Skip to main content

Advertisement

Log in

Deep learning for heterogeneous medical data analysis

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

At present, how to make use of massive medical information resources to provide scientific decision-making for the diagnosis and treatment of diseases, summarize the curative effect of various treatment schemes, and better serve the decision-making management, medical treatment, and scientific research, has drawn more and more attention of researchers. Deep learning, as the focus of most concern by both academia and industry, has been effectively applied in many fields and has outperformed most of the machine learning methods. Under this background, deep learning based medical data analysis emerged. In this survey, we focus on reviewing and then categorizing the current development. Firstly, we fully discuss the scope, characteristic and structure of the heterogeneous medical data. Afterward and primarily, the main deep learning models involved in medical data analysis, including their variants and various hybrid models, as well as main tasks in medical data analysis are all analyzed and reviewed in a series of typical cases respectively. Finally, we provide a brief introduction to certain useful online resources of deep learning development tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. https://ourworldindata.org/causes-of-death

  2. https://www.hhs.gov/hipaa/for-professionals/index.html

References

  1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  2. Beaulieu-Jones, B.K., Greene, C.S.: Semi-supervised learning of the electronic health record for phenotype stratification. J. Biomed. Inform. 64, 168–178 (2016)

    Article  Google Scholar 

  3. Bowie, M., Begoli, E., Park, B.: Improving quality of observational streaming medical data by using long short-term memory networks (LSTMs). In: 2018 IEEE 34th international conference on data engineering workshops (ICDEW) 2018, pp. 48-53. IEEE

  4. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2018)

    Article  Google Scholar 

  5. Cheng, Y., Wang, F., Zhang, P., Hu, J.: Risk prediction with electronic health records: a deep learning approach. In: proceedings of the 2016 SIAM international conference on data mining 2016, pp. 432-440. SIAM

  6. Choi, E., Bahadori, M.T., Searles, E., Coffey, C., Thompson, M., Bost, J., Tejedor-Sojo, J., Sun, J.: Multi-layer representation learning for medical concepts. In: proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining 2016, pp. 1495-1504. ACM

  7. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Medical concept representation learning from electronic health records and its application on heart failure prediction. arXiv preprint arXiv:1602.03686 (2016)

  8. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 24(2), 361–370 (2016)

    Google Scholar 

  9. Choi, Y., Chiu, C.Y.-I., Sontag, D.: Learning low-dimensional representations of medical concepts. AMIA Summits on Translational Science Proceedings 2016, 41 (2016)

  10. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: Predicting Clinical Events Via Recurrent Neural Networks. In: Machine Learning for Healthcare Conference 2016, pp. 301-318

  11. Dernoncourt, F., Lee, J.Y., Uzuner, O., Szolovits, P.: De-identification of patient notes with recurrent neural networks. J. Am. Med. Inform. Assoc. 24(3), 596–606 (2017)

    Google Scholar 

  12. Esfandiari, N., Babavalian, M.R., Moghadam, A.-M.E., Tabar, V.K.: Knowledge discovery in medicine: current issue and future trend. Expert Syst. Appl. 41(9), 4434–4463 (2014)

    Article  Google Scholar 

  13. Esteban, C., Staeck, O., Baier, S., Yang, Y., Tresp, V.: Predicting clinical events by combining static and dynamic information using recurrent neural networks. In: healthcare informatics (ICHI), 2016 IEEE international conference on 2016, pp. 93-101. Ieee

  14. Fang, R., Pouyanfar, S., Yang, Y., Chen, S.-C., Iyengar, S.: Computational health informatics in the big data age: A survey. ACM Computing Surveys (CSUR). 49(1), 1–36 (2016)

  15. Fischer, A., Igel, C.: Training restricted Boltzmann machines: an introduction. Pattern Recogn. 47(1), 25–39 (2014)

    Article  Google Scholar 

  16. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification. arXiv preprint arXiv:1803.01229 (2018)

  17. Fries, J.A.: Brundlefly at SemEval-2016 Task 12: Recurrent neural networks vs. joint inference for clinical temporal information extraction. arXiv preprint arXiv:1606.01433 (2016)

  18. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning, vol. 1. MIT press Cambridge, (2016)

  19. Heidari, A.A., Faris, H., Aljarah, I., Mirjalili, S.: An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft. Comput. 23(17), 7941–7958 (2019)

  20. Hess, M., Lenz, S., Blätte, T.J., Bullinger, L., Binder, H.: Partitioned learning of deep Boltzmann machines for SNP data. Bioinformatics. 33(20), 3173–3180 (2017)

    Article  Google Scholar 

  21. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science. 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  22. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  24. Jacobson, O., Dalianis, H.: Applying deep learning on electronic health records in Swedish to predict healthcare-associated infections. In: Proceedings of the 15th Workshop on Biomedical Natural Language Processing 2016, pp. 191–195

  25. Jagannatha, A.N., Yu, H.: Bidirectional RNN for medical event detection in electronic health records. In: proceedings of the conference. Association for Computational Linguistics. North American chapter. Meeting 2016, p. 473. NIH Public Access

  26. Jagannatha, A.N., Yu, H.: Structured prediction models for RNN based sequence labeling in clinical text. In: proceedings of the conference on empirical methods in natural language processing. Conference on empirical methods in natural language processing 2016, p. 856. NIH Public Access

  27. Jahangir, M., Afzal, H., Ahmed, M., Khurshid, K., Nawaz, R.: An expert system for diabetes prediction using auto tuned multi-layer perceptron. IEEE Intelligent Systems, 722–728 (2018)

  28. Kavukcuoglu, K., Ranzato, M.A., LeCun, Y.: Fast inference in sparse coding algorithms with applications to object recognition. arXiv preprint arXiv:1010.3467 (2010)

  29. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical imaging data. arXiv preprint arXiv:1701.03056 (2017)

  30. Khatami, A., Babaie, M., Tizhoosh, H.R., Khosravi, A., Nguyen, T., Nahavandi, S.: A sequential search-space shrinking using CNN transfer learning and a radon projection pool for medical image retrieval. Expert Syst. Appl. 100, 224–233 (2018)

    Article  Google Scholar 

  31. Khin, K., Burckhardt, P., Padman, R.: A Deep Learning Architecture for De-identification of Patient Notes: Implementation and Evaluation. arXiv preprint arXiv:1810.01570 (2018)

  32. Kleesiek, J., Urban, G., Hubert, A., Schwarz, D., Maier-Hein, K., Bendszus, M., Biller, A.: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage. 129, 460–469 (2016)

    Article  Google Scholar 

  33. Kumar, A., Kim, J., Lyndon, D., Fulham, M., Feng, D.: An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE journal of biomedical and health informatics. 21(1), 31–40 (2016)

  34. Kwon, B.C., Choi, M.-J., Kim, J.T., Choi, E., Kim, Y.B., Kwon, S., Sun, J., Choo, J.: RetainVis: visual analytics with interpretable and interactive recurrent neural networks on electronic medical records. IEEE Trans. Vis. Comput. Graph. (2018)

  35. Lan, K., Wang, D.-t., Fong, S., Liu, L.-s., Wong, K.K., Dey, N.: A survey of data mining and deep learning in bioinformatics. J. Med. Syst. 42(8), 139 (2018)

    Article  Google Scholar 

  36. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE. 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  37. Lee, D.-H., Bengio, Y.: Backprop-free autoencoders. In: NIPS’2014 Deep Learning workshop 2014

  38. Li, H., Li, X., Ramanathan, M., Zhang, A.: Identifying informative risk factors and predicting bone disease progression via deep belief networks. Methods. 69(3), 257–265 (2014)

    Article  Google Scholar 

  39. Li, F., Tran, L., Thung, K.-H., Ji, S., Shen, D., Li, J.: A robust deep model for improved classification of AD/MCI patients. IEEE journal of biomedical and health informatics. 19(5), 1610–1616 (2015)

    Article  Google Scholar 

  40. Liang, K., Chang, H., Cui, Z., Shan, S., Chen, X.: Representation learning with smooth autoencoder. In: Asian conference on computer vision 2014, pp. 72-86. Springer

  41. Liang, Z., Zhang, G., Huang, J.X., Hu, Q.V.: Deep learning for healthcare decision making with EMRs. In: bioinformatics and biomedicine (BIBM), 2014 IEEE international conference on 2014, pp. 556-559. IEEE

  42. Lin, Z., Owen, A.B., Altman, R.B.: Genomic research and human subject privacy. In. American Association for the Advancement of Science (2004)

  43. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677 (2015)

  44. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  45. Lu, N., Li, T., Ren, X., Miao, H.: A deep learning scheme for motor imagery classification based on restricted boltzmann machines. IEEE transactions on neural systems and rehabilitation engineering. 25(6), 566–576 (2016)

  46. Luo, Y., Cheng, Y., Uzuner, Ö., Szolovits, P., Starren, J.: Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes. J. Am. Med. Inform. Assoc. 25(1), 93–98 (2017)

    Article  Google Scholar 

  47. Lv, X., Guan, Y., Yang, J., Wu, J.: Clinical relation extraction with deep learning. IJHIT. 9(7), 237–248 (2016)

    Article  Google Scholar 

  48. Makkie, M., Huang, H., Zhao, Y., Vasilakos, A.V., Liu, T.: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics. Neurocomputing. 325, 20–30 (2019)

    Article  Google Scholar 

  49. Mansoor, A., Cerrolaza, J.J., Idrees, R., Biggs, E., Alsharid, M.A., Avery, R.A., Linguraru, M.G.: Deep learning guided partitioned shape model for anterior visual pathway segmentation. IEEE Trans. Med. Imaging. 35(8), 1856–1865 (2016)

    Article  Google Scholar 

  50. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: International conference on artificial neural networks 2011, pp. 52-59. Springer

  51. Mehrabi, S., Sohn, S., Li, D., Pankratz, J.J., Therneau, T., Sauver, J.L.S., Liu, H., Palakal, M.: Temporal pattern and association discovery of diagnosis codes using deep learning. In: Healthcare informatics (ICHI), 2015 international conference on 2015, pp. 408-416. IEEE

  52. Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)

    Article  Google Scholar 

  53. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: $\mathtt {Deepr} $: A Convolutional Net for Medical Records. IEEE journal of biomedical and health informatics. 21(1), 22–30 (2016)

  54. Nickerson, P., Tighe, P., Shickel, B., Rashidi, P.: Deep neural network architectures for forecasting analgesic response. In: Conference proceedings:... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2016, p. 2966. NIH Public Access

  55. Nie, L., Wang, M., Zhang, L., Yan, S., Zhang, B., Chua, T.-S.: Disease inference from health-related questions via sparse deep learning. IEEE Trans. Knowl. Data Eng. 27(8), 2107–2119 (2015)

    Article  Google Scholar 

  56. Pham, T., Tran, T., Phung, D., Venkatesh, S.: Deepcare: A deep dynamic memory model for predictive medicine. In: Pacific-Asia conference on knowledge discovery and data mining 2016, pp. 30-41. Springer

  57. Poultney, C., Chopra, S., Cun, Y.L.: Efficient Learning of Sparse Representations with an Energy-Based Model. In: Advances in neural information processing systems 2007, pp. 1137-1144

  58. Raji, C., Chandra, S.V.: Long-term forecasting the survival in liver transplantation using multilayer perceptron networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 47(8), 2318–2329 (2017)

    Article  Google Scholar 

  59. Ravı, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G.-Z.: Deep learning for health informatics. IEEE journal of biomedical and health informatics. 21(1), 4–21 (2016)

  60. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on international conference on machine learning 2011, pp. 833-840. Omnipress

  61. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In. California Univ San Diego La Jolla Inst for Cognitive Science (1985)

  62. Salakhutdinov, R., Larochelle, H.: Efficient Learning of Deep Boltzmann Machines. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics 2010, pp. 693-700

  63. Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P.: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE journal of biomedical and health informatics. 22(5), 1589–1604 (2017)

  64. Sokolovska, N., Chevaleyre, Y., Zucker, J.-D.: Risk scores learned by deep restricted Boltzmann machines with trained interval quantization. In: international conference on machine learning and data Mining in Pattern Recognition 2018, pp. 421-435. Springer

  65. Sokolovska, N., Permiakova, O., Forslund, K., Zucker, J.-D.: Using unlabeled data to discover bivariate causality with deep restricted Boltzmann machines. IEEE/ACM transactions on computational biology and bioinformatics (2018)

  66. Sweeney, L.: Simple demographics often identify people uniquely. Health (San Francisco). 671, 1–34 (2000)

  67. Tran, T., Nguyen, T.D., Phung, D., Venkatesh, S.: Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J. Biomed. Inform. 54, 96–105 (2015)

    Article  Google Scholar 

  68. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning 2008, pp. 1096-1103. ACM

  69. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)

    Article  Google Scholar 

  70. Wu, Y., Jiang, M., Lei, J., Xu, H.: Named entity recognition in Chinese clinical text using deep neural network. Studies in health technology and informatics. 216, 624 (2015)

    Google Scholar 

  71. Xu, Y., Biswal, S., Deshpande, S.R., Maher, K.O., Sun, J.: RAIM: Recurrent attentive and intensive model of multimodal patient monitoring data. In: Proceedings of the 24th ACM SIGKDD international conference on Knowledge Discovery & Data Mining 2018, pp. 2565-2573. ACM

  72. Yadav, S., Ekbal, A., Saha, S., Bhattacharyya, P.: Deep learning architecture for patient data de-identification in clinical records. In: Proceedings of the Clinical Natural Language Processing Workshop (ClinicalNLP) 2016, pp. 32–41

  73. Yadav, P., Steinbach, M., Kumar, V., Simon, G.: Mining electronic health records (EHRs): a survey. ACM Computing Surveys (CSUR). 50(6), 85 (2018)

    Article  Google Scholar 

  74. Yuste, R., Goering, S., Bi, G., Carmena, J.M., Carter, A., Fins, J.J., Friesen, P., Gallant, J., Huggins, J.E., Illes, J.: Four ethical priorities for neurotechnologies and AI. Nature News. 551(7679), 159 (2017)

    Article  Google Scholar 

  75. Zhang, R., Zheng, Y., Mak, T.W.C., Yu, R., Wong, S.H., Lau, J.Y., Poon, C.C.: Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J. Biomedical and Health Informatics. 21(1), 41–47 (2017)

    Article  Google Scholar 

  76. Zhang, C., Li, Y., Du, N., Fan, W., Yu, P.S.: On the generative discovery of structured medical knowledge. In: Proceedings of the 24th ACM SIGKDD international conference on Knowledge Discovery & Data Mining 2018, pp. 2720-2728. ACM

Download references

Acknowledgments

This research has been supported by Fundamental Research Funds for the Central Universities (Grant Nos. 2412017QD028 and 2412019FZ047), China Postdoctoral Science Foundation (Grant No. 2017M621192), Scientific and Technological Development Program of Jilin Province (Grant Nos. 20180520022JH and 20190302109GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weitong Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Tian, D., Chen, W. et al. Deep learning for heterogeneous medical data analysis. World Wide Web 23, 2715–2737 (2020). https://doi.org/10.1007/s11280-019-00764-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00764-z

Keywords

Navigation