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Abstract Scaevola taccada is characterized by dimorphic
fruits, with one type having cork and pulp (C-morph)
and the other type having only pulp (NC-morph). Al-
though within-individual dimorphism has not been ob-
served, both morphs can occur at the same sites. The
cork floats on seawater, and the pulp is eaten by birds.
Thus, the morphs may have different seed dispersal
abilities, via sea currents and birds, respectively. This
study aimed to determine the functional characteristics
of the dimorphic fruits. First, the potential seed dispersal
ability of sea currents and birds was compared between
the two fruits morphs by conducting a floating test and
by measuring the proportions of different parts of the
fruits, respectively. Next, the frequencies of the two
morphs across different substrates (beaches, rocks, and
cliffs) in the southern islands around Japan were ana-
lyzed. Most C-morph fruits remained floating for more
than 180 days in a seawater tank, whereas all NC-morph
fruits sank after approximately 1 week. The NC-morph
fruits had a more pulp volume and less indigestible
material than the C-morph fruits. Although both types
of plants were found on many islands and all substrates,
the C-morph was dominant on beaches, whereas the
NC-morph was most frequent on cliffs. The frequencies
of the morphs on different substrates might be influ-
enced by the differences in their seed dispersal abilities.
The two morphs may differ in fitness on different sub-
strates. These findings improve our understanding of
plant adaptations for dispersal.
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differentiation Æ Scaevola taccada Æ Seed dispersal

Introduction

Seed dispersal is important to range expansion by sta-
tionary plants. Because individual fitness is related to the
ability to reach an appropriate habitat for development
and reproduction, the fitness is dependent on the seed
dispersal pattern (Rubio de Casas et al. 2012). Seeds and
other diaspores are transported away from the parent
plant by vectors such as sea currents, animals, and wind
(Howe and Smallwood 1982), and their structures are
unique to each vector, for example, having cork, pulp,
and pappus, respectively. Most fruits can be dispersed
by a variety of vectors, although syndromes to increase
the propensity of dispersal by specific vectors are ob-
served in nature. For example, plants that are dispersed
by sea currents tend to inhabit coastal areas, those dis-
persed by frugivorous birds inhabit forests, and those
that depend on wind dispersal tend to prefer open
habitats and forest edges (Howe and Smallwood 1982;
Ozinga et al. 2004). Although plants fruit morphology is
adapted for effective dispersal by unique vectors, the
mechanism by which selection pressure changes the
morphology is still not known (Rubio de Casas et al.
2012).

Heteromorphic species that differ in dispersal modes
and abilities are good materials for examining the
selection process. Dispersal exhibits plasticity to envi-
ronmental conditions because individuals vary in the
proportions of different propagule types (Rubio de Ca-
sas et al. 2012). For example, in Crepis sancta (Astera-
ceae), the ratio of dispersing to non-dispersing
propagule types varies with environmental stresses
resulting from nutrient depletion and herbivory (Imbert
and Ronce 2001). Atriplex sagittata (Chenopodiaceae)
produces more dispersing morphs under increased den-
sity and nutrient stress conditions (Mandak and Pysek
1999). However, dimorphism in seed dispersal types
within a population is not yet known. We report the first
such dimorphism, to our knowledge, in Scaevola taccada
(Goodeniaceae). Understanding the mechanism that
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determines this dimorphism might help elucidate the
evolution of seed dispersal adaptation.

Scaevola taccada is a coastal pantropical shrub (1–3 m
tall) that is distributed along the coasts of the Pacific and
Indian oceans. The fruit, which ripens mainly in summer,
is a spherical drupe of approximately 10 mm in diameter,
which becomes white when ripe (Fig. 1a). This species
shows dimorphism in the internal structure of the fruits:
one fruit type has endocarp consisting of cork and pulp
(C-morph; Fig. 1b, c), while the other type has only pulp
(NC-morph; Fig. 1d, e). Such endocarp dimorphism has
not previously been reported in S. taccada, which was
thought to have only C-morph fruits (Satake et al. 1989;
Howarth et al. 2003; Liao 2008). The dimorphism is not
distinguishable by appearance, because there is no dif-
ference in the external plant characteristics, such as
fruits, flowers, leaves, and phenology, although a few
individuals of an intermediate morph were found in some
populations (Fig. 1f). When all ripe fruits of seven trees
(50–232 fruits per tree) were examined for morph type,
the trees were clearly either C-morph (three trees) or NC-
morph (four trees) (Sakai and Denda, personal data).
The cork-morph fruits can float, whereas the NC-morph
cannot; thus, the former is thought to have greater
hydrochoric dispersal ability than the latter.

In addition, both fruit types are foraged by frugiv-
orous birds, such as the Blue Rock Thrush Monticola
solitarius and the Brown-eared Bulbul Hypsipetes
amaurotis (C-morph: Kawakami et al. 2009; Emura
et al. 2012; NC-morph: Emura, unpublished). How-
ever, because the NC-morph fruit has characters
adapted for bird dispersal, it may be more useable by
frugivorous birds than the C-morph fruit. Birds gen-
erally prefer small fruits with small seeds, little indi-
gestible material, and a large edible (pulp) proportion
(Alcántara and Rey 2003; Hernández 2009; Gosper and
Vivian-Smith 2010). Because the optimal habitats of
sea current- and bird-dispersed plants tend to be
coastal and inland areas, respectively (Howe and
Smallwood 1982), the functional differences between
fruit morphs is likely to influence their distributions or
frequencies among substrates at different distances
from the sea.

In this study, the functional characteristics of fruit
dimorphism in this plant was investigated by (1)
assessing the floating ability in seawater and by mea-
suring the different parts of the fruits of each morph and
(2) comparing the distributions and frequencies of the
two morphs in different coastal substrates, specifically
beach, rock, and cliff.

Fig. 1 Two fruit morphs of S. taccada. One fruit type having cork
and pulp (C-morph) and the other type having only pulp (NC-
morph). Both morphs appear identical externally (a). The C-morph
fruit after removal of half (b) and all of the pulp, leaving only the

indigestible part (c). The NC-morph fruit after removal of half
(d) and all of the pulp, leaving only the indigestible part (e). Fruit of
the intermediate morph after removal of all of the pulp (f)
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Materials and methods

Floating test

A floating test was conducted using (1) intact and (2)
depulped fruits because these fruits could directly fall from
trees to sea in bad weather (high waves and winds), par-
ticularly on beaches and because the pulp could be di-
gested by birds and dropped into sea water. For each
morph, 100 intact fruits and 430 depulped fruits were
used. These fruits were sampled from 10 sites in the
Okinawan islands at Okinawajima (OO1, 3, 13, 14,
20–23), Henzajima (OO26), and Ojima (OO28) (Figs. 2
and 3). The depulped fruits were dried naturally for sev-
eral days before the test. Fruits collected from each site
(ca. 50–100 fruits) were soaked in plastic tanks containing
1 L seawater; the number of fruits that sank was counted
every 2–3 days. The plastic tanks were shaken at least
three times a week to recreate the turbulence of sea cur-
rents. Intact fruits were tested for 241 days and depulped
fruits for 143 days. Seawater was obtained from a nearby
bay and replaced with fresh seawater once every 2 weeks.
The hydrochoric potential was estimated by survival
analysis (log-rank test) using the survdiff function of the
survival package (Therneau 2012) in R (R Core Team
2012). Several C-morph fruits were excluded from the
analysis because they refloated after sinking.

Fruit measurements

We took various measurements from 80 fruits per morph
and from approximately ten fruits per tree at one site on

Okinawajima (OO14 in Fig. 3). For each fruit, we mea-
sured the volume of pulp, cork, and seed from the width,
length, and height of the fruit, depulped fruit, and re-
moved pulp and cork fruit with calipers and used these
values to determine the ratio among these three fruit parts
for each morph. The mean widths of the indigestible part
which is depulped fruit (C-morph; Fig. 1c, NC-morph;
Fig. 1e), fruit, and seed were compared between the two
morphs using a generalized linear mixed-effect model
(GLMM) with Gaussian distribution under maximum
likelihood, with pulp volume per fruit, indigestible part,
fruit size, and seed size as the response variables; morph
type as the fixed effect; and the interaction of fruit morph
and intra-individual fruits as a random effect. A model of
the pulp volume as the response variable was used with
total volume per fruit as the offset term. We performed
model selection using Akaike’s information criterion
(AIC), package lme4 (Bates et al. 2012), and MuMIn
(Barton 2013) in R (R Core Team 2012).

Distributions and microhabitats of the two morphs

The frequency of occurrence between the two morphs
was surveyed in a total of 4,467 individual trees at
91 sites on 23 islands within south Japan and part
of Taiwan (Figs. 2 and 3)—the Sakishima Islands: Ir-
iomotejima (SR1–2 in figures), and Uchibanarijima
(SR3), Ishigakijima (SI1–13), Taketomijima (SI14–17),
Ikemajima (SM1–2), Miyakojima (SM3–10), and
Kurumajima (SM11); the Okinawa Islands: Okinawaj-
ima (OO1–22), Kourijima (OO24), Ikeijima (OO25),
Hamahigajima (OO27), Ojima (OO28), and Agunijima

Fig. 2 Study sites
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(OA1–2); the Amami Islands: Amami-Oshima (AA1–8),
Tokunoshima (AT1–6), and Yoronjima (AY1–4); the
Daito Islands: Minami-daitojima (DM1–4); the Bonin
Islands: Mukojima (BM1), Chichijima (BC1), Minam-
ijima (BC2), and Hahajima (BH1–5). Samples were also
collected from the Penghu Islands of Taiwan: Penghu
(PP1) and Baisha (PP2). These surveyed islands are lo-
cated in subtropical regions, which is the northern limit
for S. taccada.

The seed morph was determined by dissecting ca. 50
fruits from each site. Fewer than 50 fruits were sampled
from some sites because of small population sizes and/or
inaccessibility due to steep cliffs. This species is occasion-
ally classified as having two variants based on the presence
or absence of hairs on plant body parts, such as leaves
(Satake et al. 1989). However, the variants were not dis-
tinguished in this study because the fruit morphs were
probably not correlated to the presence or absence of hairs.

The substrate of the study sites was categorized
into three coastal types—cliffs, rocks, and beaches

(Fig. 4)—which were determined from a topographical
map with a scale of 1:20,000 by using the Digital Japan
Web System. The frequency of the two morphs among
substrates was compared using a GLMM with a bino-
mial distribution, with occurrence of the NC-morph as
the response variable and substrate type as a fixed effect;
island was assigned as a random effect. Model fit was
tested using a likelihood ratio test. The GLMM was run
using the lmer function of the lme4 package (Bates et al.
2012) in R (R Core Team 2012). Individuals of the
intermediate morph were excluded from the analysis.

Results

Comparison of fruit characteristics between the two
morphs

The C-morph of both intact and depulped fruits had
significantly greater floating ability than the NC-morphs

Fig. 3 Distributions and frequencies of the two morphs of S.
taccada in the study sites. One fruit type having cork and pulp (C-
morph) and the other type having only pulp (NC-morph). Island

names are abbreviated as in Fig. 2. Asterisks show sampling sites
for fruits used in the floating tests
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(log-rank test: intact fruit, v1
2 = 198, p = 0; depulped

fruit, v1
2 = 980, p = 0). In the intact-fruit experiments,

96.0 % of the C-morph fruits floated for more than
150 days, whereas all the NC-morph fruits sank between
6 and 11 days (Fig. 5a). In the depulped fruit experi-
ments, 97.7 % of the C-morph fruits remained floating
after 200 days, whereas 72.9 % of the NC-morph sank
during the first day, and the remainder had all sunk by
6 days (Fig. 5b). The floating ability was not signifi-
cantly different between the intact and depulped fruits of
the C-morph (log-rank test: v1

2 = 0.3, p = 0.568),
whereas the intact fruits of the NC-morph had signifi-
cantly better floating ability than the depulped fruits
(Log-rank test: v1

2 = 410, p = 0).
The NC-morph had a larger mean pulp volume per

fruit and smaller mean indigestible part width than the
C-morph, whereas the mean fruit and seed widths were
not different between the morphs (Table 1). The model
selection procedure also showed considerable support
for the effect of fruit morph on pulp volume per fruit
and indigestible part width and no support for that of
fruit and seed widths (Table 2).

Frequency of the two morphs between islands and sub-
strates

Both morphs occurred throughout the islands and on all
substrate types studied. The C-morph was dominant on
beaches, whereas the NC-morph was more frequent on
cliffs than on other substrate types. The effect of sub-
strate on morph frequency was highly significant
(GLMM, v3

2 = 717.29, p < 0.0001; Fig. 4). Although
some sites had only C-morph fruits, there was no site
that contained exclusively NC-morph fruits. Sixty-eight
individuals at 18 sites on five islands (Okinawajima,
Miyakojima, Kurumajima, Ishigakijima, and Taketom-
ijima) showed intermediate morphs, irrespective of
substrate type.

Discussion

We found that the two endocarp morphs of S. taccada
had clearly different hydrochoric potentials, which could
affect their seed dispersal abilities by sea current. Most

Fig. 4 Frequencies of the two morphs of S. taccada on different
coastal substrates: cliffs (a), rocks (b), and beaches (c). One fruit
type having cork and pulp (C-morph) and the other type having

only pulp (NC-morph). Abbreviations on the x-axis are as in
Figs. 2 and 3. The photographs show typical study sites for each
substrate, and the graphics show topographical map symbols
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C-morph fruits continued to float on seawater for a long
period, whereas all NC-morph fruits sank rapidly. The
C-morph seeds retained their ability to germinate even
after floating in seawater for 3 months (Lesko and
Walker 1969; Nakanishi 1988). This morph can thus
disperse over a long distances by sea currents. Seeds of
pantropical coastal strand plants can generally float well
in seawater (Carlquist 1974). The worldwide coastal
distribution of S. taccada might be attributed the long
dispersal ability of the C-morph fruits. However, our
experiments revealed that NC-morph fruits could not
disperse via sea currents as far as the C-morph fruits.
Because many NC-morph fruits with pulp floated for
only approximately 1 week, they are likely to be dis-
persed by sea currents only among neighboring beaches.
In future studies, we will test whether the NC-morph
seeds can germinate before and after floating in sea

water. Because there was no difference in the seed size of
the C- and NC-morph fruits, they may have similar
germination ability.

The NC-morph fruit had more pulp volume and a
smaller indigestible part than the C-morph fruit. Thus,
we presume that the NC-morph fruit is foraged to a
greater extent by birds and has a higher potential for
bird dispersal than the C-morph fruit. Although there
was no difference in fruit width between the morphs,
their soft pulp was nibbled by small birds, such as Jap-
anese White-eyes Zosterops japonicus, which is common
on the studied islands (Emura pers. obs.). This bird
would contribute to dispersal of the seeds of NC-morph
fruits by swallowing the indigestible part (mean width:
3.93 mm, Table 1), because they can swallow solids
<5 mm in width (Kawakami et al. 2009; Emura et al.
2011). In contrast, shorebirds and seabirds also occa-
sionally forage fruits and are potentially excellent long-
distance seed dispersers owing to their long gut pass
times and good mobility (Nogales et al. 2001; Calvino-
Cancela 2011; Gillespie et al. 2012). The C-morph fruit
should be more adapted to these dispersers than the NC-
morph fruit, because if it is digested by these birds and
dropped into sea water, it would be further dispersed by
sea currents. Additional studies are required to identify
the animal seed dispersers of the two different morphs.
In addition, we must determine whether the morphs
appear different to birds, because their color vision is
different to that of humans (Siitari et al. 1999), and thus
birds might be able to distinguish the two fruit morphs.

The two morphs are common on almost all of the
subtropical islands studied. In addition, we found one
NC-morph tree on a beach where we observed many
C-morph trees in New Caledonia in the southern
hemisphere (Emura, pers. obs.). The seed dimorphism
might also be widespread. Indeed, many organisms on
oceanic islands lose their long-distance dispersal ability
after they establish colonies (Carlquist 1974; Roff 1990),
as indicated by the genetic analyses of Hibiscus glaber, a
tree endemic to the Bonin islands, and H. tiliaceus, a
pantropical coastal tree (Malvaceae; Takayama et al.
2006; Kudoh et al. 2013). In addition, some weeds have
been shown to have decreased seed dispersal ability, with
smaller pappus volume and increased achene volume,
after they colonized small coastal islands of Vancouver
(Cody and Overton 1996). According to a phylogenetic
tree of Scaevola based on the ITS region, the closest
relatives of S. taccada inhabit the interiors of south
Pacific islands: New Caledonia, Fiji, Samoa, Marquesas,

Table 1 Characteristics of the two fruit morph of S. taccada: one fruit type having cork and pulp (C-morph) and the other type having
only pulp (NC-morph)

Fruit morph
(Number of fruits)

Mean ratio of volume (%) Mean width ± SD (mm)

Pulp
(Digestive)

Cork
(Non-digestive)

Seed
(Non-digestive)

Non-digestive
part

Fruit Seed

C-morph (80) 83.1 11.6 5.3 6.61 ± 0.60 11.81 ± 1.07 3.96 ± 0.26
NC-morph (79) 93.1 – 6.9 3.93 ± 0.29 11.36 ± 0.92 3.93 ± 0.29

Fig. 5 Floating rate (%) of the two morphs of S. taccada fruits in
sea water. One fruit type having cork and pulp (C-morph) and the
other type having only pulp (NC-morph). Intact (a) and depulped
(b) fruits were studied
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and Tahiti (Howarth et al. 2003). These species bear
fruit lacking cork, and their seeds are dispersed by birds
(Carlquist 1974; Howarth et al. 2003). Their fruit is
mostly black, whereas that of S. taccada is white. The
former would be more appealing to dispersing birds than
the latter (Wheelwright and Janson 1985). This evidence
suggests that each island-endemic species evolved a fruit
morph adapted to bird dispersal during the process of
speciation after its C-morph colonized via sea currents.
Therefore, the NC-morph might be in an intermediate
stage between the C-morph and those of these inland
species.

The frequencies of the two morphs was predictably
different among coastal substrates, although both the
morphs occurred widely. The C-morph was found at a
higher frequency on beaches than on other substrates,
whereas the NC-morph occurred more commonly on
cliffs. For example, among all the study sites, the NC-
morph was most dominant in Minami-Daitojima, be-
cause this island consists of upheaved coral and is sur-
rounded only by cliffs. Thus, the interaction between
morph dispersal ability and substrate has influenced the
distributions of the two morphs. Driftage washes up
more easily on beaches than on cliffs. Presumably, the
fitness of the C-morph on beaches is higher than that of
the NC-morph, while that of the NC-morph may be
higher on cliffs, where birds rather than sea currents are
likely to be main seed dispersers. To test this hypothesis,
in future studies, we will need to compare the mor-
phologies of the two fruit morphs and bird preferences
among different substrates.
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