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Abstract
SUMOylation is a post-translational modification (PTM) whereby members of the Small Ubiquitin-like MOdifier (SUMO)
family of proteins are conjugated to lysine residues in target proteins. SUMOylation has been implicated in a wide range of
physiological and pathological processes, and much attention has been given to its role in neurodegenerative conditions. Due to
its reported role in neuroprotection, pharmacological modulation of SUMOylation represents an attractive potential therapeutic
strategy in a number of different brain disorders. However, very few compounds that target the SUMOylation pathway have been
identified. Guanosine is an endogenous nucleoside with important neuromodulatory and neuroprotective effects. Experimental
evidence has shown that guanosine can modulate different intracellular pathways, including PTMs. In the present study we
examined whether guanosine alters global protein SUMOylation. Primary cortical neurons and astrocytes were treated with
guanosine at 1, 10, 100, 300, or 500 μM at four time points, 1, 6, 24, or 48 h. We show that guanosine increases global SUMO2/
3-ylation in neurons and astrocytes at 1 h at concentrations above 10μM. The molecular mechanisms involved in this effect were
evaluated in neurons. The guanosine-induced increase in global SUMO2/3-ylation was still observed in the presence of
dipyridamole, which prevents guanosine internalization, demonstrating an extracellular guanosine-induced effect.
Furthermore, the A1 adenosine receptor antagonist DPCPX abolished the guanosine-induced increase in SUMO2/3-ylation.
The A2A adenosine receptor antagonist ZM241385 increased SUMOylation per se, but did not alter guanosine-induced
SUMOylation, suggesting that guanosine may modulate SUMO2/3-ylation through an A1-A2A receptor interaction. Taken
together, this is the first report to show guanosine as a SUMO2/3-ylation enhancer in astrocytes and neurons.
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Introduction

SUMOylation is a post-translational modification (PTM) where-
by the Small Ubiquitin-like MOdifier (SUMO) peptide is

conjugated to target proteins at lysine residues [1]. SUMO con-
jugation to target proteins is mediated by a three-step, ATP-
dependent enzymatic cascade involving E1, E2, and E3 en-
zymes, and can be reversed by the actions of SUMO proteases,
the most well characterized of which are the SENP family [1].
SUMOylation plays important physiological roles [2, 3] and, in
neurons, has been shown to be crucial for synaptic plasticity and
cellular communication [4–7]. We and others have shown that
SUMOylation is part of an endogenous neuroprotective response
in ischemic conditions [8–12]. Furthermore, several proteins im-
plicated in ischemia [13], and neurodegenerative disorders [14],
such as Alzheimer’s [15–17] and Parkinson’s diseases [18, 19],
are SUMO targets, and SUMOylation has been linked to age-
related processes [20, 21]. As a result, SUMOylation may repre-
sent an attractive therapeutic target in several disorders.
However, relatively few compounds that can target protein
SUMOylation have so far been identified.
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Accumulating evidence has demonstrated that guanosine,
an endogenous nucleoside, may be a therapeutically useful
compound in a number of disorders [22–24]. Due to its role
in fundamental cellular mechanisms, guanosine promotes
many protective effects such as anti-inflammatory effects dur-
ing aging in astrocytes [25] and is protective against in vivo
amyloid-beta (Aβ)-induced toxicity [26], seizures [27], and
ischemia [28, 29]. However, despite several studies reporting
the protective effects of guanosine [22–24], little is known
about the molecular mechanisms involved. We have recently
shown that guanosine can prevent ischemia-induced increases
in reactive oxygen species (ROS) and impairment of gluta-
mate uptake [29]. Guanosine-mediated phosphorylation and,
consequently, activation of Akt/PKB and inactivation of gly-
cogen synthase kinase 3β (GSK3β) seem to be crucial for its
anti-apoptotic effects under cellular stress conditions caused
by oxidative damage [30], glutamate [31], and staurosporine
[32]. In addition, guanosine can stimulate neural stem cell
proliferation via phosphorylation/activation of CREB [33],
further suggesting that phosphorylation of proteins might con-
tribute the molecular effects of guanosine.

Although a specific receptor for guanosine has not been
identified [34], a number of reports suggest it may interact
with adenosine receptors (A1 and A2A) [24, 29, 35–38].
Furthermore, the neuroprotective effect of guanosine was also
suggested to be through the large conductance Ca2+-activated
K+ channel (BK) [30].

Here, we sought to evaluate whether guanosine may mod-
ulate global protein SUMOylation in neurons and astrocytes,
and further determine whether adenosine receptors mediate
these effects.

Methods

Cell culture

Cortical neurons were prepared as described previously [39].
Briefly, cortices from E18 Wistar rats were dissected in
Hank’s balanced salt solution (HBSS, Gibco) followed by
trypsin and mechanical dissociation. Neurons (55 × 104

cells/well) were plated on 6-well plates previously treated with
poly-L-lysine (0.1 mg/mL, Sigma). Plating medium consisted
of Neurobasal Medium (Gibco) containing 10% horse serum
(Gibco), B27 (1×, Gibco), penicillin-streptomycin (P/S,
100 units penicillin and 0.1 mg/mL streptomycin; Thermo
Scientific), and 5 mM Glutamax (Gibco). After 24 h, plating
medium was replaced with 3 mL of feeding medium
(Neurobasal Medium, B27, P/S, Glutamax) with no further
medium changes. Neurons were used for experiments at
14 days in vitro. Cortical astrocytes were prepared as de-
scribed previously [40]. Briefly, cortices from Wistar rats
(0–2 days old) were dissected in PBS (1×, containing 1 mM

glucose) followed by mechanical dissociation. Astrocytes
(70 × 104 cells per well) were plated on 6-well plates previ-
ously treated with poly-L-lysine (0.1 mg/mL, Sigma). Plating
medium consisted of Dulbecco’s modified Eagle’s medium
(DMEM) nutrient mixture F-12 (Gibco), supplemented with
10% fetal bovine serum (Gibco). Cell culture medium was
changed 24 h after plating and changed subsequently three
times a week. Astrocytes were used for experiments at 14 days
in vitro. Ethics committees previously approved all proce-
dures used in this study (CEUA 955 – UFSC and UB/18/
004 – University of Bristol).

Drug treatments

Unless otherwise specified, the drugs used in the experiments
were obtained from Sigma: guanosine (G6752), adenosine
(A9251), dipyridamole (10 μM, D9766), DPCPX (100 nM,
C101) and ZM 241385 (50 nM, Z0153). The concentration
curves (1, 10, 100, 300 and 500 μM) for guanosine, adenosine
and guanine were based on previous studies [29, 30, 36, 41,
42].

Western blotting

For immunoblotting, neurons and astrocytes were lysed in
250 μL sample buffer solution (1×) containing 2% SDS
(w/v), 5% glycerol (v/v), 62.5 mM Tris-HCl pH 6.8, and 5%
(v/v)β-mercaptoethanol. Lysates were collected and heated to
95 °C for 10 min prior to gel electrophoresis. Proteins were
separated by SDS-PAGE (10–15% gels). PDVF membranes
were blocked in 5% (w/v) non-fat milk powder or bovine
serum albumin (BSA, Sigma) in PBS-T. The following pri-
mary antibodies were incubated overnight at 4 °C: SUMO1
(1:1000, Cell Signaling, 4930), SUMO2/3 (1:1000, Cell
Signaling, 4971S), SENP3 (1:1000, Cell Signaling,
D20A10), and GAPDH (1:10000, Abcam, ab8248).
Ponceau S (0.1% in 5% acetic acid, Sigma, P7170) was also
used for protein staining [43]. After three washes with PBS-T,
membranes were incubated with the following HRP-
conjugated secondary antibodies for 1 h at room temperature:
anti-mouse (1:5000, Abcam, ab6728) or anti-rabbit (1:5000,
Cell Signaling, 7074S). After three washes of 5 min each in
PBS-T, proteins were visualized by enhanced chemilumines-
cence (Thermo Scientific). Protein bands were quantified by
densitometry using ImageJ software (NIH) [44].

Immunofluorescence

For immunofluorescence, neurons and astrocytes were plated
on glass coverslips (1 × 105 cells/well) previously treated with
nitric acid and poly-L-lysine (0.1 mg/mL). Neurons were
washed with PBS once and fixed with 4% paraformaldehyde
(PFA) for 20 min. After three washes with PBS, PFA was
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quenched by incubation with PBS containing 20 mM glycine
for 10 min, before cells were permeabilized with PBS contain-
ing 0.05% Triton for 5 min. Next, blocking solution consisting
of 5%BSAdiluted in PBSwas added to the coverslips for 1 h at
room temperature. Neurons were then incubated with anti-β-
tubulin III (1:250, Sigma, T2200) and astrocytes with anti-
GFAP (1:100; Sigma-Aldrich, 3670S) for 1 h. Cells were then
washed twice with PBS containing 0.1% tween 20 for 5 min
and incubated with Alexa Fluor 594 fluorescent antibodies
(1:100, Invitrogen, A32740) for 1 h at room temperature. For
nuclear staining, Hoechst 33342 was present in the mounting
media. Images were acquired on a confocal microscope (Leica
DMI6000 B, LCME-UFSC). To analyze morphology, three
independent experiments were performed [29, 45].

MTT assay

Cell viability was assessed by the colorimetric MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) as-
say [46]. After the respective treatments, neurons and astro-
cytes were incubated with MTT (0.2 mg/mL) diluted in PBS
and kept at 37 °C for 2 h. MTT was removed and DMSO
(100%) added to cells. The absorbance was read at 540 nm
in 96-well plates.

Statistical analysis

All results were included in the statistical analysis except for
those significantly detected as outliers (https://www.
graphpad.com/quickcalcs/Grubbs1.cfm). After confirming
data normality (Kolmogorov-Smirnov test), one-way analysis
of variance (ANOVA) was performed and Newman-Keuls
was used as a post hoc test to determine significant differences
among groups. Data are presented as mean + standard error of
the mean (S.E.M.) and statistical significance expressed by
*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001. GraphPad Prism 5.
0 was used for graphs and statistics [44, 47].

Results

Guanosine increases SUMO2/3 conjugation in neu-
rons and astrocytes

Although SUMOylation is a PTM known to be involved in a
wide range of cellular functions [2, 3, 48], very few modula-
tors of SUMOylation have been identified. Here we aimed to
evaluate the putative modulatory effect of guanosine on
SUMOylation. Guanosine (10, 100, 300, or 500 μM) in-
creased global SUMO2/3 conjugation in neurons at 1 h
(Fig. 1 a and e, F = 5014; p = 0.001). However, increased
global SUMO2/3 conjugation was not observed at longer time
points (Fig. 1 b–d), suggesting the effect of guanosine is

transient and subsides by 6 h. Moreover, we also observed
an increase in levels of the SUMO protease SENP3, which
removes SUMO2/3 from target proteins [49], after 6 h of
treatment with 500 μM guanosine, suggesting the transient
nature of the guanosine-induced increase in SUMO2/3 conju-
gation may in part be due to compensatory increases in
SUMO protease expression (Fig. 2 b and e, F = 3638; p =
0.018).

Considering the importance of astrocytes for the homeosta-
sis and maintenance of neuronal function [50, 51], we also
evaluated the effects of guanosine on protein SUMOylation in
cortical astrocytes. Similarly to what we observed in neurons,
guanosine increased global SUMO2/3 conjugation in astrocytes
(at concentrations of 10, 100, 300, and 500 μM, 1 h) (Fig. 3 a
and e, F = 9.025; p = 0.0002), but this effect was transient and
not observed at later time points (Fig. 3 b–d). Together, these
results demonstrate that guanosine can lead to a transient, re-
versible, increase in SUMO2/3 conjugation in both neurons and
astrocytes. Conversely, however, guanosine (500 μM) de-
creased global SUMO1 conjugation in neurons at 48 h (Fig. 4
d and h, F = 2851; p = 0,047) and led to a similar trend towards
decreased conjugation in astrocytes; however, this trend was
not statistically significant (Supplementary Fig. 1 a–d).

Guanosine does not affect cell viability of neurons or
astrocytes

Since SUMOylation has been shown to be increased by a
number of cellular stressors [52], we wanted to confirm that
guanosine was not causing cellular stress and affecting cell
viability. Importantly, 1 h treatment with 500 μM guanosine
had no effect on cell viability in either astrocytes or neurons,
as determined by MTT assay (Fig. 5 a and c, F = 2292; p =
0.1822). Furthermore, 48 h treatment with 100 μM guanosine
did not obviously affect astrocyte or neuronal morphology, as
determined by GFAP or β-tubulin III staining, respectively
(Fig. 5 b and d). Together, these data demonstrate that guano-
sine can enhance global SUMO2/3 conjugation without ad-
versely affecting cell health.

Guanosine effects on SUMOylation are extracellular-
mediated

Guanosine uptake is mediated through nucleoside transporters
present in the cell membrane [53, 54]. In contrast, the
SUMOylation proteins are intracellular components [3]. In order
to investigate whether the mechanism by which guanosine in-
creases global SUMOylation requires guanosine uptake, or is
mediated by extracellular actions of guanosine, neurons were
pre-incubated with dipyridamole (10 μM), a pan-inhibitor of
nucleoside transporters. Twenty minutes later, guanosine
(500 μM) was added in the presence of dipyridamole, and neu-
rons were further incubated for an hour. As previously, SUMO1
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conjugation remained unchanged (Fig. 6 a and c), but an increase
in high molecular weight SUMO2/3 conjugates was observed
both in the presence and absence of dipyridamole (Fig. 6 b and
d, F = 3.444; p = 0.0055). These results suggest that the
guanosine-induced increase in SUMO2/3 conjugation does not
require guanosine internalization and indicates that guanosine is
acting through a membrane receptor interaction.

The effects of guanosine on protein SUMOylation are
mediated by adenosine A1 receptors

Next, we sought to investigate whether the guanosine-induced
increase in global SUMO2/3 conjugation was mediated by A1
and/or A2A adenosine receptors. Neurons were treated with
guanosine (500 μM) in the presence or absence of the A1
receptor antagonist DPCPX (100 nM) for 1 h. DPCPX
abolished the effect of guanosine on SUMO2/3 conjugation
(Fig. 7 a and c, F = 3.086; p = 0.0571), suggesting guanosine

is enhancing SUMO2/3 conjugation through A1 receptors. In
the same way, neurons were treated with guanosine in the
presence or absence of the A2A antagonist ZM241385
(50 nM) for 1 h. ZM241385 did not affect the guanosine-
induced increase in SUMO2/3 conjugation (Fig. 7 b and d,
F = 6.282; p = 0.0051). However, ZM241385 per se increased
global SUMO2/3 conjugation (Fig. 7 b and d). Surprisingly,
adenosine treatment, at the same concentrations used for gua-
nosine (1, 10, 100, 300, and 500 μM), did not affect global
protein SUMOylation by either SUMO1 (Supplementary Fig.
2 a and c, F = 0.371; p = 0.85) or SUMO2/3 (Supplementary
Fig. 2 b and d, F = 2.220; p = 0.08).

Discussion

Protein SUMOylation is a highly dynamic PTM [3, 55, 56].
Here, we demonstrate that guanosine induces an increase in

Fig. 1 Guanosine increases global SUMO2/3 conjugation in neurons.
Representative SUMO2/3 Western blots from neurons treated with gua-
nosine (1–500 μM) for a 1 h, b 6 h, c 24 h, and d 48 h. b Optical density
quantification of global SUMO2/3 conjugation for e 1 h, f 6 h, g 24 h, and

h 48 h. GAPDHwas used as a loading control. Results expressed as mean
+ standard error of the mean (n = 3–5 independent experiments). One-
way ANOVA followed by Newman-Keuls multiple comparison analyses
(*p < 0.05, **p < 0.01 vs. control). C, control; kDa, kilodaltons
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global protein SUMO2/3 conjugation after 1 h stimulation
with concentrations of guanosine of 10 μM or higher. This
effect was not observed at longer time points, suggesting this
effect is transient and may ultimately be counteracted by a
concomitant increase in levels of SENP3, a deSUMOylating
enzyme that shows preference for deconjugating SUMO2/3
over other SUMO isoforms [49]. We cannot rule out the pos-
sibility that SUMO2/3 conjugation could return to control
levels earlier than 6 h; however, this will require further in-
vestigation. The consequences of both neuronal and astrocytic
increases in SUMO2/3 conjugation after 1 h guanosine treat-
ment, and the decrease in neuronal SUMO1 conjugation at
48 h, need to be further investigated. However, importantly,
we have demonstrated that guanosine stimulation does not
lead to an observable loss of cellular viability or alteration of
cell morphology.

A growing number of studies have demonstrated the im-
portance of SUMO2/3 conjugation in mediating neuroprotec-
tive mechanisms [8, 57–59]. In a recent screen for compounds
with SENP2 inhibitory activity, 6-thioguanine, which in-
creases SUMO1-ylation and SUMO2/3-ylation levels, and
the compound isoprenaline, which increases SUMO2/3-
ylation levels, were found to protect SH-SY5Y cells from
oxygen and glucose deprivation, an in vitro model of ischemia
[60]. As both 6-thioguanine [60] and guanosine, which was

used in our study, increased SUMO2/3 conjugation, this effect
may be related to similarities in their chemical structures.
However, since our data demonstrate that guanosine uptake
is not required for its effects on protein SUMOylation, it
seems unlikely that the effects we observe are due to inhibition
of intracellular SENP2.

Previous evidence has shown that there is more SUMO2/3
available to be conjugated to target proteins than SUMO1,
which may explain the selective increase in SUMO2/3 conju-
gation at 1 h [52]. In Cos7 cells, there is approximately 40%
more free SUMO2/3 than SUMO1 [52, 61, 62]; however,
whether this is the case in neurons and astrocytes is not
known. It is important to point out that some substrates may
be modified only by SUMO1, or SUMO2/3, or both [63]. In
this context, future investigations focusing on which cellular
targets are being SUMOylated upon guanosine treatment will
provide important information as to the functional conse-
quences of the guanosine-induced increase in SUMO
conjugation.

Under physiological conditions, extracellular guanosine is
efficiently internalized [64]. Since the SUMOylation machin-
ery is present intracellularly [3], we evaluated whether the
effects of guanosine on SUMO conjugation required its inter-
nalization. Using dipyridamole to block guanosine internali-
zation, we still observed an increase in SUMO2/3 conjugation

Fig. 2 Guanosine increases neuronal SENP3 levels. Representative
SENP3 Western blots from neurons treated with guanosine (1–500 μM)
for a 1 h, b 6 h, and c 24 h. Optical density quantification of SENP3 for d
1 h, e 6 h, and f 24 h. GAPDH was used as a loading control. Results

expressed as mean + standard error of the mean (n = 4 independent
experiments). One-way ANOVA followed by Newman-Keuls multiple
comparison analyses (*p < 0.05, vs. control). C, control; kDa, kilodaltons
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in neurons. Similarly, in previous studies, blockade of nucle-
oside transporters did not impair guanosine-mediated preven-
tion of apoptosis in cultured rat astrocytes [32], or the neuro-
trophic effects of guanosine in primary cultured cerebellar
neurons [65]. These results strongly suggest that guanosine
exerts its protective effects via an extracellular mechanism,
which likely involves membrane receptor activation.

Previous studies from our group have demonstrated extra-
cellular effects of guanosine acting through A1 and A2A
adenosine receptors [30]. In the present study, A1 receptor
blockade by DPCPX abolished the guanosine-induced in-
crease in SUMO2/3 conjugation, suggesting that guanosine
might be acting via A1 receptors. Regarding A2A receptor
modulation with ZM241385, the antagonist itself increased
SUMO2/3 conjugation, in a similar manner to guanosine,
and co-incubation of ZM241385 plus guanosine did not fur-
ther increase SUMO2/3-ylation compared with either com-
pound alone. The effect of ZM241385 in enhancing
SUMOylation per se suggests that constitutive A2A receptor
activity might be directly modulating endogenous SUMO2/3

conjugation; however, this needs to be further experimentally
confirmed. ZM241385 is classically described as an A2A re-
ceptor antagonist; however, some studies suggest that it can
act also as an inverse agonist for A2A receptors [36, 66–68],
which could explain its ability in promoting such an effect.
Regarding the effect of guanosine, it is feasible that it may also
act by reducing A2A receptor activity, similar to ZM241385,
since we have previously shown its neuroprotective effect is
not observed in A2A receptor-knockout mice [69].
Additionally, binding and functional studies in HEK293 cells
transfected with A1 and A2A receptors showed guanosine did
not interfere with A1 receptor-mediated signaling, and that it
modulated A2A receptor binding and intracellular signaling
only in cells co-expressing A1 and A2A receptors, providing
the first piece of evidence that the effects of guanosine may
occur through interaction with an oligomeric organization of
adenosine receptors, namely the A1R-A2AR heteromer [69].
However, the exact mechanism of guanosine action is still
unknown. Indeed, since guanosine reportedly shows low af-
finity for adenosine receptors [24], it remains possible that

Fig. 3 Guanosine increases global SUMO2/3 conjugation in astrocytes.
Representative SUMO2/3 Western blots from astrocytes treated with
guanosine (1–500 μM) for a 1 h, b 6 h, c 24 h, and d 48 h. Optical density
quantification of global SUMO2/3 conjugation for e 1 h, f 6 h, g 24 h, and
h 48 h. Ponceau staining was used as a loading control (Supplementary

Fig. 1 D). Results expressed as mean + standard error of the mean (n = 3–
5 independent experiments). One-way ANOVA followed by Newman-
Keuls multiple comparison analyses (*p < 0.05, **p < 0.01 vs. control).
C, control; kDa, Kilodaltons
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guanosine acts via other receptor proteins [70], or via promot-
ing the release of endogenous adenosine, as has been reported
in some non-neural cell types [71, 72]. Nonetheless, our data
support a model whereby adenosine receptor activity is re-
quired for the effects of guanosine in promoting
SUMOylation in neurons.

Since guanosine increased SUMO2/3 conjugation via aden-
osine receptors, we hypothesized that adenosinewould promote
a similar effect. Surprisingly, adenosine (1, 10, 100, 300, and
500μM) for 1 h did not modulate global SUMO2/3 or SUMO1
conjugation. However, it remains possible that adenosine could
modulate SUMOylation at shorter time points, especially con-
sidering that G protein-coupled receptors, such as adenosine
receptors, may suffer from desensitization and internalization
in response to continuous exposure to agonist, preventing the
observation of downstream effects [73–75]. Another possible
explanation is that guanosine may not promote desensitization
of adenosine receptors since it is not their endogenous agonist.
In addition, it has been suggested that guanosine can act as an

allosteric modulator at adenosine receptors [24], suggesting it
may therefore produce different effects to direct agonist activa-
tion with adenosine; however, this still needs further experi-
mental confirmation.

To the best of our knowledge, there is, to date, only one
experimental demonstration that SUMOylation can be modu-
lated through adenosinergic signaling. The protein IκBα (nu-
clear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, alpha), an important modulator of inflammato-
ry responses, can be SUMO1-ylated in response to adenosine
signaling. Following hypoxia and reoxygenation, there was an
increase in SUMO1 conjugation to IκBα in HeLa cells, and
treatment with NECA, a non-specific adenosine receptor ag-
onist, increased SUMO1 conjugation to IκBα in a
concentration-dependent manner. In contrast, a nonselective
adenosine receptor antagonist, 8-phenyltheophylline,
abolished NECA-induced IκBα SUMO1-ylation [76].
However, exactly how adenosine receptor activation leads to
enhanced SUMOylation of IκBα is unknown.

Fig. 4 Evaluation of guanosine effects on global SUMO1 conjugation in
neurons. Representative SUMO1 Western blots from neurons treated
with guanosine (1–500 μM) for a 1 h, b 6 h, c 24 h, and d 48 h.
Optical density quantification of global SUMO1 conjugation for e 1 h, f

6 h, g 24 h, and h 48 h. GAPDH was used as a loading control. Results
expressed as mean + standard error of the mean (n = 3–5 independent
experiments). One-way ANOVA followed by Newman-Keuls multiple
comparison analyses (*p < 0.05 vs. control). C, control; kDa, kilodaltons
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Fig. 6 Guanosine-mediated increases in neuronal SUMO2/3 conjugation
occur via extracellular mechanisms. a Representative Western blots of
high molecular weight a SUMO1 and b SUMO2/3-conjugated proteins
and their respective optical density quantifications in c and d. Neurons
were co-incubated with dipyridamole (Dip, 10 μM) and guanosine (1, 10,

100, 300, and 500 μM) for 1 h. GAPDH was used as a loading control.
Results expressed as mean + standard error of the mean (n = 3 indepen-
dent experiments). One-way ANOVA followed by Newman-Keuls mul-
tiple comparison analyses indicates the effects of the treatments with
guanosine. C, control; kDa, kilodaltons

Fig. 5 Guanosine does not affect
astrocyte or neuronal viability
and morphology. a Graph
showing cellular viability (for
MTT assay) of control and
guanosine-treated astrocytes
(500 μM, 1 h). bConfocal images
of control and guanosine-treated
astrocytes (100 μM, 48 h) stained
for GFAP (glial fibrillary acidic
protein, astrocytic marker) and
DAPI (nuclear marker). c Graph
showing cellular viability (for
MTT assay) of control and
guanosine-treated neurons
(500 μM, 1 h). dConfocal images
of control and guanosine-treated
neurons (100 μM, 48 h) stained
for β-tubulin III (neuronal
marker) and DAPI (nuclear
marker). Results expressed as
mean ± standard error of the mean
(n = 3 independent experiments).
One-way ANOVA did not
identify any significant
differences
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Conclusion

The importance of the SUMOylation pathway for neuronal
function and dysfunction is well demonstrated in the literature
[3, 77, 78]. Here we show for the first time that guanosine can
increase global SUMO2/3 conjugation in neurons, in a man-
ner that does not require its uptake into cells and which is
dependent on the modulation of adenosine receptors, most
likely the A1-A2A receptors. Despite much interest in
SUMO as a possible therapeutic target, non-toxic modulators
of SUMOylation are still scarce, although a few chemical
compounds such as TAK-981 [79], ginkgolic acid [80], and
tannic acid [81] have been shown to exert effects on global
SUMO conjugation. Taken together, our results suggest that
guanosine, an endogenous neuromodulator [23, 24, 82, 83],
can lead to enhanced SUMO2/3-ylation, a phenomenon that
has been shown to be neuroprotective against a number of cell
stressors [3, 9, 13, 14, 16, 84]. Our findings therefore highlight
guanosine as a potential therapeutic strategy to promote neu-
ronal and glial survival.
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