
ORIGINAL ARTICLE

Assessment of PLSDA cross validation

Johan A. Westerhuis Æ Huub C. J. Hoefsloot Æ Suzanne Smit Æ Daniel J. Vis Æ
Age K. Smilde Æ Ewoud J. J. van Velzen Æ John P. M. van Duijnhoven Æ
Ferdi A. van Dorsten

Received: 9 July 2007 / Accepted: 23 October 2007 / Published online: 24 January 2008

� The Author(s) 2008

Abstract Classifying groups of individuals based on their

metabolic profile is one of the main topics in metabolomics

research. Due to the low number of individuals compared

to the large number of variables, this is not an easy task.

PLSDA is one of the data analysis methods used for the

classification. Unfortunately this method eagerly overfits

the data and rigorous validation is necessary. The valida-

tion however is far from straightforward. Is this paper we

will discuss a strategy based on cross model validation and

permutation testing to validate the classification models. It

is also shown that too optimistic results are obtained when

the validation is not done properly. Furthermore, we

advocate against the use of PLSDA score plots for infer-

ence of class differences.

Keywords Cross model validation � Permutation testing �
Classification � PLSDA

1 Introduction

The research area of metabolomics is growing fast due to

an enormous improvement of analytical technology as

LCMS, GCMS and NMR (Bollard et al. 2005; Van Der

Greef and Smilde 2005). The application field is rather

wide, ranging from plants (Bino et al. 2004; Fiehn 2002) to

microbial (van der Werf et al. 2005), medical (Clayton

et al. 2006) and even nutritional applications (Van Dorsten

et al. 2006; van Ommen 2004). The typical metabolomics

study involves two groups of individuals, often called case

and control (Broadhurst and Kell 2006). Such a study can

be used in an exploratory way or in a predictive way. An

explorative study is used to see whether the specific data

contains sufficient information to distinguish between the

two groups. E.g. recently the use of MALDI to detect

metabolites has been explored, but it was unknown whether

these data contained sufficient information to make a dis-

tinction between diseased and control groups (Ragazzi

et al. 2006; Vaidyanathan and Goodacre 2007). Then there

is need for a predictive model that can predict whether an

unseen individual belongs to the case or control group.

An often used data analysis tool for classification in the

metabolomics area is PLSDA (Barker and Rayens 2003) or

OPLSDA (Bylesjo et al. 2006; Trygg 2002; Trygg and

Wold 2002). These classification tools are based on the

PLS model in which the dependent variable is chosen to

represent the class membership. The large number of peaks

in these spectra that are all potential biomarkers create

modelling and validation challenges. The number of sam-

ples needed to accurately describe such a classification

problem increases exponentially with the number of vari-

ables measured. However, the number of samples used in

these applications is usually much smaller than the number

of variables. This can easily lead to chance classifications,

i.e. models that just by chance give a good classification of

the two groups.

A good start for the analysis of any data analysis method

is to use a set of random data and see how the method deals

with it. A convincing example that validation of PLSDA

models is of major importance is the classification of a set
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of random data. Using PLSDA to discriminate a random

data set of size e.g. 40 9 100 (comparable to the size of

metabolomics data) into two groups does almost always

give a PLS score plot with perfect separation between the

two arbitrary classes. Please try this using your own

software.

A similar example is given in Fig. 1. Here NMR spectra

(382 channels) of a group of 23 healthy volunteers are

arbitrarily divided into two classes of 11 and 12 class

members. Cross validation revealed a Q2 value of -0.18

which is usually considered not to be a good classification

model. However, the PLSDA score plot in Fig. 1 shows a

clear separation between the two classes. PLSDA is eager

to please and thus its results should be handled with great

care. The problem is that in the 382 dimensional mega-

variate space there is almost always a perfect separation

possible between the 23 samples and PLSDA has no

problems finding it. The PLSDA score plot therefore does

not give a good representation of class difference between

the groups. This is probably the reason why others already

started to show cross validated score plots (Cloarec et al.

2005). However, the problem with that plot is that each

score value is based on a different loading and therefore

they should not be plotted into one figure as they cannot

directly be compared.

Although the score plot should not be used to infer class

separation, it might reveal structure (e.g. subgroups) within

a class. Since the model is not forced to show this differ-

ence, this is not a result of overfit, and thus such

information could be inferred from the score plot.

Validation of PLSDA models has received a lot of

attention. Very recently a number of papers appeared dis-

cussing various aspects of the validation and claiming that

in many applications, proper validation of the classification

models were lacking (Brereton 2006; Broadhurst and Kell

2006; Harrington 2006; Rubingh et al. 2006). Broadhurst

and Kell summarize the main problems in the analysis of

megavariate data. The most important one might be the too

small sample size. Due to the very expensive experiments,

the number of samples is usually too small. A good crite-

rion of sample size is hard to give as multivariate power

calculations are not well understood at the moment. A good

starting point here is the use of Monte Carlo simulations to

determine the appropriate number of samples (Martens

et al. 2000). Most important however is that the samples

chosen contain sufficient information to provide the

answers searched for (Trygg et al. 2007).

Cross validation is performed in most cases to validate

the results found, but often not performed in a proper

manner (Anderssen et al. 2006). Various parameters have

been used to quantify a certain classification, e.g. Q2 val-

ues, number of misclassifications, many combinations of

sums or ratios of True Positives, True Negatives and False

positives and False Negatives of a confusion matrix. Also

the area under curve of a receiver operating characteristic

(ROC) curve (AUROC) is used often. Problem with all

these measures is that it is unknown which value corre-

sponds to a good discrimination between the groups. A

measure for statistical significance (e.g. a P-value) is usu-

ally not given. Furthermore, this value depends on the

number of samples in the training and test set. Another

problem with the cross validation procedure is that in each

of the many models built during the cross validation, a

different number of PLS components seem important for

each of the submodels. At the moment there are no

accepted criteria for the way to choose the overall model,

when returning to the full dataset based on the conclusion

obtained from the many models developed from subsets of

the samples.

In this paper we will tackle most of the problems discussed

above. The main message we will bring in this paper is that

by analysing many versions of the data with randomly

assigned class labels, a reference distribution for the H0

hypothesis that no difference exist between the two classes is

obtained. Using these permutations we will show that

improper use of cross validation leads to a too optimistic

classification result. Although many papers have pointed to

this problem, we clearly show that too few misclassifications

are obtained when cross validation is used wrongly.

Furthermore using the permutations each quality parameter

used to assess the quality of the classification (e.g. Q2,

AUROC or the number of misclassifications) is accompa-

nied with its own H0 distribution of values that can be

obtained in case of no difference between the classes. From

this it can be observed e.g. which Q2 value corresponds to a

statistically significant classification model. We argue

against the use of a single final model, but instead promote
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Fig. 1 PLSDA score plot of an NMR data set of healthy volunteers

which were arbitrarily divided into two classes. Q2 value of this

model was -0.18. Still a clear separation between the classes is

observed in this score plot
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the use of many slightly different models to obtain a range of

class membership predictions. This range can be used as a

confidence measure for class membership assignment. Note

that although we use PLSDA here as the test case, the same

approach can be used for other classification methods.

2 Theory

2.1 PLS-DA

Partial least squares discriminant analysis (PLSDA) is a

frequently used classification method and is based on the

PLS approach (Barker and Rayens 2003). The standard

PLS algorithm can be used and for the dependent y vector,

class labels can be used. In the two-class case, usually the

values of the dependent variable are given 1 for one class

and 0 or -1 for the other class. In case of more than 2

classes, dummy variables are defined and a PLS2 algorithm

is used. A much used variant of PLSDA is OPLSDA where

the first components orthogonal to the dependent variable

are removed from the data (Trygg and Wold 2002). This

gives a model with a single classification component while

the other components describe the other variation that is

orthogonal to the class information. OPLS enhances the

interpretation of PLS by forcing all classification infor-

mation into a single component. The prediction power of

both models is usually the same (Trygg and Wold 2002).

Typical applications of two class classifications using

PLSDA show a score plot of the classified samples. This

plot is often accompanied with a Q2 value indicating the

validity of the discrimination. Figure 2 shows such a typ-

ical score plot of a PLSDA classification between men and

women based on NMR spectra of their urine. The data

presented here is described in more detail in the experi-

mental section.

As demonstrated in the introduction of this paper, a

score plot indicating separation between two groups has no

meaning as similar plots can be obtained when random data

is classified. It is also unknown what the corresponding Q2

value of 0.51 indicates. Is this a good separation? As long

as there are no values to compare the Q2 value with, the

value of this number is meaningless.

2.2 Permutation tests

A permutation test can evaluate whether the specific clas-

sification of the individuals in the two designed groups is

significantly better than any other random classification in

two arbitrary groups (Golland et al. 2005; Mielke Jr and

Berry 2001). In a permutation test, the class labels of case

and control are permuted, they are randomly assigned to

different individuals. With the ‘wrong’ class labels, again a

classification model is calculated. The rationale behind the

permutation test is that with the wrong class labels, the

newly calculated classification model should not be able to

predict the classes very well. As the groups are formed in a

random way, the assumption is that no difference exists

between them. By repeating the permutation test many

times, a H0 distribution of classifications that are expected

not to be significant is formed. From these classifications,

H0 distributions for Q2, AUROC and for regression coef-

ficients etc can be obtained. The results obtained from the

non permuted set of samples should be outside the 95 or

99% confidence bounds of the H0 distribution from the

permuted classifications to be significant.

A major advantage of the permutation test is that the H0

reference distribution is always based on models based on

the same number of samples that also show the same

amount of variation, outliers, missing data etc. The refer-

ence distribution therefore perfectly matches the analysis

results of the original model. The permutation test is

integrated in the currently described validation procedure.

It will be used to validate the metabolic differences. It will

also be used to evaluate validation procedures such as cross

validation.

2.3 Cross validation

Cross validation is often used for validation of a classifi-

cation model due to the low number of samples available.
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Fig. 2 Typical PLSDA application showing a score plot of the two

groups of samples nicely separated. In this case Q2 was found to be

0.51
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As separation into training, validation and test set is often

not possible, cross validation makes better use of the data.

However, cross validation only gives a reliable error rate

when the complete modelling procedure is cross validated.

The object that is predicted should in no way be used in the

development of the model (Anderssen et al. 2006; Brereton

2006; Broadhurst and Kell 2006). This is repeatedly men-

tioned in many papers, however, it is still not common

practise in the many applications found in the recent

literature.

For a proper cross validation, the total data should be

divided into a training set, a validation (sometimes called

optimization) set and a test set. Using the validation and

training set a model is developed and optimized. The test

set is only used to test the model performance. By

repeating the procedure in a way that each sample appears

once and only once in the test set, the prediction error is

representative for new samples. For a complete indepen-

dent test set, it should also not be used in data pre-treatment

and pre-processing, scaling etc.

In this paper we will use three versions of cross vali-

dation that will be compared using the permutation

strategy.

FIT: Using the single cross validation strategy (1CV, see

below), the optimal number of PLS components is found.

A PLSDA model is then built on all samples using this

optimal number of components. Then the class labels of all

samples are ‘‘predicted’’ using this model. Note that here

predicted is placed inside quotation marks to indicate that

this is not a real prediction, but merely a resubstitution.

Based on the predictions of the class labels in this way,

Q2_FIT, AUROC and number of misclassifications can be

obtained.

1CV: Single cross validation is generally used in many

applications. With single cross validation, some of the

individuals are removed from the data and used as a vali-

dation set. The remainder of the individuals that form the

training set are used to develop a series of classification

models with 1 to many PLS components. For each of these

models, a prediction of the validation set is given and the

prediction errors of all of these models are stored. This

procedure is repeated for a new set of individuals until all

individuals have been in the validation set once (and only

once). The total prediction error for all the models over all

individuals is calculated, and the model with the lowest

total prediction error is selected as the best. The prediction

errors obtained using the 1CV approach can be used to

calculate the number of misclassifications and the

Q2_1CV. It has to be realized that the same individuals (in

the validation set) were also used to find the best overall

model parameter and thus they are not completely inde-

pendent as is requested for a proper cross validation.

2CV: In order to overcome the dependency between the

prediction error for new individuals and the optimization of

the model parameter, cross model validation (2CV) was

suggested. In 2CV one set of individuals is set aside

completely as the test set. Then the remainder of the

individuals are subjected to a single cross validation

regime. In this regime the remaining individuals are again

split into a validation and a training set. The single cross

validation will result in an optimal number of PLS com-

ponents. Then all training and validation individuals are

used to build a final classification model with the optimal

number of PLS components. This final model is then used

to predict the individuals in the test set. The whole pro-

cedure is repeated until all individuals have been in de test

set once (and only once). It is important that the selection

of the validation samples is done randomly to enforce

different combinations of validation sets and training set

for each new test set. In this way the model has been built

in absolute absence of the test set, the prediction is inde-

pendent of the model optimization (Stone 1974).

Summarizing, the 1CV method assesses the variability

of the estimated parameters and its effect on the prediction,

while the 2CV method also assesses the variability of the

meta parameters and their effect on the prediction. Table 1

gives a summary of the dependence of the sample that is

predicted and some of the model parameters. Only when

2CV is used for validation, the sample that is predicted is

truly independent, leading to a correct prediction error.

2.4 Final calibration model

Note that now the prediction of each separate test set is

performed on slightly different models that have different

optimal model parameters. This complicates the develop-

ment of a final calibration model, because it is not known

what model parameters to choose for the final model

(Brereton 2006). The precision of a final calibration model

is not allowed to be smaller than the models that were

developed during the cross validation procedure. However

those models were always based on a subset of the samples.

Table 1 Dependence of predicted sample to model parameters for

the FIT, 1CV and 2CV approaches

Method Predicted sample

used to calculate

model coefficients

Predicted sample used

to calculate number

of components

FIT Yes Yes

1CV No Yes

2CV No No
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Therefore the full potential of the final calibration model is

never used.

However, such a final model is also not necessary.

Instead of having one final model, a group of models (one

for every test set) is available to classify future individuals.

Instead of one class prediction, a group of class predictions

is given for each individual. This group of predictions can

be combined into an average prediction and it can also be

used to obtain a confidence interval for the class prediction.

This is related to the bagging approach introduced by

Breiman (Breiman 1996, 1998). Furthermore, the various

models give insight in the stability of the optimized model

parameters.

2.5 Quality assessment

Many measures exist to quantify the quality of a specific

classification such as measures, derived from the confusion

table, which consist of the number of False Positives, False

Negatives, True Positives and True Negatives exist

(Broadhurst and Kell 2006). For the Case individuals, the

fraction of True positives is referred to as the sensitivity

while the fraction of False Positives is referred to as

(1-specificity). Combining the two leads to the receiver

operator characteristic (ROC) that we will use in this paper.

The ROC unifies two characteristics that are often used to

evaluate the performance of a (clinical) test or method. A

ROC curve plots the sensitivity of a test versus 1-speci-

ficity of a test. The sensitivity is defined as the number of

true positives found as a percentage of all positives (dis-

eased people), while 1-specificity is the number of false

positives as a percentage of all negatives (controls, healthy

people). Sensitivities are between 0 and 1 and should be

close to 1. The specificity should preferably be close to 1,

and 1-specificity should be close to 0. Both specificity and

sensitivity depend on the setting of the classification

boundary of the classifier used by a method. By shifting the

classification boundary more true positives may be detec-

ted, but the number of false positives also increases, and

the other way around. The ROC curve therefore is a

characteristic of a method, describing the sensitivity and

specificity of a method for different classification bound-

aries. Each point on a line gives the sensitivity of a

classifying model versus 1-specificity of the model. Each

point on the ROC curve refers to a value chosen for the

classifier boundary. Instead of choosing 0 as the classified

boundary, one can select a slightly lower value to increase

the sensitivity of class +1. Of course this goes together with

a loss of 1-specificity. As a quality measure we use the area

under the ROC curve (AUROC). This value goes to 1 for a

perfect separation between the classes. If there is no sep-

aration then a value close to 0.5 is obtained.

The prediction error measure Q2, which is the default

parameter used in PLSDA discriminations focuses on how

well the class label can be predicted from new data. Q2 is

defined as follows:

Q2 ¼ 1�

P

i

yi � ŷið Þ2

P

i
yi � �yð Þ2

where ŷi refers to the predicted value of class membership

for sample i while �y refers to the mean value of y for all

samples. The optimal Q2 value of 1 is difficult to reach as

this requires that the class prediction of each individual

should be exactly equal to its class label. This is hard to get

due to the inherent variation between the individuals in the

same class. The Q2 depends on the between class separa-

tion but also on the within class variability. This makes it

difficult to give a general Q2 value that corresponds to a

good classification. Therefore we use permutations to

provide a whole distribution of Q2 values for models of no

effect to relate the original Q2 value to.

The ROC and number of misclassifications are both

classification error measures (they only make a distinction

between good and wrongly classified). The Q2 value is a

prediction error that makes a distinction between slightly

wrong and very wrong. A prediction of -0.2 is penalized

more than a prediction of 0.4 for a class label of 1 while the

classification error measures treat these predictions both

equally as wrong. In a further study we will examine the

power of these measures.

3 Experimental

3.1 Human urine samples

Twenty-four-hour urine samples were collected from 23

healthy male and female volunteers in the age range

between 19 and 78 years, i.e. 12 women (mean age:

42.0 years, range: 20–78 years) and 11 men (mean age:

44.4 years, range: 19–74 years). All samples were stored

frozen at -20�C prior to analysis and thawed on the day of

analysis.

3.2 1H NMR Spectroscopy

1H NMR spectra were acquired at 600.13 MHz on a Bruker

Avance 600 spectrometer. Urine samples were prepared for
1H NMR spectroscopy by diluting 300 ll of urine 1:1 with
2H2O, followed by spinning down non-soluble particles for

10 min at 14,000 rpm in an Eppendorf centrifuge. Urine

NMR spectra were measured at 303 K using a standard
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water-suppressed 1D-NOESY pulse sequence, i.e. RD-90�-

t1-90�-tm-90�-acquire. Here, RD is a relaxation delay of

1.5 s during which the water resonance was selectively

irradiated, and t1 corresponds to a fixed delay of 0.15 s. A

total of 128 transients were collected into 32 k data points,

with a spectral width of 7,000 Hz. Prior to Fourier trans-

form (FT) the free induction decays (FIDs) were multiplied

by a 0.3-Hz exponential line-broadening function and zero-

filled by a factor of 2.All spectra were manually phase- and

baseline-corrected using XWINNMR (Bruker GmbH,

Germany), and referenced internally to the creatinine

methyl peak at d 3.10.

3.3 NMR spectral data reduction

The NMR spectral dataset between 0.4 and 10.0 ppm was

automatically reduced into regions of equal width

(0.02 ppm), to minimize the effects of (pH-dependent)

peak shifts, and the integral of each region was determined

using AMIX software (Bruker GmbH, Germany). The

spectral region from 4.0–6.0 ppm was excluded from

analysis to remove the effect of variations in the suppres-

sion of the water resonance and variations in the urea

signal. The peak integral within each 0.02-ppm spectral

region was normalized to a constant sum of 1,000 for each

spectrum, to account for differences in urinary volume.

3.4 Data analysis

In the single and double cross validation procedures, the

samples were split into six groups; a 6-fold cross validation

strategy is used. It was enforced that in each validation set

(1CV) or test set (2CV) individuals of both classes were

present. Thus six different models are created. The single

cross validation inner loop of the double cross validation,

which is used to obtain the optimal number of PLS

components, used a leave one out CV1. The selection of

the test sets, validation sets and training sets were ran-

domized to enforce a different combination of samples.

The class labels of 0 and 1 were used for men and women

respectively.

4 Results and discussion

4.1 Evaluation of cross validation

In the first part of the results and discussion section we

evaluate the different versions of cross validation discussed

in the theory section. The number of misclassification is

used here as a measure because of its known expected

value in the fully randomized case. Here we mean that if

the individuals are randomly permuted over the classes that

the average number of misclassifications should be half of

the samples in a two-class problem. Predictions of class

labels using the actual data were performed 20 times in

which the combination of samples in training set, valida-

tion set and test set was varied. The numbers of

misclassifications were averaged over the 20 cross valida-

tion runs. The data was permuted 2,000 times. Of each

permuted set, the cross validation was repeated 20 times

and the average number of misclassifications was

calculated.

Using the permutations, a distribution is developed for

the H0 hypothesis being that no difference exists between

the two classes. When no difference exists between the

classes, an average of 11.5 misclassifications is expected.

Thus the validation procedure should on average give 11.5

misclassifications for the permuted datasets. In the evalu-

ation of cross validation procedures we calculate the

number of misclassifications using the FIT, 1CV and 2CV

approach.

Figure 3 shows histograms of the number of misclassi-

fications of the permuted data. When the FIT approach is

used, many good classifications are made on the permuted

data. The average number of misclassifications using the

FIT approach is 1.5, which is clearly much too optimistic

as the expected number of misclassifications of the per-

muted data is 11.5. Note that even in the FIT approach a

single cross validation step was used to select the number

of PLS components. But this is in no way sufficient for a

proper validation.

The single cross validation (1CV) procedure leads to an

average number of misclassifications of 10.0 for the per-

muted data. This is still a too optimistic result. In single

cross validation the predicted individuals are still not

Fig. 3 Misclassifications of gender PLSDA as classification method

with FIT, 1CV and 2CV as validation strategies with permutated data
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representative of a completely new individual as they are

also used to define the optimal number of PLSDA com-

ponents. Only when a double cross validation (2CV)

strategy is used, the number of misclassifications equals the

expected value of 11.5.

4.2 Quality assessment

Is there a difference between the groups? How to statisti-

cally quantify whether a difference exists? If the number of

misclassifications is lower than half of the number of

samples, then there is a difference. If the area under the

ROC curve is above the 0.5 then there is also a difference.

The default parameter in PLSDA, the Q2 value, does not

provide an answer to this question. It is unknown which

value Q2 value to expect for a good classification of two

groups. Therefore we will again use the permutation

approach to obtain a distribution of Q2 values that corre-

spond to the H0 of no difference between the two classes.

In this case the Q2 values and the AUROC and also the

number of misclassifications are obtained using predictions

of class labels in a cross model validation setup. Thus the

predictions of class labels are performed for samples that

have not been used to develop the model. Figure 4 shows

the number of misclassifications, the Q2 values and the

AUROC values for the original classifications in red and

for the permutations in blue based on predictions in a cross

model validation framework. For all assessment parameters

there is a clear distinction between the permutation distri-

bution and the original classification. This shows that the

specific classification is significant. If we compare the

average value of the original classification with all

the permutations then a P-value can be obtained.

Using double cross validation to predict the class label,

the original classification has on average 3.35 misclassifi-

cations. Of the 2,000 permutations none had a number of

misclassifications lower than 3.35 leading to a P \ 0.0005.

The Q2 values of the permutations show a distribution

around -0.5. Six percent of the permutations show a Q2

value above 0. The original labelling had a Q2 value of 0.5.

This also leads to a P \ 0.0005 as none of the permutations

had an average Q2 value above 0.5. The average AUROC

value is indeed 0.5 as expected while the average AUROC

of the original labelling was 0.80 (P \ 0.0005). For the set

of 2,000 permutations no difference between the three

assessment criteria were found.

4.3 Variation in class prediction using PLSDA

There is a major problem to translate the optimization

results obtained during the cross validation to a final

model. If a successful predictive model is obtained, it is

then necessary to choose a model that will be applicable to

new samples using all samples available. However, the

assessment of the model has been performed on multiple

subsets of samples, each with its own number of compo-

nents, variables selected, scaling etc. At the moment no

consensus exist how to choose the overall model based on

submodel results (Brereton 2006). Therefore instead of

having one final model with a single class prediction for

new samples, multiple class predictions can be obtained

from many different models that were developed during the

cross validation procedure. Instead of having a single

prediction of gender, it is interesting to know the variability

in class prediction when many related models are used.

Furthermore, often the average of multiple models is a

better estimate of class, then a single prediction. This idea

goes back to bagging predictors (Breiman 1996, 1998). The

average of a set of predictors can have a smaller variance

than a single predictor. In cross model validation each of

the multiple models is developed using a smaller sample

size and therefore will probably have a somewhat higher

prediction error. However, because of the multiple related

models, a good idea is obtained of the spread in class

prediction. This spread can be used as a confidence mea-

sure for the class prediction, while the average of all

prediction will probably have a lower variance. Therefore

1,000 models were developed within the cross model val-

idation, each time with a different combination of samples.

The prediction of the class labels is performed using

models that are unrelated to the sample of which the class

is predicted. The class predictions are presented in Fig. 5.

Figure 5 shows the spread in y-value prediction and thus

the classification. Samples 1–11 are males and were coded

0. Samples 12–23 are females and were coded as 1. It can

Fig. 4 Class prediction results based on cross model validation

predictions of the original labeling compared to the permuted data

assessed using the number of misclassifications, Q2 and area under the

ROC curve
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be seen that some males are always classified correctly

(1, 4, 5, 10 and 11) and also some females are always

classified correctly (21 and 22). Individual 12 is almost

always classified wrongly, while others are in almost half

of the cases classified wrongly. The predicted range is

indicative of the confidence in class membership.

5 Conclusion

Classification problems in metabolomics data analysis are

complex due to the many variables few samples issue. This

makes that many solutions can be found to separate the

classes. Most models therefore suffer from overfit, meaning

that the model classifies the training data well, but future

samples are classified poorly.

In this paper we describe the use of permutation testing

and cross model validation to assess the validation of

classification models. Permutation tests show that when

cross validation is not applied appropriately, it leads to

overoptimistic results. Moreover, the permutation test

gives a sensible measure for the Q2 value. Cross model

validation leads to good results. Although not new and

shown in other fields, it is unfortunately almost completely

ignored in the metabolomics research field.

The PLSDA score plots as presented in most classifi-

cation applications in the metabolomics research field

present an overoptimistic view of the separation between

the classes. Although within class variation can be revealed

by this plot, it should not be used to examine between class

separation. This was clearly shown by the classification of

randomly assigned class membership. Class separation

results should be based on predictions instead of on fitted

values (such as the PLSDA scores). It is therefore much

more informative to present class predictions as was shown

here in this paper.
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