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Abstract Metabolomics data obtained from (human)

nutritional intervention studies can have a rather complex

structure that depends on the underlying experimental

design. In this paper we discuss the complex structure in

data caused by a cross-over designed experiment. In such a

design, each subject in the study population acts as his or

her own control and makes the data paired. For a single

univariate response a paired t-test or repeated measures

ANOVA can be used to test the differences between the

paired observations. The same principle holds for multi-

variate data. In the current paper we compare a method that

exploits the paired data structure in cross-over multivariate

data (multilevel PLSDA) with a method that is often used

by default but that ignores the paired structure (OPLSDA).

The results from both methods have been evaluated in a

small simulated example as well as in a genuine data set

from a cross-over designed nutritional metabolomics study.

It is shown that exploiting the paired data structure

underlying the cross-over design considerably improves the

power and the interpretability of the multivariate solution.

Furthermore, the multilevel approach provides comple-

mentary information about (I) the diversity and abundance

of the treatment effects within the different (subsets of)

subjects across the study population, and (II) the intrinsic

differences between these study subjects.

Keywords Paired data � Multilevel analysis � PLSDA �
OPLSDA � Metabolomics

1 Introduction

Metabolomics data from human studies are often charac-

terised by large variations between the subjects. This is

different from most animal studies where metabolic vari-

ation between the test animals is usually less abundant. A

global overview with respect to nutritional metabolomics is

provided by Rezzi et al. (2007).

The large variation between human subjects can give

rise to two problems in the analysis. The first is that small

and subtle treatment effects (e.g. dietary responses) can

easily be overlooked, especially when the effect is smaller

than the intrinsic variation between the subjects. The sec-

ond problem is that the response and the impact of the

treatment effect may differ between the subjects. This

implies that an average treatment effect may not be the

most relevant in studies where subsets of subjects respond

differently upon a dietary intervention. An often used

solution in clinical or nutritional studies is the use of a

cross-over design. In a cross-over study all subjects acts as

their own control. As a result, multivariate data obtained

from a cross-over designed experiment has a paired data

structure.

When a cross-over design is used in the study, the

treatment effect for each subject can be separated from the
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between subject variation. After separating these con-

founded sources of variation, both can be analyzed sepa-

rately. The analysis of paired data is usually performed

with a paired t-test and repeated measures ANOVA in case

of univariate responses. Depending on the ratio between

the effect size and the variation between the subjects, a

paired t-test is advantageous over a normal t-test due to its

increased statistical power. Figure 1 illustrates the princi-

ple of both t-tests by means of 5 subjects that have been

measured in the control period (A) and in the treatment

period (B). From these subjects a univariate response was

acquired. The columns A and B in Table 1 show the

measurement responses collected in the control period and

the treatment period respectively. The values in column D

represent the differences between A and B, whereas M

represents the mean of A and B.

In Fig. 1 the difference between the unpaired analysis

and the paired analysis is demonstrated. In Fig. 1b, the

paired data structure is accentuated by the connection lines

between the two measurements. Without considering the

paired structure, a normal unpaired t-test does not show a

statistically significant difference between A and B. The

average of B minus the average of A equals 3 ± 4.61

(P = 0.172).

When the paired data structure is used in a paired t-test,

then the difference D between control group A and treat-

ment group B becomes statistically significant. In that case

the difference is 3 ± 1.57 (P = 0.009).

A

B

control

control meannet effect

δ

δ

0
δ

0 1 Y

0 1 Y

U
N

P
A

IR
E

D
 A

N
A

LY
S

IS
P

A
IR

E
D

 A
N

A
LY

S
IS

treatment

treatment

Fig. 1 Basic principles of a unpaired and b paired data analysis of

measurement responses from 5 subjects in the control period (class 0)

and in the treatment period (class 1) respectively. In (a) no

consideration is given to the paired data structure. The effect of the

treatment is represented by the dotted line. As shown by the

projections of the observations on the dotted line, the discriminant

model is not able to separate the intervention classes well. On the

Y-axis the overlapping distributions of the two intervention classes

are projected. If (b) a paired analysis is used instead (illustrated by the

lines connecting the 5 data pairs), the data is separated into a mean

(black circles) and a difference (d) per subject. The differences (net

treatment effect) are projected on the Y-axis per subject, and are all

different from 0. The dotted circle represents two similar mean

values. (Color figure online)

Table 1 Univariate example with paired data

Subject A B D M

1 2 5 3 3.5

2 4 9 5 6.5

3 6 7 1 6.5

4 8 11 3 9.5

5 10 13 3 11.5

The measurement responses of 5 subjects are shown that were col-

lected in the control period (A) and treatment period (B). Columns D

and M represent the difference and the mean of A and B for each

subject
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By using the paired structure of the data from cross-over

studies, statistically significance can be obtained for much

smaller treatment effects. However, besides the advantage

in power, it is also possible to examine the difference in

treatment effect within the subjects in a much easier way

than without the separation of the different sources of

variation. At the same time the differences between the

subjects can be studied without being confounded with the

treatment effect. In the univariate example the treatment

effect is not similar for all subjects. This variation simu-

lates the intrinsic differences between subjects.

Nowadays, cross-over designs are also used in combi-

nation with ‘omics’ techniques, resulting in paired multi-

variate data sets (Bertram et al. 2006; Pohjanen et al. 2007;

van Velzen et al. 2008). Time series experiments with

different subjects have the same paired data structure

(Jansen et al. 2005; Rantalainen et al. 2008), and the

analysis of such data sets can also be improved when

exploiting the design underlying the study. However, in the

analysis of these multivariate paired data, the study design

is not always considered. Instead of using a multivariate

extension of the paired t-test, in general other methods are

being applied that particularly focus upon the mean effects

over all subjects.

In this paper we will discuss the multivariate extension of

the paired t-test, which is recently introduced as multilevel

data analysis (van Velzen et al. 2008). We will demonstrate

the additional benefit of multilevel data analysis in the

analysis of multivariate paired (cross-over) data in com-

parison with a method that does not explicitly consider the

cross-over design (OPLSDA). We will examine the differ-

ences in a tutorial style by using a small simulation study as

well as a genuine cross-over designed (nutritional) study.

Both these studies are analysed with OPLSDA and multi-

level PLSDA. The results obtained from both analyses are

evaluated, compared and discussed. To introduce this

methodological evaluation, we will first provide a brief

description of OPLSDA and multilevel PLSDA, and in

which way these methods deal with paired data.

2 Theory

2.1 OPLSDA

OPLSDA was introduced as an improvement of the PLSDA

method to discriminate two or more groups (classes) using

multivariate data (Bylesjo et al. 2006; Trygg and Wold

2002). In OPLSDA a regression model is calculated

between the multivariate data and a response variable that

only contains class information. The advantage of OPLSDA

compared to PLSDA is that a single component is used as a

predictor for the class, while the other components describe

the variation orthogonal to the first predictive component.

Wiklund et al. (2008) used the terms between treatment

variation to describe the average effect of treatment and

within treatment variation to describe the systematic

remainder variation which is not related to the treatment.

The treatment effect is considered equal for all subjects

although the magnitude is allowed to be different for each

subject. Treatment effects that differ from the average

treatment effect are referred to as within treatment variation.

The predictive OPLSDA component actually describes

the direction of the difference (the treatment effect)

between the average of class A and the average of class B

according the representation given in Fig. 1a (dotted line).

Then all samples are projected on this component to esti-

mate the predictive scores. Although a group-average

effect is observed in this example, the projections on the

line clearly shows that the classes are not well separated.

Furthermore, in OPLSDA only a single predictive com-

ponent is calculated (in case of a two-class problem). When

the treatment effect manifest differently among the subjects

in the test population, this will not be observed by the

OPLSDA method.

2.2 Multilevel PLSDA

Multilevel PLSDA is another discrimination method that

was recently introduced to develop classifications models

of multivariate data from cross-over designed studies, i.e.

an experimental setup in which each subject underwent a

control measurement and a treatment (in a random order)

(van Velzen et al. 2008). Multilevel PLSDA can be con-

sidered as a multivariate extension of a paired t-test.

Multilevel data analysis can only be used when the data has

a multilevel structure, whereas OPLSDA can be used for

any discrimination problem.

In a multilevel PLSDA model, the variation between

subjects (within treatment variation in OPLSDA) and the

variation within subjects (total variation due to the treat-

ment) are separated. The within subject variation in mul-

tilevel PLSDA is not considered the same for each subject

as compared to the between treatment variation in

OPLSDA. The between subject variation in multilevel data

analysis is performed on the average of the two observa-

tions (balck circles in Fig. 1b), whereas the within subject

variation is performed on the net differences between the

paired observations (d in Fig. 1b).

The initial step in multilevel PLSDA is to separate the

between subject variation from the within subject variation.

First, the observations in the control (A) and the treatment

(B) periods are concatenated:
A

B

� �
: The between subject

variation has structure
M

M

� �
; where M ¼ 1

2
Aþ B½ �: The
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within subject variation is calculated according:

2
A

B

� �
� M

M

� �� �
: Its structure is

�D

D

� �
; where D ¼

B� A½ �: In this two-class problem this just comes down to

an analysis on the differences between the data obtained in

the two classes. The rank of the within subject variation

matrix is usually larger than one, because the effect of the

treatment is generally different between the subjects. In

that case, more than a single component is needed to

provide a good description of the within subject variation

in the study population.

Because of its structure, analysis of the within subject

variation can be done with several multivariate methods

e.g. PCA, PLSDA or even OPLSDA. The within subject

variation contains both variation that is equal for all sub-

jects as well as variation that is different between subjects.

When MLPLSDA is used to describe the within subject

variation, the focus is on the similarity in the treatment

effect between the subjects. Therefore the first MLPLSDA

component primarily describes the main, corresponding

effect, whereas the latter components particularly reflect

the differences in treatment effect among the subjects.

When MLPCA is used, the focus is simply on the major

variation in the within treatment variation.

2.2.1 Why does this work

Consider the data measured in a study where I (i = 1…I)

individuals are measured at D (d = 1…D) occasions. Then

each measurement xdi can be explained partly by a grand

mean l, the group effect ad, while the remainder is an

unexplained residual.

xdi ¼ lþ ad þ edi ð1Þ

Here the group effect estimate ad equals the mean of all xdi

averaged over all I individuals. In a one-way ANOVA

approach the Mean Square of xdi would be related to the

Mean Square of edi leading to an F-value with D - 1 and

D(I - 1) degrees of freedom. However in this approach we

ignore that besides the fixed effect due to the classes there

is also a random effect due to the individual. For a new

individual we cannot predict the effect in advance, but we

can model it when the data for the new individual is

obtained (Sokal and Rohlf 1998). Thus in the case of a

cross-over design where the same individuals are measured

at D occasions Eq. 1 can be extended with the random

individual effect

xdi ¼ lþ ad þ bi þ fdi ð2Þ

bi is estimated as the mean of all D values for individual i.

Note that ad does not change when the individual effect is

included in the model since edi ¼ bi þ fdi; thus the random

effect is a part of the variation that was first collected in the

residual edi. This means that the new residual fdi is smaller,

and thus the estimated effect of MS ad over MS fdi will be

larger than the previous ANOVA estimate. Thus the paired

data analysis will have a higher power.

Note that xdi � bi ¼ lþ ad þ fdi; i.e. the original data

minus the mean over all treatments equals exactly

A

B

� �
� M

M

� �� �
for the case when D = 2, where M con-

tains the means bi for all individuals. For a three class

problem this would lead to

A

B

C

2
4
3
5�

M

M

M

2
4

3
5

0
@

1
A.

In the multilevel PLSDA context

A

B

C

2
4
3
5�

M

M

M

2
4

3
5

0
@

1
A as

X data is then related to a dummy Y-matrix

1 0 0

0 1 0

0 0 1

2
4

3
5

0
@

1
A; where 1 and 0 represent vectors of I ones

and zeros respectively. Note however that a PLSDA model

with more than 2 classes is not straightforward (Indahl

et al. 2007; Barker and Rayens 2003; Nocairi et al. 2005).

The ANOVA model described here suits the study

design described in the simulation study as well as in the

real data example. For different type of studies other

ANOVA models apply, but the extension to multivariate

multilevel classification models is similar to the situation

discussed above.

2.3 Data pretreatment

In multilevel analysis all sources of variation (in this case

the between individual variation as well as the between

individual variation) are of interest. However, the infor-

mation that can be obtained from these data may be dif-

ferent. Therefore the type of scaling used can be adjusted

for each subset of variation. This approach of scaling after

variation splitting is considered as an important benefit of

the multilevel approach, as the preferred scaling technique

can explicitly be adapted to the part of the data that is

examined and the data analysis technique used.

2.4 Score plots

In our previous work on the assessment of PLSDA vali-

dation (Westerhuis et al. 2008a) we concluded that score

plots should not be used for assessing and interpreting the

class separation since the PLSDA model may highly overfit

the data. This problem is especially related to multivariate

or high dimensional data where the number of variables is

much higher than the number of samples. A possible

solution to this problem is the use of cross-validated scores

in a score plot (Wiklund et al. 2008). However, a problem
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with this approach is that the cross-validated scores are all

based on different loadings. For that reason the scores

cannot be drawn in a similar figure. Only if the differences

between the various loadings obtained from the different

models in the cross-validation are small, then a composite

figure with cross-validated scores may be useful. In the

current work we will use double cross-validated scores

(Smit et al. 2007; Westerhuis et al. 2008a) to evaluate the

difference between the OPLSDA model and the multilevel

PLSDA model. We will address the aspects of class sep-

aration and the score distribution in relation to the different

sources of variation.

3 Analysis of simulated data

3.1 A small simulated example

The properties of paired data and the consecutive data

analysis will be explained in a brief example using a small,

simulated data. Let’s consider the measurement responses

of three variables A, B and C (e.g. metabolite concentra-

tions) in 10 subjects, which were collected in the control

period as well as in the treatment period (Table 2).

In this example variable B increases ?2 for all subjects

after the treatment. Variable A increased ?1 for the odd

subjects (males) and ?3 for the even subjects (females).

Variable C did not change. The effect of the treatment is

clearly visible for variables A and B (see columns DA and

DB) and not for C (see column DC). A small fraction of

random normally distributed noise was added to the data

before analysis.

3.2 OPLSDA analysis of simulated example

To perform OPLSDA analysis a y vector was constituted

which include the class information for each subject. This

column vector contains the class label value -1 for the

control group, and the class label value ?1 for the treat-

ment group. An OPLSDA model (with 3 components)

between the original data ABC½ � and the y vector was

calculated. It should be noted that the estimated scores

changed upon the number of OPLSDA components cal-

culated. These changes, however, were small and did not

influence the conclusions derived from this simulated

experiment.

In Fig. 2 the predictive scores tP versus the orthogonal

scores tO are illustrated. The score plot shows that the

control group (red squares) is not well separated from the

treatment group (blue circles). Although a clear and sys-

tematic difference was simulated across the intervention

periods, the OPLSDA model was not able to detect this

treatment effect. The problem is that methods that do not

Table 2 Simulated measurement responses of three variables A, B

and C in 10 subjects collected in the control period and the treatment

period

Occasion Subject A B C DA DB DC MA MB MC

Control period 1 20 10 20 -1 -2 0 20.5 11 20

2 18 12 17 -3 -2 0 19.5 13 17

3 16 15 14 -1 -2 0 16.5 16 14

4 14 16 11 -3 -2 0 15.5 17 11

5 10 2 8 -1 -2 0 10.5 3 8

6 9 3 5 -3 -2 0 10.5 4 5

7 7 7 2 -1 -2 0 7.5 8 2

8 7 7 8 -3 -2 0 8.5 8 8

9 3 9 14 -1 -2 0 3.5 10 14

10 2 9 17 -3 -2 0 3.5 10 17

Treatment period 1 21 12 20 ?1 ?2 0 20.5 11 20

2 21 14 17 ?3 ?2 0 19.5 13 17

3 17 17 14 ?1 ?2 0 16.5 16 14

4 17 18 11 ?3 ?2 0 15.5 17 11

5 11 4 8 ?1 ?2 0 10.5 3 8

6 12 5 5 ?3 ?2 0 10.5 4 5

7 8 9 2 ?1 ?2 0 7.5 8 2

8 10 9 8 ?3 ?2 0 8.5 8 8

9 4 11 14 ?1 ?2 0 3.5 10 14

10 5 11 17 ?3 ?2 0 3.5 10 17

The difference (D) and mean (M) for each subject and for each

variable are given
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Fig. 2 Double cross validated OPLSDA score plot of simulated data.

The predicted scores tP versus the orthogonal scores tO1 of the control

group (red squares) and the treatment group (blue circles) are shown.

The black dots highlights the male subjects in the study population.

No class separation between the control and treatment groups as well

as between the males and the females could be observed. (Color figure

online)
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use the paired data structure, only focus on the difference

between the class means and the ranges of the classes.

When the between class difference is small compared to

the range of the observed responses, this difference drowns

in the total variation and will not be detected. The loadings

of the OPLSDA model 0:73 0:72 0:01½ � indicate that par-

ticularly the first two variables are important for the pre-

dictive component. Nevertheless, the obtained model does

not allow a good discrimination between the two classes.

Another limitation that appears when ignoring the paired

data structure is that no emphasis can be given to the var-

iation in effect between the subjects. This is illustrated in

the simulated example (Table 2) where the male subjects

(odd sample numbers) have a relative small increase in

variable A as compared to the females (even sample num-

bers). Methods that do not use the paired data structure only

focuses on the difference between the average value of the

controls and the treated samples and do not consider a

variation in the treatment effect. The score distribution of

the males and the females in Fig. 2 clearly demonstrates

that the OPLSDA model is not able to discriminate between

these systematic, gender-related, response differences.

Note that in Fig. 2, the effect of the treatment is clearly

visible on the predictive score (tP) however it drowns in the

large variation caused by the different individuals. Thus

OPLSDA estimates the loadings well, but the effect is not

statistically significant

3.3 Multilevel PLSDA analysis of the within subject

variation of the simulated data

The multilevel approach takes the paired data structure into

account. The total variation in the data is divided into

between subject variation and within subject variation. The

within subject variation exclusively describes the net dif-

ferences in each of the measured variables for each subject,

i.e. �1;�3;�1;�3; . . .½ � for variable A, �2;�2;�2;½ �2; . . .�
for variable B and 0; 0; 0; 0; . . .½ � for variable C. The large

variation between the subjects is completely ignored when

the within subject variation is analyzed. Furthermore, the

gender-related difference in effect that manifest in variable

A remain clearly present in the within variation.

In the estimation of the between subject variation, the

mean observations are used, i.e. 20:5; 19:5; 16:5; 15:5; . . .½ � for

variable A, 11; 13; 16; 17; . . .½ � for variable B and

20; 17; 14; 11; . . .½ � for variable C. After variation splitting,

this source of variation can be analyzed without being

confounded with the treatment-related variation.

In Fig. 3 the multilevel PLSDA scores tW1 and tW2 of

the within subject variation are shown. A clear separation

is observed between the control group and the treatment

group. Since multilevel PLSDA particularly focuses on the

within subject variation that is similar among the subjects,

the first component mainly describes the difference

between the classes. The second component on the other

hand describes the within subject variation that is different

between the subjects. We therefore observe a notable

separation between the males and females in the test

population.

3.4 Multilevel PCA analysis of the between subject

variation of the simulated data

Besides the within subject variation, also the between

subject variation was examined. Note that the between

subject data only consists of 10 subjects, and that variation

due to the treatment has been removed. To investigate the

main variation between the subjects, a multilevel PCA

analysis was performed. Figure 4 shows the score plot of

the between subject variation for the first two principal

components. Three groups of subjects appear, i.e., (I)

subjects 1–4, (II) subjects 5–8 and (III) subjects 9 and 10.

These groups are primarily associated with the absolute

abundances of the variables.

4 Analysis of experimental data

4.1 Study design

The intervention study has a double-blind, placebo-con-

trolled cross-over design with a single, oral intervention of

black tea solids. The black tea solids contained 800 mg

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.5

-0.4

-0.3
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0.1

0.2

0.3

0.4

0.5

tW1

t W
2

MLPLSDA within subject

Control

Treatment

Males

Fig. 3 The multilevel PLSDA scores (tW1, tW2) of the within subject

variation in simulated data on the first two components. The red

squares represents the subjects in the control group. The blue circles

represents the same subjects after the treatment. The males (black
dots) experienced a smaller increase in variable A relative to the

females. (Color figure online)
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polyphenols based on gallic acid equivalents and were

administered as non-transparent capsules. In total, 20 male

subjects participated in the study (18–40 years of age and

Body Mass Index between 19 and 29 kg/m2). Urine sam-

ples were collected (and weighted) from all subjects over a

time span of 48 h after the intervention.

4.2 Sample pre-preparation

To investigate the main effects in the data, pooled 48 h

urines were prepared. This was done by adding aliquots of

the urines together in exactly the same mass-ratio as the

collected fractions. Then, to 450 ll of each pooled urine

sample 200 ll phosphate buffer solution (0.6 M Na2HPO4/

NaH2PO4, pH 6.5) and 50 ll deuterium oxide (D2O) was

added. The phosphate buffer solution contained

0.05 mg ml-1 3-(trimethylsilyl)propionic acid-d4 sodium

salt (TSP) as an internal standard. After homogenization

and centrifugation 650 ll of the clear supernatant was

transferred into a 5-mm NMR tube.

4.3 Data acquisition and data pre-processing

600 MHz 1H NMR spectra were acquired at 300 K on a

Bruker Avance 600 MHz NMR spectrometer. The data

were collected into 64 K points (128 scans) using a spectral

width of 9000 Hz, an acquisition time of 3 s and a relax-

ation delay of 3 s (with suppression of the water signal).

The Fourier transformed NMR spectra were manually

phase- and baseline corrected, calibrated and normalized

against the methyl resonance of TSP at d 0.0 ppm. Finally,

the intensities of the NMR signals were expressed in molar

equivalents by multiplying the TSP normalized spectra

with the total volumes of the 48 h urines. The resulting

NMR spectra were then subdivided in discrete regions

(‘buckets’) of equal width (d 0.00225 ppm). As bucketing

could not completely compensate for line broadening

effects and positional shifts (due to differences in pH, ion

strength, etc.), also Correlation Optimized Warping (COW)

(Skov and Bro 2008; Wu et al. 2006) was applied on the

bucketed data. A detailed description of the study and the

analytical procedure was recently reported by the authors

(van Velzen et al. 2009).

4.4 Data analysis

Based on our previous findings with the same dataset, we

only consider the aromatic region of the NMR spectrum

(d 6–9 ppm) in the data analysis. Calculations involving

data pre-treatment (bucketing, normalization, volume cor-

rection), multilevel PLSDA, OPLSDA, double cross vali-

dation (2CV), permutation testing, and Discriminant Q2

(DQ2) (Westerhuis et al. 2008b) estimations were per-

formed using Matlab (version 2009a, The MathWorks,

USA) with in-house written Matlab routines. These rou-

tines (together with a tutorial) are available at http://www.

bdagroup.nl/.
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Fig. 4 Score plot of multilevel PCA model representing the between

subject variation on the first two principal components. Three main

clusters could be identified. The separation of the score clusters is

related to the absolute abundances of the variables
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Fig. 5 Double cross-validated OPLSDA scores representing the

autoscaled urinary NMR spectra of 20 male subjects. The observa-

tions obtained in the control period (red squares) and the treatment

period (blue circles) have the tendency to form two separate classes.

Note that there is only one predictive score and one orthogonal score.

The predictive score indicates the separation between the two

intervention groups. Different from Wiklund et al. (2008) the cross

validated scores give different values for tP as well as for tO1

compared to the non-crossvalidated scores. (Color figure online)
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4.5 OPLSDA analysis of the experimental data

Before analysis, autoscaling of the data was used to

improve the weight of the smaller intensities. The (double)

cross-validated scores in Fig. 5 show that the OPLSDA

model was able to provide a reasonable class estimation of

the autoscaled data. The DQ2 of the classification model

was 0.25 (based on the average result of 20 2CV runs),

which was higher than all 2500 DQ2 values obtained from

models from permuted data (Lindgren et al. 1996; West-

erhuis et al. 2008a). Even though the distribution of cross-

validated scores of the subjects in the control group is

different from the treatment group, still we can observe a

large dispersion across the intervention groups in the

direction of predictive score component (tP).

4.6 Multilevel analysis of the experimental data

In the first step of the multilevel analysis the variation is

separated into the between individuals contribution and the

within individuals contribution (the treatment effect). The

latter is autoscaled before analysis give extra weight to the

smaller intensities. The between individual variation is not

scaled because we were interested in the larger effects in

this data.

When the paired data structure is used in the multilevel

PLSDA analysis of the experimental data, a systematic

difference revealed between the control group and the

treatment group. This is demonstrated in Fig. 6a, d where

the double cross-validated scores reflects the within subject

variation in the 48 h urine samples of all subjects between

the intervention periods. The DQ2 of the multilevel model

was 0.54 (the average result of 20 2CV runs), which was

statistically significant in a permutation test. Again 2500

permutations were performed. The DQ2 was also higher

than the DQ2 obtained in the previously described

OPLSDA analysis.

In Fig. 6b the main treatment effect was observed along

the first component. Some individuals with high scores on

the first component are indicated with colored markers and
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Fig. 6 Multilevel PLSDA double cross-validated scores which

represent the urinary NMR spectra of 20 subjects after black tea

intake. The (a and d) scores on the first two components (t1, t2)

reflects the within subject variation in the control period (red squares)

and the treatment period (blue circles). Two different treatment

effects could be identified. The (b) first effect along the first

component point towards (c) increasing hippuric acids levels and

increasing 1,3-dihydroxyphenyl-2-O-sulphate levels. The (e) second

effect along the second component is basically described by (f)
1,3-dihydroxyphenyl-2-O-sulphate, whereas the increase of hippuric

acid is less pronounced. (Color figure online)
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their corresponding spectra are shown in Fig. 6c. The first

component is largely influenced by elevated levels of

hippuric acid (Fig. 6c), 1,3-dihydroxyphenyl-2-O-sulphate

and some other aromatic signals. These observations match

our previous findings on the same data. However, this main

effect was not equal for all subjects. As shown in Fig. 6e,

another subset of individuals responds differently upon the

black tea intervention. In this subpopulation are individuals

that score low on the first component as their increase of

the urinary hippuric acid levels was less pronounced.

However this subpopulation score much higher on the

second multilevel PLS component which is dominated by

the 1,3-dihydroxyphenyl-2-O-sulphate levels (Fig. 6f). The

current observations lead to the conclusion that not all

subjects respond equally to the treatment, and demonstrate

that a single component for such a classification model is

not sufficient to assess the different treatment effects within

a study population.

Besides the within variation, also the between subject

variation was explored. The combination of both (multi-

level) analyses will then allow a comprehensive interpre-

tation of all major variation sources in the data. Similarly to

the simulated example, a multilevel PCA analysis was

appropriate to assess the main intrinsic variations between

the subjects (on mean-centred data). As shown in Fig. 7a,

the scores of 4 subjects on the second principal component

tB2 appear to be different from the other subjects. Whereas

the first principal component (Fig. 7b, black profile) is a

generic representation of all NMR signal intensities, dif-

ferent variations among the NMR resonances were

observed on the second principal component (Fig. 7b, red

profile). The loadings show that the variation between the

subjects particularly depends on the ratio between the

NMR signals of hippuric acid (d 7.78 ppm, d; d 7.59 ppm, t

and d 7.50 ppm, t) and the NMR signals of an unknown

aromatic compound, U (d 7.17 ppm, s; d 7.24 ppm, s and d
7.31 ppm, s). This unknown compound was observed in a

spectral region were several other resonance patterns of

aromatic amino acids, (conjugated) polyphenolic acids,

(indole) alkaloids etc. come together. For now this com-

plicates a straightforward identification of component U.

Four subjects appear to have a higher signal ratio between

U and hippuric acid then the other subjects in the study

population.

5 Conclusion

In this paper we have shown that when the paired data

structure of metabolomics data obtained from a cross-over

designed experiment, is taken into account during the

multivariate data analysis, the power and the interpret-

ability of the results greatly improves. Furthermore the

multilevel approach provides information about the

-15 -10 -5 0 5 10 15
-4

-3

-2

-1

0

1

2

3

4

5

6A B

77.27.47.67.8

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1H chemical shift (ppm)

PC1

Hippuric acid

U

tB1

t B
2

PC2

Fig. 7 Variation between the mean-centered 24 h urinary NMR

profiles of 20 subjects as represented by (a) the tB1 and tB2 scores in

the multilevel PCA score plot. The (b) associated loadings reflect the

intensity depended variation along the spectral axis (PC1) and

variations between hippuric acid and component U (PC2). The ratio

between hippuric acid and U is different in four subjects (red dots).

(Color figure online)
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diversity and abundance of the treatment effects across the

study population. Finally, the multilevel analysis allows

investigation of the between subject variation which is

completely separated from the within subject variation.

However, often this paired data structure is ignored during

the analysis and default methods that do not consider the

paired data structure are used to analyze the data, leading to

suboptimal results. In this paper we have discussed the

difference between the paired analysis and the non-paired

analysis approaches and used a simulated example as well

as a real experiment in which a human test panel was given

black tea solids. In the latter study we observed two subsets

in the human test population that responded differently

upon the intake of black tea solids. These subsets show

differences in urinary excretion of hippuric acid and

1,3-dihydroxyphenyl-2-O-sulphate. We also observed

intrinsic differences between the subjects. These variations

are mainly described by the relative levels (or molar ratio)

of hippuric acid and an unknown aromatic component (U).
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