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Abstract Cancer is a chronic disease and its pathogenesis is
well correlated with infection and inflammation. Adenosine is
a purine nucleoside, which is produced under metabolic stress
like hypoxic conditions. Acute or chronic inflammatory con-
ditions lead to the release of precursor adenine nucleotides
(adenosine triphosphate (ATP), adenosien diphosphate (ADP)
and adenosine monophosphate (AMP)) from cells, which are
extracellularly catabolized into adenosine by extracellular
ectonucleotidases, i.e., CD39 or nucleoside triphosphate
dephosphorylase (NTPD) and CD73 or 5'-ectonucleotidase.
It is now well-known that adenosine is secreted by cancer as
well as immune cells during tumor pathogenesis under met-
abolic stress or hypoxia. Once adenosine is released into the
extracellular environment, it exerts various immunomodula-
tory effects via adenosine receptors (A, Asa, Az, and Aj)
expressed on various immune cells (i.e., macrophages,
myeloid-derived suppressor cells (MDSCs), natural killer
(NK) cells, dendritic cells (DCs), T cells, regulatory T cell
(Tregs), etc.), which play very important roles in the patho-
genesis of cancer. This review is intended to summarize the
role of inflammation and adenosine in the immunopathogen-
esis of tumor along with regulation of tumor-specific immune
response and its modulation as an adjunct approach to tumor
immunotherapy.
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Introduction

Cancer is a very complex disease and is characterized by
plethora of changes in a large number of genes; therefore, it
can be characterized as a chronic disease [1, 2]. Intense re-
search in the field of cancer biology and its pathology has led
to the establishment of six signature signs of malignant or
tumor cells, which have been described very elegantly by
Hanahan and Weinberg as hallmarks of cancer: (1) cancer cells
keep their proliferative signaling mechanisms active and intact
all the time, (2) have tendency to inhibit or evade their growth-
suppressing mechanisms, (3) have power to inhibit natural cell
death by apoptosis, (4) have high power of replicative immor-
tality, (5) have tendency to induce neoangiogenesis within
tumor microenvironment, and (6) have tendency to metasta-
size to different organs. Besides these properties, successful
cancer cells coevolve with host environment and need sup-
portive niche but the host environment also has potent destruc-
tive effects on growth and differentiation of these cancerous
cells [3]. So, successful survival of cancer cells depicts the
picture of failure of the host system (i.e., immune system) to
control their growth and metastasis. Additionally, in later
stages, supportive role of immune system for tumor cell sur-
vival and metastasis leads to advancement of cancer.

The exact cause of cancer is still unknown and more atten-
tion is now focused on the interrelationship between cancer,
infection, and inflammation (Fig. 1). For example, more than
200,000 women die every year from cervical cancer, which has
a close association with human papilloma virus (HPV) infec-
tion of female genital tract (i.e., cervix) [1]. Helicobacter pylori
infection is also linked with gastrohelcosis, a form of precan-
cerous stage of gastric cancer [4]. Studies have shown 1.9 mil-
lion cases of cancer per year (2002) are mediated by different
types of infections, which comprises about 17.8 % of the
worldwide cancer burden [5]. For example H. pylori infection
accounts for 5.5 % of all cancers, HPV for 5.2 %, hepatitis B
and C viruses for 4.9 %, Epstein—Barr Virus (EBV) for 1 %,
and HIV-1 together with human herpes virus 8 account for
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Fig. 1 Interconnection of inflammation originating from different
causes and induction of cancer-related inflammation and cancer devel-
opment. Accordingly, cancer and inflammation are interlinked condi-
tions and various infections (i.e., H. pylori, human papiloma virus
infection, hepatitis B and C virus infection, or human immunodeficien-
cy virus infections) or sterile chronic inflammation (i.e., inflammatory
bowel disease (IBD) and obesity) can lead to development to favorable
conditions (i.e., induction of immune suppression) within the host for

0.9 %, schistosomal infections for 0.1 %, HTLV-1 virus for
0.03 %, and liver flukes worm infections account for 0.02 % of
cancers [6]. Thus, total estimated incidence was about 26.3 %
of all cancers in developing countries and 7.7 % in the devel-
oped world. It will be a good therapeutic approach to fight
against gastric cancer by targeting H. pylori infection. Howev-
er, along with the infection hypothesis, the link between in-
flammation and cancer is also getting stronger with
advancement of cancer research.

Different findings comprising of epidemiological studies
of patients and molecular studies done in genetically altered
laboratory animals have provided a stronger link between
inflammation and cancer pathogenesis [7—10]. For example,
risks of various types of cancers (i.e., bladder, cervical,
gastric, intestinal, esophageal, ovarian, prostate, and thyroid
cancer) increases with chronic inflammatory diseases and
nonsteroidal anti-inflammatory drugs (NSAIDs) decrease
the risk of various cancers (like breast and colon cancers)
[11]. Thus, chronic inflammation with (like HPV or H.
pylori infection) or without [i.e., inflammatory bowel dis-
ease (IBD) is associated with increased risk of colon cancer]
infection increases the risk of cancer (Fig. 1). This is not a
new observation, but this interconnection between inflamma-
tion and cancer was made in early nineteenth century,
2,000 years ago by the Greek physician Galenus, who de-
scribed the similarity between inflammation and cancer [7,
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the induction and development of cancer. The cells that get trans-
formed in this manner under these conditions start producing various
supportive factors (i.e., adenosine, various cytokines, chemokines,
hypoxia-inducible factor-1ox (HIF-1), cyclooxygenase-2 (COX-2),
and vascular endothelial growth factor (VEGF required for angiogen-
esis)) that are required for the survival and differentiation of these
transformed or cancerous cells. Thus, this kind of smouldering
cancer-related inflammation has many tumor supportive functions

12]. According to Galenus, it may be possible that cancers
may have evolved from inflammatory lesions. Thus, an im-
portant role that inflammation plays in cancer pathogenesis
was known since 2,000 years ago. The Hippocratic term
“cancer” was originally applied by Galenus to some types of
inflammatory tumors of breast tissue, where swollen and
radiated superficial veins were observed [6].
Cancer-associated inflammation is mainly characterized
by the presence of inflammatory cells (i.e., macrophages,
monocytes, neutrophils, etc.) as well as inflammatory medi-
ators released by these cells (i.e., proinflammatory cyto-
kines, various chemokines, and different prostaglandins) in
tumor environment along with tissue remodeling and angio-
genesis observed during chronic inflammation and tissue
repair [11]. These smouldering signs of inflammation are
also present in cancers for which causal linkage with in-
flammation is still unclear (i.e., breast cancer). However, a
recent study has shown that chronic inflammation can in-
crease the risk of recurrence of breast cancer [13]. In their
study, comprising 734 women treated successfully for early
stage breast cancer, higher levels of circulating acute phase
proteins (APPs) approximately 3 years after treatment were
found, which showed a clear association with twofold ele-
vation in the risk of subsequent disease recurrence and
mortality [13]. This data suggests that inflammation also
plays an important role in breast cancer recurrence and
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associated mortality. Thus, inflammation plays an important
role in tumor pathogenesis and can be nominated as the
seventh hallmark of cancer. However, two groups, which
in true sense proposed this definition, identified a very
different role of immunity and inflammation in cancer path-
ogenesis. For example, Colotta et al. (2009) linked inflam-
mation to genetic instability during cancer pathogenesis [14]
(Fig. 1), while Zitvogel et al. (2008) proposed defect in
immunologic surveillance during cancer pathogenesis [15].
For example, besides escaping from immunologic surveil-
lance, these tumor cells are not immunologically silent cells
as tumor microenvironment is infiltrated with different im-
mune cells [16]. These tumor-infiltrating immune cells can
correlate with tumor prognosis in active progressive tumors
[16, 17].

Adenosine and inflammation

Adenosine is a purine nucleoside, which plays an important
role in every target organ system. Researchers involved in
different fields of biomedical research are actively engaged
in adenosine research due to its plethora of actions on
different biologic systems (i.e., nervous, reproductive, car-
diac, renal, hepatic, and respiratory systems) [18-22]. Aden-
osine, following its release, binds to adenosine receptors,
which belong to a family of G protein coupled receptors
(GPCRs) [23]. There are four different types of adenosine
receptors, i.e., A1, Asa, Asp, and As. Thus, action of adeno-
sine is determined by the kind of a receptor to which it binds.
Although adenosine is constitutively present in the biological
system extracellularly at very low concentration (<1 uM), its
concentration increases under metabolically stressful condi-
tions like inflammation and cancer [24, 25]. Martin et al.
(2000) have reported that plasma adenosine level rises up to
4-10 puM in patients with sepsis [24].

Drury and Szent-Gyorgyi (1929) carried out a seminal
study, which demonstrated both negative ionotropic as well
as coronary vasodilator properties of adenosine and, hence,
the cardioprotective role of adenosine during metabolically
detrimental conditions [26]. Thus, this protective effect of
adenosine led to the generation of the term “retaliatory
metabolite” to describe its tissue protective and remodeling
action by Newby (1984) [27]. Hence, adenosine exerts its
tissue-protective effect by directly decreasing energy demand
of tissue as shown by its negative ionotropic effect on heart
muscles and by directly increasing nutrient availability
through increased vasodilation [28]; this finding can ex-
plain why tumor cells secrete adenosine in its environment.

Adenosine also plays an important role in decreasing
tissue injury and maintaining their integrity is by its immu-
nomodulatory action [28]. The immune system acts as a
major player in the development of inflammation and the

pathogenesis of both chronic (i.e., cancer) as well as acute
inflammatory conditions. Thus, modulation of the immune
system by adenosine upon its release during inflammatory
insult may prove detrimental to limit the overwhelming in-
flammation and resulting tissue damage, but this property of
adenosine has tumor-promoting consequence. Earlier findings
by Jonathan et al. have shown that the extracellular concen-
tration of adenosine in extracellular fluid of solid carcinomas
may reach to 10~ M (10-20-fold higher than normal concen-
tration), which may exert a potent immunosuppressive and
cancer growth-promoting effect [62]. However, according to
these researchers, the concentration of adenosine was not well
correlated with size of tumors.

Adenosine as a sensor for inflammation

The immune system plays a very important role in pathogen-
esis of both infection- as well as noninfection-associated
cancer. Therefore, modulation of this diverse system by aden-
osine can act as a good therapeutic target to prevent inflam-
matory damage and, thus, mortality. However, this action of
adenosine on immune system is determined by its bioavail-
ability and adenosine receptor expression on the immune
cells, which are present within tumor microenvironment. Un-
der normal conditions, adenosine is mainly generated at the
intracellular level from S-adenosylhomocysteine by S-
adenosylhomocysteine hydrolase and transported across cell
membranes via purine transporters [29]. Level of adenosine in
extracellular environment is controlled by nucleoside or
purine transporters [30, 31]. These purine transporters are
divided into two main categories [32]: (1) equilibrative
purine or nucleoside transporters, transporting nucleosides
in/out, depending on the concentration of adenosine and (2)
concentrative purine or nucleoside transporters, facilitating
intracellular influx of adenosine against the concentration
gradient. However, acute tissue insult or hypoxia (i.e., tumor
microenvironment) causes dephosphorylation of adenosine
triphosphate (ATP) into adenosine via 5'-nucleotidase
enzymes (endo-5"-nucleotidase and ecto-5"-nucleotidase).
During this process, activity of adenosine kinase is also
suppressed causing the inhibition of salvage activity of this
enzyme and an increase in adenosine levels. For example,
under hypoxic conditions during inflammation or within
tumor microenvironment, inhibition of adenosine kinase
causes 15-20-fold increase in both extracellular as well as
intracellular levels of adenosine [231]. Generation of
hypoxia-inducible factor-1 alpha (HIF-1«) during hypoxic
conditions also leads to upregulation of ecto-5'-nucleotidase
or CD73 activity leading to increased synthesis of adenosine
[232, 233]. Besides leading to increased release of adeno-
sine in tumor microenvironment, HIF-1x and its short iso-
form 1.1 also negatively regulate CD4" and CDS8" T cells
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leading to the decreased production of interferon-y (IFN-y),
tumor necrosis factor-o« (TNF-o0), IL-2, IL-4, and IL-13
[234]. This study shows that HIF-1-mediated immunosup-
pressive action on T cells complements the tissue-protective
anti-inflammatory and immunosuppressive actions of aden-
osine in hypoxic environment. Thus, adenosine and hypoxia
both lead to immunosuppression during inflammation and
tumor pathogenesis. In addition to this, HIF-1x-deficient
chimeric mice develop abnormal B lymphocyte develop-
ment (i.e., appearance of abnormal peritoneal B-1-like lym-
phocytes, with high expression of B220 (CD45) receptor-
associated protein tyrosine phosphatase) and autoimmunity
(i.e., anti-dsDNA antibodies and rheumatoid factor in se-
rum, deposits of IgG and IgM in kidney and proteinuria as
well as distortions of maturation of B-2 lymphocytes in
bone marrow) [242]. In addition to this, T cell-specific
deletion of HIF-1« in mice prevented them from acquiring
sepsis and led to exaggerated proinflammatory immune
response required to clear bacteria efficiently from circula-
tion and increased their survival; these elevated HIF-1«x
levels may lead to immunosuppression [243]. CD73 (ecto-
5'-nucleotidase) and CD39 [nucleoside triphosphate dephos-
phorylase (NTPD)] play major roles in maintaining high
extracellular concentration of adenosine during metabolic
stress (i.e., tumor) by directly catabolizing ATP into adeno-
sine [29]. However, adenosine bioavailability is also influ-
enced by an enzyme known as adenosine deaminase (ADA).
ADA catabolizes adenosine into inosine, which further
degrades into uric acid.

The inosine formed due to deamination of adenosine gets
accumulated to higher concentration (>100 uM) in ischemic
tissues and acts as a weak partial agonist for A; receptor

Fig. 2 Adenosine release
during cancer-related inflam-
mation and its impact on major
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[33]. Thus, the adenosine signaling in immune system is
initiated by both upstream as well as downstream metabo-
lites of the adenosine, i.e., adenine nucleotides exhibit a
powerful immunomodulatory effect via P2-purinoceptors
and inosine and uric acid also influence many facets of
innate immunity [34-36]. Hence, adenosine system acts as
a sensor, which provides information to the immune system
about the inflammatory changes occurring in the vicinity of
the immune system (Fig. 2). However, it took more than
three decades to establish the role of adenosine in the
pathogenesis of inflammation and the immunosuppressive
properties of adenosine-mediated induction of higher levels
of intracellular cAMP [235]. For example, the first two
decades were spent on establishing the inhibitory role of
adenosine on inflammation and showed the immunosup-
pressive role of elevated intracellular cAMP due to adeno-
sine receptor-mediated signaling. This era also revealed
different stimuli and conditions leading to release of aden-
osine into the extracellular space.

This advancement in the field of adenosine and inflam-
mation biology interconnection led to establishment of
“purinergic” receptors concept by Burnstock [236] and foun-
dation of pharmacological approaches to modulate adenosine-
mediated inflammatory processes. Now, availability of aden-
osine receptor gene-deficient mice advanced the field of pu-
rine biology of inflammation and inflammation-related
disorders (i.e., cancer). For example, now, we can easily study
the immunoregulatory role of adenosine mediated by specific
adenosine receptor in vivo during acute or chronic inflamma-
tory conditions responsible for the induction, growth, and
development of tumor. This can be explained by the study
performed by Ohta and Sitkovsky in 2001, where these
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authors, for the first time, used the A, receptor knockout
mice to elucidate the critical role of A, 5 receptor activation in
the down regulation of acute concavlain A (Con-A)-induced
live injury [237]. In addition to this, they also confirmed the
tissue-protective action of A, 4 receptor in other models of live
injury and systemic inflammation. Thus, the adenosine-
mediated immunosuppressive action is mediated by its bind-
ing to A,agr, causing an increase in the intracellular cAMP
levels in various immune cells (i.e., macrophages, neutrophils,
natural killer (NK) cells, dendritic cells (DCs), and T cells)
expressing A, r in a delayed negative feedback manner
[238]. Thus, during an inflammatory tissue insult, adenosine
acts as a reporter, which decreases inflammatory immune
signaling by binding to its sensor called Ay sg.

Macrophages and cancer

Macrophages have long been (almost more than 100 years
ago) discovered by Eliec Metchnikoff as important innate
immune cells playing a vital role in phagocytosis and clear-
ing of foreign particles (i.e., bacteria or dying cells). For
example, they clear approximately 2x 10" red blood cells
(RBCs) each day [37]. However, after their discovery till
now, lots of work have been done in the field of macrophage
biology and established their role in different physiological
(i.e. development, homeostasis, reproduction, tissue remod-
eling and repair, etc.) or pathological process (i.e., fibrosis,
obesity, cancer, etc.) [37, 38]. However, the role of macro-
phages in cancer development always encouraged research-
ers to identify their exact role in tumor development. This is
because besides being very potent phagocytic innate im-
mune cells they fail to clear tumor cells and promote their
growth, invasion, and metastasis [39, 40].

Macrophages are categorized into different subpopula-
tions depending on the anatomical site of their location
and functional physical characteristics [41]. For example,
tissue- or organ-localized macrophages include peritoneal
macrophages (macrophages present in peritoneum), Kupffer
cells (liver macrophages), osteoclasts (bone macrophages),
histiocytes (interstitial connective tissue macrophages), pul-
monary alveolar macrophages (macrophages residing in
lungs), and microglial cells of the brain. In addition to these
sites, macrophages are also present in eyes, testes (immune
privileged sites), etc. Hence, macrophages are present wide-
ly at every compartment of the body and can be activated by
both endogenous and exogenous stimuli following infection
or inflammatory trauma. However, macrophages can also be
stimulated by signals induced by other antigen-specific im-
mune cells [37]. These signals produced by these specific
immune cells are very clear, strong, and long lasting, which
lead to alteration in macrophages for a very long period of
time [42].

Classically activated macrophages (M1 macrophages)

This term is used for those macrophages that are produced
during cell-mediated immune response. This response main-
ly involves the combination of two signals: (1) [FN-y and
(2) TNF-« signaling. Macrophages activated through both
these signaling pathways have enhanced tumoricidal action
and secrete higher concentration of proinflammatory cyto-
kines and mediators [43, 44]. IFN-y can be generated by
both either innate immune cells (i.e., NK cells) or adaptive
immune cells (i.e., T cells). NK cells are important innate
immune cells, which play a role in tumor cell killing and
tumor immunity. They respond to cells under stress (i.e.,
virus-infected cells) or against tumor by direct cytotoxic
effect or through IFN-y production. IFN-y released from
NK cells primes tumor-associated macrophages (TAMs) to
produce further higher levels of proinflammatory cytokines
and other inflammatory mediators (i.e., superoxide anions or
free radicals), which have tendency to directly kill tumor
cells (Fig. 3). However, production of IFN-y by NK cells is
transient and cannot sustain a population of classically acti-
vated macrophages against tumor. Besides NK cells, invari-
ant natural killer T (iNKT) cells also produce IFN-y and
exhibit antitumor activity [45] (Fig. 3). The number of iNKT
cells in peripheral blood from the patients of advanced
prostate cancer was markedly decreased and their IFN-y
producing capacity was also quite low [45]. This indicates
that, in patients, it may lead to impaired classical activation
of macrophages helpful in removing tumor cells. This is
further strengthened by a recent study in patients with gas-
trointestinal tumor under Imatinib Mesylate [46]. NK cell
IFN-y levels predict the long-term survival of these cancer
patients [46]. Increased survival of these patients with
higher IFN-y levels upon Imatinib Mesylate treatment
shows that IFN-y exhibits its tumoricidal effect by activat-
ing the residential macrophages in tumor microenvironment
and activation of direct antitumor action NK cells. Thus,
therapies that can lead to generation of classically activated
macrophages can become a better immunomodulatory ap-
proach to fight against cancer (Fig. 3).

However, earlier, it was believed that these M1 macro-
phages may contribute to the earliest stages of neoplasia
[47] by releasing free radicals and promoting cell transfor-
mation. This scenario is now changed as some in vitro
studies have made clear that M1 macrophages are only
cytotoxic to tumor cells but not to normal cells and, there-
fore, these M1 cells help in the early eradication of neo-
trasfromed cells [48—53]. Another way by which M1
macrophages exert their antitumor activity is through their
antagonistic action on tumor-promoting action of TAM:s,
myeloid-derived suppressor cells (MDSCs), M2 macro-
phages, regulatory macrophages, and immature myeloid
cells (i.e., all these cells suppress adaptive tumor-specific

@ Springer



150

Purinergic Signalling (2013) 9:145-165

Fig. 3 Interaction of M1 and M2

macrophages in tumor
microenvironment and release of
adenosine by tumor cells, TAM
and MDSCs leading to promote
conversion of M1 macrophages
to M2 phenotype. Adenosine via
binding to its corresponding
receptors (Aar) expressed on
macrophages leads to release of
IL-4 and IL-10 leading to sup-
pression of antitumor immune
response and helping the growth
of tumor cells. Adenosine also
leads to inhibition of release of
IL-12 from macrophages leading
to impairment of T cell priming
and suppression of antitumor im-
mune response. Imatinib Mesy-
late increases tumoricidal activity
of M1 macrophages and NK cells

Promote Tumor Growth

immune response and promote tumor growth and develop-
ment) [54-59]. The exact role of macrophages in early
stages of cancer is still controversial and yet to be deter-
mined. However, it generally seems to be that these cells
resemble classically activated macrophages and have in-
flammatory as well as tumor-destructive phenotype.

Adenosine and macrophage interaction in tumor
microenvironment

In tumor microenvironment, due to disordered and over-
whelming growth of tumor cells or expanding cancer cells,
the supportive vascular supply cannot fulfill the demand for
oxygen and other required nutrient supply. This leads to
development of a site that is low in oxygen and generates
hypoxic stage within the tumor microenvironment. In squa-
mous cell carcinoma of the cervix, head, and neck, the
hypoxic region can be as much as 20-32 % of tumor mass
[60]. As earlier mentioned, hypoxia is one of the major
causes for production of adenosine; therefore, adenosine is
found at higher concentration in these hypoxic sites associ-
ated with tumor. In vitro studies with 3LL Lewis lung
carcinoma cells have shown that hypoxia stimulates adeno-
sine production by tumor cells [61] (Fig. 3). In situ micro-
dialysis studies in human and mouse models of colorectal
carcinoma have also made clear that extracellular levels of
adenosine were increased to more than 20-fold as compared
to surrounding normal tissue environment [62]. Similar
findings regarding higher extracellular levels of adenosine
in solid tumor microenvironment have also been confirmed
by Ohta et al. (2006) [63]. Besides being regulation of
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production of adenosine by CD39 and CD73 (described
earlier), its levels are also controlled by dipeptidyl peptidase
IV/CD26 [a binding protein for ADA] [64—67]. However,
adenosine downregulates the expression of dipeptidyl pep-
tidase IV/CD26 and its binding to ADA in colorectal carci-
noma cells, which leads to further increase of extracellular
adenosine levels in certain solid tumors [67].

Macrophages express all four types of adenosine recep-
tors (A, Asa, Asp, and Aj). Activated macrophages are
capable of contributing to extracellular concentration of
adenosine via generation of ATP molecules [68]. Fischer
et al. (1976) have demonstrated that ADA activity increases
during early monocyte differentiation into macrophages and
inhibition of ADA activity decreases the process of mono-
cyte differentiation into macrophages [69]. Najar et al.
(1990) have also shown that exogenous adenosine pre-
vented monocyte differentiation into macrophages and
blocked monocyte development at a stage that resembles
phenotypically to DCs [70]. Merril et al. (1997) have shown
that binding of adenosine A; receptors expressed on mono-
cytes promoted transformation of monocytes into multinu-
cleated giant cells, but the binding of adenosine to A,
receptors prevented generation of giant cells [71]. Intracel-
lular mechanisms, which are generated by binding of aden-
osine to its receptors on monocytes and affecting its
maturation, remain unclear and are yet to be discovered.
However, the mechanism of adenosine-mediated inhibition
of macrophage proliferation was discovered by Xaus et al.
(1999) [72]. They showed that adenosine inhibited macro-
phage colony stimulating factor (M-CSF)-dependent prolif-
eration of murine bone marrow-derived macrophages
(BMDM). Adenosine induces the expression of p?’*7! i
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a protein kinase A (PKA)-dependent pathway, causing G1
growth phase arrest of cell cycle of macrophages without
inducing their apoptosis. Despite affecting the maturation of
monocytes into macrophages, adenosine also suppressed the
phagocytic function of macrophages by occupying the A,
receptors [68, 73].

Macrophage recruitment to tumors is well documented in
the PyMT mouse model of breast cancer [74, 75] at different
stages of tumor development, i.e., adenoma/mammary intra-
epithelial stage, once the tumors have progressed to an early
malignancy stage [74, 76]. The same situation is also found
in human endometrial and breast cancers [77, 78]. This
recruitment of macrophages in this tumor microenvironment
is dependent on CSF-1 (promoting the macrophage trophic
phenotype) and also mediated by IL-4 and IL-10 (leading to
immunosuppressive phenotype of macrophages) [79-81].

In addition to these factors, oxygen gradient may also act as
a crucial factor for monocyte migration towards inflammatory
as well as at the site of tumor. Local hypoxic environment
impacts transendothelial monocyte migration and recruitment
by upregulating the expression of endothelial cell adhesion
molecules and of various chemoattracting factors, i.e., vascular
endothelial growth factor (VEGF), endothelin (ET), endothelial
monocytes-activating polypeptide II (EMAPII), angiopoietin-2
(Ang-2), CD11b and CDI18 (o-integrin and (3,-integrin, re-
spectively), and CXCL12, which contributes to fine tuning of
monocyte migration into inflammatory and tumor sites
[82-86]. All these conditions make M1 macrophages (tumor
inhibiting) to M2 phenotype (tumor promoting) because, at this
stage, there are very few hallmarks of inflammation, i.e.,
edema, pain, redness, and increased body temperature or
fever. For example, in this scenario, it is found that macro-
phage polarization to tumor cell invasion-promoting pheno-
type is also regulated by IL-4, which is synthesized by
CD4" T cells or tumor cells or both [40]. In the absence
of IL-4, TAMs are incapable of promoting invasion and
migration of tumor cells along with reduced metastasis in
PyMT model of breast cancer [81, 87].

Adenosine receptor ligation on monocyte/macrophages
and DCs inhibits the production of IL-12, which leads to
impairment of T cell priming and suppression of antitumor
immune response [88]. IL-12 is considered as an important
antitumor cytokine, which has potent antitumor effects in
mouse models of melanoma, sarcoma, kidney cancer, lung
cancer, colon cancer, and ovarian cancer [§9—94]. Systemic or
peritumoral injection of IL-12 is capable of inducing complete
regression of established tumors, limiting the formation of
distant metastases, and substantially prolonging the survival
of mice harboring a tumor [95]. In some tumor models, mice
experiencing complete responses after IL-12 therapy were
subsequently able to reject transplants of the same tumor,
but not of a different tumor, which indicates that specific
antitumor immunity had been established in those mice [90,

92, 93, 96]. IL-12 was found to be more effective and/or less
toxic than IL-2 in models of colon, ovarian, lung, and renal
cell cancer along with melanoma [90-92, 97]. Moreover, a
combination of IL-2 and IL-12 was more effective than either
cytokine alone in models of primary and metastatic renal cell
cancer. Thus, inhibition of IL-12 cytokine release by immune
cells due to adenosine prove detrimental to host suffering from
cancer and provides an opportunity for tumor to grow faster
and metastasize to distant organs.

All these effects of adenosine on macrophages and mono-
cytes support the growth and proliferation of cancer cells.
However, Broussas et al. (2002) found that adenosine inhibits
the release of tissue factor (TF) from lipopolysaccharide
(LPS)-stimulated human monocytes by binding to A3 recep-
tors [98]. In addition to this, adenosine has also inhibited TF
release from thrombin or other inflammatory mediator-
stimulated endothelial cells by a nitric oxide (NO)-mediated
mechanism [99]. Increase in intracellular cAMP is implicated
in this inhibition of NO and TF production. This inhibitory
effect of adenosine on TF release from various cells under
various inflammatory stimuli leaves a question to think: is
adenosine a friend or foe for host during cancer pathogenesis?
This is due to the well-established fact that TF is expressed by
tumor cells and contributes to a variety of pathologic process-
es (i.e., thrombosis, metastasis, tumor growth, and tumor
angiogenesis) [100-102]. For instance, tumor cells release
TF-positive procoagulant microparticles into the circulation
and these may trigger venous thromboembolism in patients
with cancer. TF on circulating tumor cells also coat cells with
fibrin, which traps them within the microvasculature and
facilitates hematogenous metastasis. Additionally, TF:FVIla-
dependent activation of PAR2 on tumor cells increases tumor
growth via an undefined mechanism. Thus, all these positive
effects of TF suggest that TF inhibition can prove helpful in
decreasing the metastasis as well as growth and proliferation
of cancer cells. Adenosine has shown this potential in different
inflammatory conditions. Adenosine increases the VEGF re-
lease from macrophages, thus facilitating the process of an-
giogenesis [103]. Adenosine and LPS via A,4 receptors and
toll-like receptor 4 (TLR4) synergistically upregulate the pro-
duction of VEGF by macrophages in hypoxia- and NO-
independent manner [104].

Hence, adenosine regulates differentiation, proliferation,
and other secretory functions of macrophages by binding to
the corresponding receptors they express and the analogs of
adenosine can be used as future therapeutics to control inflam-
matory or tissue-damaging functions of macrophages in cancer.

Myeloid-derived suppressor cells in tumor environment

MDSC:s are a type of immune cells, which comprise hetero-
genic population of immature myeloid cells including myeloid
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progenitors and precursors of macrophages, granulocytes, and
DCs [105]. These are mainly characterized by their suppres-
sive effects on T cells functions [105]. In mice, these cells are
characterized by the expression of CD11b and Gr-1. However,
recently, they are further subdivided into two different subsets
on the basis of expression of Ly-6C and Ly-6G [106]. Accord-
ing to this, CD11b"Ly6G ™ Ly6C'*™ MDSCs are granulocytic
in nature and are called granulocytic-MDSCs (G-MDSCs),
while CD11b"Ly6G Ly6C™" MDSCs are monocytic cells
and are referred as monocytic-MDSCs (M-MDSCs) (Fig. 4).
It was observed that in mice bearing tumors, granulocytic
MDSCs had increased concentration of reactive oxygen spe-
cies (ROS) and undetectable level of NO, while monocytic
MDSCs had increased level of NO but undetectable levels of
ROS. These investigators found that level of MDSC-mediated
T cell suppression did not depend on the expression of these
molecules. This study indicates that immunosuppressive fea-
tures of MDSC are caused not by expansion of a specific
subset but more likely represent a functional state of these
cells [106]. In cancer environment, phenotypically as well as
morphologically, most MDSCs are G-MDSCs, which also
express CSF-R and CD244 molecules and exhibit higher
arginase, myeloperoxidase (MPO), and ROS activities [107].

However, in cancer patients, MDSCs are defined by the
expression of common myeloid marker CD33, which lack
markers of mature myeloid and lymphoid cells [108]. In

melanoma patients, another subset of monocytic MDSC has
been identified with CD14"CD11b"HLA-DRI°*/"*¢ pheno-
type [109, 110]. Two main subpopulations of MDSCs taking
part in suppression of immune system in melanoma and colon
cancer are: CD14" monocytes and CD15" neutrophils and
both of these cell types express IL-4 receptor (CD124). In
patients of advanced nonsmall cell lung cancer, these MDSCs
are characterized as CD11b'CD14 CD15°CD33" cells [111,
112]. Thus, these findings suggest that, in human, cancer
phenotype of MDSCs varies in different cancer types, but
their function remains same, that is, inhibition of effective
antitumor immune response mediated by T cells and help in
the progression and metastasis of the tumor. Corzo et al.
(2010) have shown that MDSCs in tumor-bearing mice dis-
play a biological dichotomy governed by the tumor microen-
vironment [113]. According to these researchers, in peripheral
lymphoid organs, MDSC, by producing ROS, primarily in-
duced antigen-specific T cell nonresponsiveness. However,
within tumor microenvironment, MDSC with the same phe-
notype produced low ROS but dramatically higher levels of
NO and exhibited higher arginase activity, leading to suppres-
sion of antigen-nonspecific T cell functions (i.e., suppression
of T cell proliferation and IFN-y production). As compared to
MDSC:s residing in spleen, MDSCs present in tumor micro-
environment rapidly differentiated primarily into TAMSs in the
presence of HIF-1o.. These TAMs were capable of producing

Fig. 4 Adenosine and MDSC interaction in tumor microenvironment.
Due to increased energy demand, hypoxic environment in tumor mass,
which leads to synthesis and release of HIF-1x from tumor cells. This
hypoxia leads to generation of several tumor-derived factors (TDFs)
(i.e., adenosine, VEFG, TGF-f, etc.). These factors act as major
chemoattractants for MDSCs and stimulate their migration from bone
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marrow (BM) to tumor microenvironment. Once in tumor microenvi-
ronment, these MDSCs act as major immunosuppressor cells by re-
leasing adenosine as well as other immunosuppressive cytokines (i.c.,
IL-10 and arginase-1). This extracellular increase in adenosine levels
suppresses antitumor immune response mediated by DCs, NK cells,
and T cells
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higher levels of IL-10, arg-1, IL-6, and iNOS (Fig. 4). Thus,
this study helps to explain that the difference between the
nature of T cell response in the tumor microenvironment and
in the peripheral lymphoid organs in tumor-bearing animals
depends on MDSCs and HIF-1« interplay.

Factors responsible for MDSC infiltration
and accumulation in the tumor

In healthy and tumor-free mice, MDSCs represent ~30 % of
the normal bone marrow cells and <3 % of all nucleated
splenocytes [113]. Their number dramatically increases in
tumor environment as well as in peripheral blood and organs
(i.e., spleen) in tumor-bearing mice. Earlier, it has been
described that cancer is disease of chronic inflammation
because cellular mediators and effector molecules of inflam-
mation are important constituents of tumor microenviron-
ment, and even in some types of tumors, inflammatory
conditions are present before a malignant change occurs
(i.e., colitis induced colon cancer or HPV induced cervical
cancer, etc.). Thus, these two factors (i.e., inflammation and
infection) are the two major events, which promote the
migration of MDSCs into the tumor microenvironment to
prevent overshooting and overwhelming immune response
dangerous to host [114]. Different animal studies have pro-
vided strong evidence for the accumulation of MDSCs into
the tumor site as well as in periphery (i.e., blood, spleen,
bone marrow, or in lymph nodes (LN), too) and their num-
ber represents >20 % of all splenocytes [105, 115-118].
This accumulation of MDSCs into the tumor microenviron-
ment is due to partial blockage of their differentiation.
Recruitment of MDSCs from bone marrow to tumor micro-
environment is thought to be mediated by the production of
tumor-derived factors (TDFs) (i.e., VEGF, TGF-f3, IL-6, IL-
10, CSF-1, and GM-CSF) [119] (Fig. 4). However, all this
phenomena of MDSC infiltration into the tumor site is
dependent on tumor burden as well as array of TDFs pro-
duced by the tumor itself and host cells [105, 120].

MDSCs and adenosine in tumor environment

It is well characterized by early research that acute inflam-
mation or tissue damage or tissue hypoxic condition leads to
generation of adenosine intracellularly and then subsequent
release of this adenosine into the extracellular environment
via nucleoside (adenosine) transporters. In addition to this,
adenosine can also be generated extracellularly by CD39
(NTPDase) and CD73 (Ecto5'NTase). Thus, both of these
mechanisms lead to a higher level of extracellular adenosine
in tumor microenvironment, which are under hypoxia. How-
ever, adenosine exerts its immunomodulatory action by

binding to different adenosine receptors (i.e., A, Asa, Asp,
and A;) expressed on immune cells. A recent study by Ryzhov
et al. (2011) has shown that extracellular higher levels of
adenosine in tumor microenvironment are associated with
the expansion of CD11b"Grl™ MDSCs [121] (Fig. 4). This
novel finding showed that adenosine is also involved in the
infiltration and accumulation of MDSCs in tumor [121]. By
further extending their study, they have shown that A, aden-
osine receptors on hematopoietic cells play an important role
in accumulation of intramural CD11b"Gr1™" cells in mouse
Lewis lung carcinoma model in vivo. These receptors enhance
preferential expansion of the granulocytic CD11b"Gr1"e"
subset of MDSCs (CD11b"Ly6G™Ly6C™) or G-MDSCs
in vitro. Their data also showed that CD11b'Gr1"€" subset
had the highest levels of CD73 expression as compared to
CD11b"Grl ¥ subsets. This finding was well correlated
with higher ecto-5-nucleotidase enzymatic activity of CD73
on CD11b"Gr1™&" MDSCs. Along with the expression of
CD73, these G-MDSCs also express CD39 [121]. Thus, both
enzymes required for the synthesis of extracellular adenosine
are expressed on G-MDSCs (Fig. 4). This generation of
adenosine by CD73 expressed on G-MDSCs may play an
important role in their expansion, proliferation, and immuno-
suppressive activity. However, further studies are required to
explore the mechanism of regulation of MDSCs by adenosine
or vice versa.

Adenosine and dendritic cells interaction in tumor
environment

DCs bridge innate immunity and adaptive immunity. These
act as antigen-presenting cells (APCs) and have strong T cell
activation potential during infection or tumor pathogenesis
[122]. Immature DCs upon activation by different stimuli
[i.e., pathogens or other inflammatory signals (i.e., inflam-
matory cytokines, alarmins, nucleotides, etc.)] lose their
phagocytic activity and acquire the characteristics of mature
DCs [i.e., expression of high level of major histocompati-
bility complex (MHC) molecules and costimulatory mole-
cules (CD54, CD80, CD86, and CD83)] [123, 124]. During
metabolic stress, in absence of TLR activation, adenosine
acts as a chemotactic factor to promote the chemotaxis of
immature human DCs through A; and Aj; receptors [125,
126]. This leads to intracellular increase of calcium concen-
tration and actin reorganization [125, 126]. However, in
fully mature DCs, adenosine strongly suppresses the TLR-
induced release of IL-12 via binding to A, receptors and
suppresses antitumor immune response. This inhibitory ef-
fect of adenosine on IL-12 release promotes tumor growth
as [L-12 is a potent antitumor cytokine as described earlier.
Adenosine increases LPS-induced expression of CD54,
CD80, CD86, MHC-1, and HLA-DR molecules on
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immature DCs [127]. Adenosine increases the macropino-
cytosis of immature DCs and increases profound release of
IL-10, whereas it decreases capacity of immature DCs to
activate naive T cells (CD45RA™) and allogenic CD4" T
cells. Both these functions of adenosine decrease antitumor
action of DCs by suppressing the effective T cell-mediated
antitumor immune response. Adenosine causes hypersecre-
tion of chemokine ligand 17 (CCL17) and inhibits chemo-
kine ligand 10 (CXCL10) release from mature DCs.
CXCL10 chemokine is considered as an antitumor cytokine
and has antimalignancy action [128]. Thus, decrease in
CXCL10 secretion from DCs via adenosine may increase
tumor growth. On the other hand, CCL17 has been linked to
accumulation of FOXP3" regulatory T cells (Tregs) in gastric
cancer [129]. In a recent study, selective knock down of
CCL22 and CCL17 expression by siRNA decreased the
ratios of CD4" to CD8" as well as the frequency of Tyegs
recruited by monocyte-derived DCs (MoDCs) [130]. Intra-
tumoral injection of CCL22 and CCL17 knockout DCs
significantly reduced infiltration of T4 in tumor. However,
an increase in the number of cytotoxic T cells (CD8'T) cells
in human tumor xenografts in athymic nude mice was also
observed. Thus, this study indicates inhibiting the CCL17
levels within the tumor microenvironment can provide in-
sight into cellular interactions in tumor immunology and
may provide new strategy for DC vaccine development to
improve cancer immunotherapy. Thus, adenosine inhibits
the T cell-promoting activity of DCs through which they
promote the differentiation of T cells into Th1 helper cells.
Therefore, in brief, adenosine affects various activities of
DCs, i.e., antigen capture regulation, expression of costimu-
latory molecules, cytokine, or chemokine release and also
the ability of DCs to initiate and differentiate Thl immune
response. Ryzhov et al. (2008) showed that at hypoxic site
(i.e., cancer and inflamed or damaged tissues), activation of
adenosine receptors skews the differentiation of DCs to-
wards a totally different cell population [131]. This change
is characterized by expression of different DC and mono-
cytes/macrophage cell surface markers and is mediated via
A,p receptors. In comparison to myeloid DCs, adenosine-
differentiated DCs exhibit different allostimulatory activities
and produce higher levels of proinflammatory, angiogenic,
and immune suppressor/tolerogenic effector molecules (i.e.,
VEGF, IL-8, IL-6, IL-10, COX-2, TGF-3, and IDO). DCs
differentiated under the influence of adenosine promote tumor
growth if these DCs are injected into Lewis lung carcinoma
tumors implanted in mice [132]. Thus, adenosine action via
A,p receptors on DCs plays an aberrant role during DC
differentiation and maturation and causing a direct effect on
their angiogenic, proinflammatory, and tolerogenic properties.
Thus, adenosine has immunomodulatory properties and can
modulate various antitumor functions of DCs during cancer
pathogenesis.
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Adenosine and natural Killer cell interaction
during cancer

NK cells are a type of innate immune cells and share
common progenitor cells with T cells so they are also
referred as innate immune lymphocytes. While progenitor
T cells move to thymus for acquiring proper T cell character-
istics, the NK cells develop extrathymically in bone marrow
[133]. NK cells play a very important role in the pathogen-
esis of different types infectious diseases originating from
different causal organisms (i.e., viral, bacterial, parasitic as
well as fungal) [134—136]. They produce various cytokines
and chemokines in response to these pathogens, i.e., [FN-y,
TNF-«, granulocyte-macrophage colony stimulating factor
(GM-CSF), macrophage inflammation protein (MIP)-1c,
MIP-13, and regulated on activation, normal T cells
expressed and secreted (RANTES). NK cells in blood com-
prise 15 % of the peripheral blood lymphocytes, are also
found in the liver and spleen, and in human pregnancy, they
comprise the major innate immune cells (>40 %) that are
present in decidua, called uterine or decidual NK cells
[137-139]. NK cells form the first line of defense against
various viral infections and tumors and play a major role in
graft versus host disease during organ transplantation [140].
Thus, modulation of these innate immune cells may play a
very important role in human health and disease.

In addition to modulation of the function of other innate
immune cells, adenosine has been shown to inhibit TNF-x
release from IL-2 stimulated NK cells [141]. Williams et al.
have shown adenosine at concentrations ranging from 5 to
25 uM significantly inhibit granule exocytosis of NK cell
stimulated with phorbol myristate acetate (PMA) by inter-
acting with novel extracellular receptors without involving
A1 A,, or Ajz receptors [145]. Arie et al. (2003) have
shown that adenosine via binding to Az adenosine receptor
increases antitumor activity of NK cells [142]. Raskovolova et
al. (2005) have shown that adenosine and 2-chloroadenosine
(CADO) inhibit the cytotoxic activity of IL-2-activated NK
cells against 3LL Lewis lung carcinoma cells [61]. Thus,
increased levels of adenosine in tumor environment inhibit
the lytic activity of NK cells via binding to A, receptors.

Adenosine, CADO, and A, receptor agonists CGS, and
5-N-ethylcarboxamide adenosine (CGS21680 and NECA)
inhibit both the perforin- and FasL-mediated lysis of tumor
cells by lymphokine-activated killer (LAK) cells [61]. Var-
ious similar studies, in which LAK cells were isolated from
deficient A; and Aj receptors have confirmed that these
adenosine receptors do not play any role in the adenosine-
mediated suppression of NK cell activity in tumor environ-
ment [143]. However, cAMP-mediated induction of PKA
via binding of adenosine to A,4 receptor inhibits the gener-
ation of proinflammatory cytokines from LAK cells along
with inhibition of their cytotoxic action against tumor cells
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in mice [144]. Adenosine also induces defective granular
exocytosis in mouse NK cells via binding to an unidentified
adenosine receptor and suppresses their antitumor function
[145]. However, oral administration of A3 adenosine recep-
tor agonist, i.e., 2-chloro-N6-(3-iodobenzyl)-adenosine-5-/N-
methyl-uronamide (CI-IBMECA) in mice increased NK cell
cytotoxicity against tumor (B16-F10 melanoma cells) and
serum concentration of IL-12 [146]. Thus, by increasing the
NK cell cytotoxicity and IL-12 serum level from stimulated
NK cells, this A3 agonist decreased the growth and prolif-
eration of B16-F10 melanoma cells [146]. Hoskin et al. have
also shown that 2-CADO inhibits the MHC-unrestricted
cytolytic activity of anti-CD3-activated killer cells, thus
suppressing the antitumor immune response [242]. There-
fore, adenosine modulates the protective effect of innate
immune cells (i.e., macrophages, DCs, and NK cells) to-
wards their cancer-promoting phenotype leading to survival,
growth, and development of tumor mass. This change in
innate immune cell phenotype depends on the binding of
adenosine to its cognate receptors on these cells or by
modulating the concentration of cytokines, which affect
the activity of these cells. Despite affecting the innate im-
mune cells, adenosine also affects the adaptive immune
system by modulating the function of T cells during tumor
growth and development.

Adenosine and T cells

T cells comprise the major constituent of mammalian adap-
tive immunity and help the immune system to fight against
infections (i.e., bacterial, viral, fungal, and parasitic) as well
as various cancers. Thus, modulation of T cell function may
play a very important role in the pathogenesis of these
infectious or other noninfectious inflammatory situations
(i.e., cancer). A study involving the effect of adenosine level
on the function of T cells was initiated after the discovery of
ADA deficiency-mediated severe combined immunodefi-
ciency (SCID), as ADA converts adenosine into inosine
and deoxyadenosine into deoxyinosine [147]. Huang et al.
have shown that, at lower levels, adenosine exerted a strong
inhibitory effect on the T cell receptor (TCR)-triggered
proliferation and of upregulation of interleukin-2 receptor
alpha chain (CD25) molecules on T cells via A, adenosine
receptors without any direct lymphotoxicity [240]. T cells
exhibit greater activity of ADA as compared to B cells and
RBCs [148]. Higher concentration of adenosine can lead to
activation of adenosine receptors expressed on T cells and
may decrease their activity [149]. Both cytotoxic (CD8")
and helper (CD4") T cells express A,x, Ay and Az recep-
tors, while A receptors are absent or are expressed in very
low number [150, 151]. However, the CD8" T cells (i.c.,
antitumor CD8" T cells and human T cells) mainly express

A,4 and A,p adenosine receptors and A3 receptors are
absent on these activated CD8" T cells [152, 153]. However,
studies have shown that mice T cells do not have spare
reservoir for A,, adenosine receptors so transcriptional
and translational control of A,, adenosine receptors on T
cells may act as an important determinants of T cell respon-
siveness to adenosine [241].

Binding of adenosine to these A, and A,g adenosine
receptors leads to increase in intracellular cAMP levels,
which, in turn, leads to inhibition of TCR-mediated induc-
tion of T cell activity [154—156] (Fig. 5). Thus, binding of
adenosine to these receptors expressed on T cells causes
suppression of T cell-mediated adaptive immune responses
like release of various immunoregulatory cytokines (i.e., IL-
2, TNF-«, and IFN-y) without significantly affecting their
expansion [157, 158, 240]. However, this impairment in
effector T cell function remained maintained in these T cells
even after the removal of A,, adenosine receptor agonist,
reflecting the generation T cell memory of the immunomod-
ulatory action of adenosine as described earlier [239].
Adenosine-mediated inhibition of IL-2 in tumor microenvi-
ronment prevents clonal expansion of immunologically ac-
tive antitumor T cells. Researchers have shown that binding
of adenosine to A, or A,p activates protein tyrosine phos-
phatase SHP2, which dephosphorylates IL-2 receptor-
associated STATS and impairs signal transduction through
high affinity IL-2 receptors expressed on T cells [159].
Naganuma et al. (2006) have shown both CD45RB"M" T
cells and Ty, cells from A,, adenosine receptorﬁk mice
were aberrant, thus showing the evidence that A,, receptor
can differentially control expression of both pro- and anti-
inflammatory cytokines released from T cells, which affects
the behavior of these T cells in CD45RB transfer model
[160]. Also, binding of adenosine to A, receptors on T
cells modulates release of IL-12, expression of CD25 and
CD69, granular exocytosis, increased regulation of Fas li-
gand expression, and the proliferation of T cells [161, 162].
Along with this immunosuppressive activity, adenosine has
the ability to inhibit very early steps of T cell activation
associated with TCR and CD28 costimulatory signaling
pathways required for effective antitumor immune response
against cancer [143].

Primed uncommitted CD4" T precursor Th (Thpp) cells
and FoxP3'CD25"CD4" T,egs, produce immunosuppressive
extracellular adenosine as both these cell types express
CD73 (5'-ectonucleotidase), which has the potential to con-
vert 5'adenosine monophosphate (5'-AMP) to adenosine
[163]. Adenosine binding to A,4R expressed by T cells
suppresses their immunostimulatory activity. Kobie et al.
(2006) have shown that these FoxP3'CD25"CD4"* Tregs
express an extracellular 5'ectonucleotidase (CD73), which
converts extracellular 5-AMP to adenosine and suppresses
T cell activity via binding to A, receptors on T cells [163].
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Sitkovsky et al. (2008) have shown that FoxP3"CD25"CD4"
Tregs also express CD39 ecto-ATPase/ADPase and CD73
ecto-5'nucleotidase, which shows involvement of these Tyegs
in synthesis of extracellular adenosine [164]. Lukashev et al.
(2007) have observed presence of healthy normal tissue in
acutely inflamed and hypoxic tissue attacked by the im-
mune system and this protection was mediated by the
release of adenosine in that vicinity, which, by binding to
Aja receptors expressed on T cells and other inflammatory
cells, suppressed their inflammatory activity [165]. Experi-
mental studies involving various transplantable tumors have
shown that genetic deletion of A, adenosine receptors led
to rejection of well-established tumors by endogenously
developed CD8" antitumor T cells in approximately 60 %
of Aja receptor-deficient mice, whereas no rejection was
observed in control wild type mice using the same number
of transplanted cells [63].

Sitkovsky et al. (2008) have also shown that mice treated
with A,4 receptor antagonists exhibited improved CD8" T
cell-mediated inhibition of tumor growth, metastasis, and
neoangiogenesis in cancerous tissue [164]. Thus, adenosine
via binding to its corresponding receptors on T cells modu-
lates their function, which can attribute to development of
cancer and an immunosuppressive and cancer-promoting
environment in the host (Fig. 3). For example, a recent study
by Clayton et al. (2011) has shown that small vesicles
secreted by cancer cells, known as exosomes, contribute to
the increased levels of extracellular adenosine within the
tumor environment [166]. They have shown that exosomes
from various types of cancer cells (i.e., bladder cancer,
colorectal cancer, prostate cancer, mesothelioma, breast can-
cer, etc.) have higher capability of phosphohydrolytic activ-
ity against ATP and 5’AMP due to expression of CD73 and
CD39. Thus, exosomes secreted by cancer cells have higher
tendency to increase the extracellular level of adenosine,
which suppresses antitumor immune response mediated by
T cells via A, receptor [166]. Inhibition of antitumor
immune response mediated by T cells through their A,sr
in adenosine-rich tumor microenvironment may explain the
paradoxical coexistence of tumors and antitumor immune
cells in some cancer patients, which is called the “Hellstrom
paradox” in tumor immunology. Thus, potent immunosup-
pressive activity of adenosine against T cells contributes to
growth and development of tumor mass and tumor have
evolved different strategies to generate adenosine due to its
cancer-promoting and immunosuppressive action against
both innate as well adaptive immune response.

Regulatory T cells in tumor microenvironment

Tiegs are one of the highly potent inhibitors of antitumor
immune response and the greatest barrier to successful
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immunotherapy [167]. T,cgs are concentrated in the tumor
mass during earlier stages of tumor development, leading
to immune escape of the tumor from robust antitumor
immune response. Thus, primary tumor can progress due
to local inhibition of effector immune responses, but
metastatic cells are eliminated by active systemic immune
response [168]. CD4'T cells, which highly express CD25
and play an important role in the suppression and prevention
of autoimmunity, are referred as Tyees [169]. Advancement in
immunology led to more specific characterization of these
cells and now, these are classified as (1) naturally occurring
CD4"CD25heh Theg cells, (2) induced Ty cells (i.e., Trl and
TH3 cells), and (3) CD4"CD25"€" T, cells developing in
the periphery by conversion of CD4+CD25— T cells. How-
ever, all these T, cell populations coexist and play a vital
role in immunosuppression [170-173]. In addition to this,
induced CD4 FoxP3" Tegs (Trl cells) also play an impor-
tant role in immune tolerance [174]. Along with CD25,
expression of FOXP3 has now been taken as uniquely
expressed Ty, marker in mouse [175-177] and its expres-
sion is now considered as a lineage marker for developing
Treg cells [178, 179]. However, in humans, relying on only
FOXP3 expression as a marker of Ty, cells should not be
taken for granted because FOXP3 is also found to be
expressed in activated conventional T cells without any
suppressive activity [180—182].

These CD4"CD25™"FOXP3" Ty, cells show a char-
acteristic anergic state and have the tendency to suppress
the CD4" and CDS'T cells immune response along with
DC-, NK cell-, NKT cell- as well as B cell-mediated
immune response in a concentration and cell-to-cell contact-
dependent manner [183—188]. In addition to the above-
mentioned markers, cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4) and glucocorticoid-induced tumor necrosis
factor receptor (TNFR)-related (GITR) protein are the most
prominent molecules expressed by Ty, cells [189-192].

Development of T, cells is well characterized in a
mouse (C57BL/6N) model of fibrosarcoma as well as in
a colon adenocarcinoma model in BALB/c mice during
tumor progression [193]. Transfer of unfractionated tumor-
draining LN isolated on the ninth day after tumor chal-
lenge completely rejected the established tumors, whereas
even fourfold higher numbers of cells harvested on day 12
provided lesser chance to prevent lethal tumor progression
[193]. This was because of cotransfer of tumor-induced
Tieg cells, which indicate that T, cells are generated or
infiltrated into tumor microenvironment in a very short
time span of tumor development [194]. Thus, this early
induction of T,., cells during tumor development may
significantly affect the disease progression in human as
the time point of T, cell induction in cancer patients
would certainly precede the time of diagnosis in the
majority of patients.
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Infiltration of T, cells in tumor microenvironment

CD4+Treg cells comprise of about 5—6 % of total CD4"T cells
[195]. In addition to naturally occurring CD4+CD25+Treg
cells, other CD4" Tieg cells include Tr-1 cells (secrete IFN-y
and IL-10) and Th3 cells secreting higher levels of TGF-f3, IL-
4, and IL-10 [196-198]. Selectively larger accumulation of
Treg cells in tumor microenvironment was discovered in a
murine fibrosarcoma model, which showed that major cell
population of tumor-infiltrating lymphocytes (TILs) at later
stages of tumor development and progression was comprised
of Ty cells. Their depletion during the effector phase of
tumor progression dramatically enhanced antitumor immunity
as compared to their inhibition at tumor priming stage [193].

Blockade of TGF-f3 and IL-10 in tumor environment led
to partial removal of immunosuppression caused by T,
cells, as both the cytokines are also secreted by T, cells.
Additionally, TGF-f3 also encourages growth and develop-
ment of Ty, cells [193, 199, 200]. Genetically engineered
mice expressing a dominant negative form of the TGF-f3
receptor 1l on lymphocytes showed decreased growth of
transplanted tumor [201, 202]. This effect was due to insen-
sitivity of Ty cells towards TGF-f3 and defect in peripheral
Treg cell generation [201, 202]. Similarly, it was observed
when TGF-f3-silenced tumor cells were engrafted into the
mice [203].

However, local depletion of CD4+Treg cells in tumor
environment completely removed the well-established
tumors and helped in the development of long-lasting im-
munologic antitumor memory [204]. This study suggested
that Ty, cells suppress antitumor immune response mainly
at the site of tumor but not distantly; thus, inhibition of this
local immunosuppressive effect of T, cells, even at later
stages of the disease, would be an effective therapeutic
target against cancer [204]. This finding is further confirmed
by Linehan et al. (2005) in a mouse model of pancreatic
tumor, which showed that the tumors actively encourage the
exaggerated accumulation of Ty, cells in their microenvi-
ronment by using various strategies (i.e., activation of nat-
urally occurring T, cells as well as conversion of non-Ti,
cells into Ty, cells) [205].

Immunological findings in the tumor-draining LN have
made clear that the immunologic priming of both antitumor
T cells and tumor-promoting FOXP3* Tyeg cells occur in the
same LN during tumor progression [206]. These authors
also found that tumor antigen-specific Ty, cells exhibited
similar functional characteristics as compared to T, cells
originating from naive thymus naturally. However, it
remains the hot topic of debate whether there occurs a
systemic increase in Ty cells in the murine model of cancer.
Various findings have shown that increase in Ty, cells in
tumor environment is not unlimited and their number never
exceeds 50 % of the CD4" population [207, 208]. Once Treg

cells are infiltrated into the tumor microenvironment, their
upper limit remains constant during the late phase of tumor
progression [199]. This phenomenon of T, cell homeosta-
sis in tumor microenvironment is well observed in gastric,
colorectal, and ovarian carcinomas, where the most promi-
nent increase in T, cells occurs during the early stages of
tumor progression and remains almost unchanged at later
stages [209, 210]. However, alteration of T, cell popula-
tion in peripheral blood of head and neck cancer patients
does not normalize in the absence of evident disease after
therapy [211], which indicates that postoperative immuno-
suppression may contribute to relapse of the disease and
even tumor metastasis.

It is well established that tumors get infiltrated with large
population of T, cells, where these cells exhibit their
immunosuppressive and cancer-promoting effect. Studies
from a lung cancer model have shown that prostaglandin
E2 (PGE2), secreted from tumor cells, acts as a chemo-
attractant for T, cells and resulted in their increased activ-
ity and increased FOXP3 expression [212, 213]. This was
confirmed in vivo, where treatment with cyclooxygenase-2
(COX-2) inhibitor resulted in decreased activity and fre-
quency of Ty, cells and lowered FOXP3 expression and
tumor burden [214]. However, reverse findings were ob-
served when mice receiving COX-2 inhibitors were treated
with Ty cells or given PGE2, which shows that COX-2
inhibition inhibited the T,., cell-mediated cancer-promoting
and immunosuppressive activity [214].

Adenosine and T, cell interaction tumor
microenvironment

As described earlier, tumor microenvironment has hypoxic
condition within it and extracellular adenosine-rich micro-
environment, both favoring induction of development T,g
[215]. Additionally, increased infiltration of tumors with
Tregs is well correlated with the poor prognosis of various
kinds of tumors (i.e., ovarian cancers, nonsmall cell lung
cancer, Hodgkin's lymphoma, etc.) [216-218]. Along with
this, cerebrospinal fluids (CSF) of patients suffering from
lymphomatous/carcinmatous neoplastic meningitis have
higher number of T,., as compared to normal controls
[219]. There may be various unknown factors involved in
the migration of T,eg into the tumor microenvironment, but
some findings have shown that tumor-induced expression of
addressins on the surface of endothelial cells selectively lead
to migration of T,. into the human pancreatic cancer [220].
Pancreatic adenocarcinoma cells produce CCRS ligand and
tumor-residing T,.qs express a higher number of CCRS than
in normal tissue. This inhibition of CCR5-CCLS signaling
in mice led to decreased infiltration of T4 into the tumor,
indicating the potential role of CCRS5 in T, infiltration into
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the tumor microenvironment [221]. Besides that, CCR4-
expressing T,qs have also been found to be highly infiltrated
in the LN of patients suffering from Hodgkin's lymphoma.
Inhibition of CCR4 by a chimeric anti-CCR4 monoclonal
antibody depleted CCR4" T cells and inhibited Tyegs migra-
tion in vitro [218].

Earlier studies have shown that T4 express both CD39
and CD73, which are required for the synthesis of adenosine
from ATP [222, 223] (Fig. 5). Thus, T, are capable of
synthesizing the adenosine molecule by its own from ATP.
Thegs isolated from ¢d39” mice have decreased efficiency
of suppressing Tep from A, AR-deficient mice [223].
Thus, once the T, are infiltrated into the tumor, the syn-
ergistic effect of adenosine already present in the tumor
along with the adenosine secreted by Tyegs cause profound
immunosuppression by inhibiting the release of IL-12, TNF-
« from stimulated innate immune cells (i.e., macrophages
and DCs) while leading the exaggerated production of im-
munosuppressive cytokines (i.e., [L-10). Adenosine via A,g
adenosine receptors impairs antitumor action of DCs [224].
While, adenosine via A,, adenosine receptors directly
inhibits antitumor immune response mediated by helper
(CD4'T cells) and cytotoxic (CD8'T) cells [225]. Thus,
production of adenosine by T, along with their respon-
siveness to this metabokine (adenosine) proves detrimental
to host suffering from tumor in terms of poor prognosis of
tumor. This immunosuppression is mediated by intracellular
rise of cCAMP levels in both Tegs as well as Teg, as Tregs are
capable of transferring cAMP to T, via gap junctions [226].
Both these conditions are responsible for the development of
more immunosuppressive environment within the tumor mi-
croenvironment. Thus, adenosine plays an important role in

Fig. 5 Immunosuppressive
effect of Tyegs, MDSCs via
adenosine by binding through
Aj AR receptors expressed on
CDS8" cytotoxic T cells in tumor
environment
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the migration and regulation of immunosuppressive Tyegs into
the tumor microenvironment as well as immunosuppressive
function of Ty

Future perspective

Since the very first historical finding between correlation of
infections and inflammation with pathogenesis of cancer,
much progress has been made in this field. This progress
has led to identification of various novel pathways and
molecules playing a role in the pathogenesis of cancer as
the genetic deletion of these molecules have either delayed
the progression of cancer or helped in the complete removal
of the established tumor. Adenosine is a kind of molecule
that exerts both nonimmunological (i.e., metabolic) as well
immunological effects during inflammation as well as dur-
ing infection-mediated inflammatory changes. Thus, adeno-
sine plays a significant role during both infection-induced
cancer development and sterile chronic inflammation lead-
ing to cancer induction. It is now well characterized that
adenosine is released by tumor cells, which are under met-
abolic stress (i.e., hypoxia). These adenosine-mediated
effects during growth and development of a tumor are
induced via different adenosine receptors (i.e., Ay, Asa,
A,p, and Aj receptors). All these adenosine receptors are
expressed by cells of the immune system and can be targeted
for modulating immune response in a tumor microenviron-
ment. Till now, various studies have been done, where either
adenosine receptor agonists or antagonists have been used
as novel antitumor therapeutic approach. Targeting of Aja
or A,p receptors or inhibiting the adenosine signaling
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during cancer can prove as an adjunct to tumor immuno-
therapy as various immunotherapeutic approaches to cancer
failed either due to overexpression of CD73 on cancer cells
or incredibly higher levels of adenosine within the tumor
microenvironment [91]. Earlier studies have shown that
genetic deletion of immunosuppressive Ay, or A, adeno-
sine receptors or their pharmacological inhibition was able
to prevent the inhibition of T cell-mediated antitumor im-
mune response by the hypoxic tumor microenvironment,
leading to full tumor rejection [63]. Adenosine Aja, Asg,
and Aj receptors play an important role in the adenosine-
mediated immunosuppression [227]. For instance, studies
with adenosine receptor knockout mice have shown that
both A,, and A; adenosine receptors regulate macrophage
TNF-« production. As adenosine receptors are expressed by
immune cells as well as the cells of every organ system,
selective activation or blockade of adenosine receptors on
immune cells can be used as a rational approach to treat
acute or chronic inflammatory conditions (i.e., cancer).
Blockade of adenosine A,4 receptor leads to inhibition of
adenosinergic effects and inhibits immunosuppressive po-
tential of Tyes in tumor microenvironment [228]. Recently,
it has been shown that adenosine receptor A3 (Azar) ago-
nists have a protective action in various types of cancers
(i.e., melanoma, prostate cancer, colon cancer, breast cancer,
and hepatocellular carcinoma) through modulation of NF-
kB and Wnt signaling pathways [229]. Adenosine Aj re-
ceptor agonists have also inhibited the breast tumor-derived
bone metastasis growth [230]. Thus, therapies targeting
adenosine and its receptor system must require attention.
Future research requires intense studies in adenosine system
as a negative regulator of immune response in models of T
cell-mediated cancer immunotherapies. Therefore, drug de-
velopment strategies based on adenosine system and its
receptor targeting should be based on both basic as well as
applied research to understand the role of this system regu-
lating or modulating the immune system during cancer.
Thus, this immunomodulatory therapeutic approach should
first ensure the fine balance between the tumor-destructive
and tumor-promoting immune response, that is, it should
only inhibit the tumor-promoting adenosine-mediated im-
munosuppressive immune response (i.¢., inhibition of T,
TAMs, and MDSCs), while leaving or promoting the anti-
tumor (i.e., cytotoxic T cell, M1 macrophage, and NK cell)
immune response intact.
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