redundancy is a key, however, to the use of

MSClust in LC–MS datasets. The alignment of the 94 high

mass resolution LC-QTOF-MS chromatograms tested resul-

ted in a data matrix of 1,092 mass signals aligned across all

samples. MSClust extracted 179 clusters with at least two

ions per metabolite. Comparison of the mass signals in some

clusters corresponding to known tomato metabolites with

LC–MS mass spectral databases and other experimental

tomato fruit data (Iijima et al. 2008; Moco et al. 2006;

Tikunov et al. 2010) indicated that the mass peaks known to

originate from the same metabolite, including the molecular

ion, fragments, adducts and their natural isotopes, were

successfully grouped together into the same reconstructed

metabolite (see Supplemental Table II). The exact mass

difference between mass signals enables the annotation of

each ion detected, thereby facilitating the identification of the

molecular ion to be searched for in in-house mass-retention

time databases or publicly available mass databases, for

instance MotoDB (http://appliedbioinformatics.wur.nl/moto/)

and the Komics DB (http://webs2.kazusa.or.jp/komics) in

the case of tomato fruit, or in the Human Metabolite DB

(www.hmdb.ca), MassBank (www.massbank.jp) and the

Dictionary of Natural Products (http://dnp.chemnetbase.

com). The unintended ion source or collision cell-induced

fragmentation, if present, can provide additional informa-

tion about the structure of the metabolite underlying the

cluster of mass peaks.
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