
Self-Organizing Mobility Control in Wireless Sensor
and Actor Networks Based on Virtual Electrostatic
Interactions

Bartłomiej Płaczek1
• Marcin Bernas1

Published online: 27 September 2016
� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract This paper introduces a new mobility control method for surveillance applications

of wireless sensor and actor networks. The proposed method is based on virtual electrostatic

forces which act on actors to coordinate their movements. The definition of virtual forces is

inspired by Coulomb’s law from physics. Each actor calculates the virtual forces indepen-

dently based on known locations of its neighbours and predetermined borders of the moni-

tored area. The virtual forces generate movements of actors. This approach enables effective

deployment of actors at the initial stage as well as adaptation of actors’ placement to variable

conditions during execution of the surveillance task without the need of any central controller.

Effectiveness of the introduced method was experimentally evaluated in a simulation envi-

ronment. The experimental results demonstrate that the proposed method enables more

effective organization of the actors’ mobility than state-of-the-art approaches.

Keywords Wireless sensor and actor networks � Mobility control � Virtual forces �
Surveillance applications

1 Introduction

Wireless sensor and actor networks (WSANs) are composed of sensor nodes and actors that are

coordinated via wireless communications to perform distributed sensing and acting tasks. In

WSANs, sensor nodes collect information about the physical world, while actors use the

collected information to take decisions and perform appropriate actions upon the environment

[1, 2]. The sensor nodes are usually small devices with limited energy resources, computation
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capabilities and short wireless communication range. In contrast, the actors are equipped with

better processing capability, stronger transmission powers and longer battery life. The number

of actors in WSAN is significantly lower than the number of sensor nodes [3, 4].

The WSANs technology has enabled new surveillance applications, where sensor nodes

detect targets of interest over a large area. The information collected by sensor nodes allows

mobile actors to achieve surveillance goals such as target tracking and capture. Several

examples of the WSAN-based surveillance applications can be found in the related literature,

including land mine destruction [5], chasing of intruders [6], forest fires extinguishing [7], and

industrial systems [8]. Such applications require appropriate algorithm to control the mobility

of actors. The mobility control algorithm should enable a self-organizing deployment of

actors in the monitored area and ensure a fast access of actors to detected targets.

This paper introduces a mobility control approach for the surveillance applications of

WSAN, where the sensor nodes detect stationary targets and report their positions to actors.

On the basis of the received information, each actor selects the nearest target and moves

toward it. A target is eliminated if an actor is close to the location in which the target was

detected. The targets may correspond to intruders, landmines, enemy units, fires, etc.

The proposed approach is based on virtual electrostatic forces which act on actors to

coordinate their movements. The definition of virtual forces is inspired by Coulomb’s law

from physics. Each actor calculates the virtual forces independently based on known

locations of its neighbours and predetermined borders of the monitored area. The virtual

forces generate movements of actors. This approach enables effective deployment of actors

at the initial stage as well as adaptation of actors’ placement to variable conditions during

execution of the surveillance task without the need of any central controller. Initially, all

actors have equal virtual electrostatic charges that result in uniform spatial distribution of

actors in the monitored area. During execution of the target chasing task, the electrostatic

charge is updated as a function of recent actor’s workload. Consequently, a higher spatial

density of actors is obtained in regions where the targets are detected more frequently.

Moreover, in case of actor failure, the proposed method allows the remaining active actors

to be appropriately repositioned. Main advantages of the proposed self-organizing mobility

control are robustness, scalability, flexibility, adaptivity, and low computational cost.

Effectiveness of the introduced approach was experimentally evaluated in a simulation

environment. The experimental results demonstrate that this approach achieves a good

performance in terms of average time from target detection to elimination and total dis-

tance covered by an actor during target chasing.

The paper is organized as follows. Section 2 includes review of related research and

describes main contribution of this paper. In Sect. 3, the method of self-organizing actors’

mobility control is introduced in details. Section 4 contains results of the experimental

evaluation. The performance of the proposed method is compared against results obtained

for state-of-the-art approaches. Finally, in Sect. 5, conclusions are presented and some

future research directions are outlined.

2 Related Works and Contribution

2.1 Control of Actors’ Mobility

In the literature, a number of works can be found that are related to the mobility control of

WSANs, where actors have to be moved toward events or targets detected by sensor nodes.

Most of these works deal with the issues of sensor-actor communication and coordination
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of the actors’ mobility after target (or event) detection. However, little research is focused

on controlling the mobile actors before they receive the information about detected target

form sensor nodes. More research is necessary to provide effective methods for manage-

ment of the actors’ location prior to target detection. This task is crucial for the considered

surveillance applications because if an actor is available close to the location where a target

is detected then the target can be eliminated in a short time. Moreover, if the locations of

the actors are close to the locations of the detected targets then a lower number of sensor

nodes is involved in relaying data to the actors and their energy consumption is reduced

[9].

The most popular approach in the literature involves random deployment of the actors

that remain static and move only when a target is reported [10–12]. In [13] the deployment

of actors was managed by using an algorithm, which generates a connected pseudo-random

unit graphs. The aim of this algorithm is to distribute the actors uniformly in the monitored

area, while maintaining their connectivity. According to another popular method, actors

walk randomly in the monitored area until they receive target reports from sensor nodes

[14]. In [15] default locations of actors were determined to ensure that the communication

ranges of the available actors cover the entire monitored area. The default locations are

arranged in a square grid. An actor, which has not received information about detected

target from sensor nodes moves toward its default location.

Ota et al. [14] have proposed an approach, which allows the actors to move towards

predicted locations of events. In order to predict the location of an event, actors collect

sensor readings along their way. Thus, additional energy is consumed by sensor nodes for

periodic data transmission to actors that are moving in their vicinity. The prediction is

based on maximum likelihood estimation. This approach is useful only for pre-

dictable events, such as occurrence of fire, which can be predicted based on temperature

measurements. In case of targets occurring at random locations, that cannot be accurately

predicted from sensor readings, the practical usefulness of this method is limited.

2.2 Virtual Forces

This paper introduces a method for the actors’ mobility control in WASN by means of

virtual forces. The concept of virtual forces was originally formulated in [16] as an element

of the artificial physics framework for multi-agent systems. In this framework, the virtual

forces were used to drive a multi-agent system toward a desired configuration that mini-

mizes overall potential energy of the system. Under such assumptions, the system acts as a

molecular dynamics simulation. Spears et al. [16] have suggested two potential advantages

of this approach. First, a complex control is achievable through simple local interactions

based on the virtual forces. Second, the approach scale well to larger sets of controlled

entities.

In the literature, several methods were proposed that utilize virtual forces for sensor

node deployment and mobility management in wireless sensor networks (WSNs). Appli-

cations of these methods have demonstrated capabilities of self-organization, fault-toler-

ance, and self-repair [17, 18].

The deployment problem of mobile WSNs was considered in [19]. The goal of this

problem was to find locations and movements of sensor nodes that result in maximum

coverage and to form a uniformly distributed WSN in minimum time, with minimum

energy consumption. In order to define the movement of sensor nodes during the

deployment process, a virtual repulsive force was used, which depends on distance

between sensor nodes and on local node density.
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The topology management techniques based on virtual forces enable handling of node

failures in WSNs. These techniques utilize different definitions of repelling forces [20] and

diffusion forces among sensor nodes [21]. A model of electrostatic interactions based on

Coulomb’s law was applied in [22] to restore connectivity in fragmented WSN after

simultaneous failure of multiple nodes. In this scheme, the virtual forces spread sensor

nodes and move them toward centre of the deployment area.

A mobile wireless network of homogenous sensor-actuator nodes was considered in

[23]. The virtual forces were utilized in that study to form a connected network with

roughly the same node density and relocate the nodes around a target location when they

have to react to an event. It was assumed that the task of the sensor-actuator nodes is to

detect fires in a forest area and extinguish them. Upon occurrence of a fire, the nodes

surround the event area and track the movement of the fire front, while staying at a safe

distance from which they can extinguish the fire without being damaged. The node density

is increased in proximity of the fire front to stop its expansion. Such node behaviour was

obtained by using virtual forces of three types. Exchange forces are established between

pairs of nodes which are sufficiently close to each other. Potential forces attract/repel nodes

toward/from the fire. Friction forces have been introduced to stop the nodes around an

equilibrium configuration defined by potential and exchange forces.

Akkaya and Janapala [24] have presented an algorithm for actors’ deployment in

WSANs, which increases the connected actor coverage through relocation of actors based

on repelling forces from neighbouring actors and from boundary sensor nodes. The main

idea behind that approach is to apply repelling forces among neighbouring actors, similar

to intermolecular forces in physics, in order to spread them in the deployment area.

Furthermore, sensors on the boundaries of the deployment area also impose forces to actors

so that they will not move outside the monitored region. The forces are applied in steps

until convergence, when there is no further movement in the network. This algorithm does

not take into account the necessity of actors’ relocation toward detected events or targets.

2.3 Contribution

In this paper a new method is proposed for self-organizing control of actors’ mobility in

WSANs. The proposed method is based on virtual electrostatic interactions inspired by

Coulomb’s law from physics, which describes forces acting between electrically charged

particles. The objective of this method is to enable effective relocation of actors that have

to reach targets detected by sensor nodes in minimum time. Movement of an actor is

controlled by the virtual forces if there is no target reported to this particular actor. When

the actor receives a message about detected target from sensor nodes then it ignores the

virtual forces and moves directly toward the target to eliminate it as fast as possible.

In this scheme, the virtual forces allow the actors’ deployment to be dynamically

adapted to local probability of target detection. The adaptation ability was obtained by

introducing variable virtual electrostatic charges of actors. According to the proposed

approach, the virtual charge of an actor depends on recent actor’s workload. Exponential

forgetting algorithm is applied to estimate the workload of each actor in some recent time

period. The proposed definition of virtual electrostatic charges leads to reduced distances

between actors in regions, where targets are detected more frequently. Thus, the resulting

spatial distribution of actors is more effective than the uniform one, and the targets can be

eliminated in shorter time.

It should be also noted that in contrast with the state-of-the-art methods, the proposed

method does not require any additional energy-expensive communication with sensor
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nodes. The virtual forces and charges are determined on the basis of data transmitted only

between neighbouring actors. They enable appropriate relocation of actors prior to target

detection. Moreover, this method is effective also in case when the locations of targets

cannot be accurately predicted.

3 Proposed Method

This section introduces details of the proposed method which enables self-organizing

coordination of actors’ mobility for effective target elimination in a monitored area. As it

was already mentioned, the proposed method was inspired by Coulomb’s law from physics

that describes electrostatic interaction between electrically charged particles.

In Fig. 1 the Coulomb’s law is illustrated for a pair of virtual electrostatic charges (q1,

q2) assigned to two actors. In the presented approach the charges of actors have the same

sign, thus the electrostatic forces between them are repulsive. The electrostatic force acts

along the straight line joining the actors and its magnitude is given by the following

formula:

jF1;2j ¼ jF2;1j ¼ k � q1 � q2

d2
; ð1Þ

where d denotes the distance between actors, and k is a proportionality constant. For the

sake of simplicity, it is further assumed that k = 1.

In addition to the forces acting between actors, the proposed method also takes into

account forces between actors and borders of the monitored area. Figure 2 shows an

example of all repulsive forces that influence a single actor. For each actor, the repulsive

forces of four borders (south, west, north, and east) are considered. These forces are

determined along vertical and horizontal coordinates.

Resultant force for i-th actor (Fi) is calculated as a vector sum of all the repulsive forces

acting on it:

Fi ¼
X

j2Ai

Fi;j þ Fi;N þ Fi;E þ Fi;S þ Fi;W; ð2Þ

where Ai is a set of indices (j) of neighbouring actors, Fi,j denotes repulsive force of actor

j acting on actor i, Fi,S, Fi,W, Fi,N, Fi,E are the repulsive forces of sout, west, north, and east

borders respectively.

According to the proposed approach, each actor periodically broadcasts its location to

other actors in a communication range. Thus, during calculation of the resultant force Fi

only those actors are considered that are in communication range of actor i. It means that

set Ai can be determined as follows:

Fig. 1 Coulomb’s law applied to actors with virtual electrostatic charges
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Ai ¼ fj : dðLi;LjÞ\rCOMg; ð3Þ

where Li, Lj are actual locations of i-th and j-th actor, rCOM denotes communication range

of actors, and d(�) is the Euclidean distance between locations.

Movement of an actor depends on the resultant force. However, in order to avoid

unnecessary moves of actors due to some minor force variations, it was assumed that the

resultant force influences a destination location of the actor (Lþ
i ) instead of the actual

location Li. Actor moves toward the destination location, i.e., changes its actual location,

only when the distance between actual location and the destination location dðLi;L
þ
i Þ is

above its acting range rACT. The destination locations are taken into account during cal-

culations of the repulsive forces of actors and borders.

In some specific circumstances, the application of Coulomb’s law can lead to

metastable states with ineffective deployment of actors over the monitored area. An

example of such metastable state is presented in Fig. 3, where all actors get stuck at half

height of the square area as they are repelled by the north and south borders with forces of

equal magnitudes. In order to eliminate the suboptimal metastable states, fluctuations of the

repulsive forces are modelled by adding a random component to the Coulomb’s formula.

Summarizing the above assumptions, the magnitude of repulsive force of actor j is

calculated for actor i by using the following equation:

jFi;jj ¼
qi � qj

dðLþ
i ;L

þ
j Þ

2
þ r � Ni;jð0; 1Þ; ð4Þ

where r is a force fluctuation factor and Ni,j(0, 1) denotes an independent random sample

from the standard normal distribution.

Fig. 2 Virtual forces acting on actor 1: repulsive force of actor 2 (F1,2) and repulsive forces of borders (F1,S,
F1,W, F1,N, F1,E)
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Magnitudes of the repulsive forces between borders of the monitored area and i-th actor

are calculated in a similar way. For instance, when the repulsive force of south border is

considered then the formula takes the following form:

jFi;Sj ¼
qi � qB

dðLþ
i ;L

S
i Þ

2
þ r � Ni;Sð0; 1Þ; ð5Þ

where qB denotes a constant virtual charge of the borders, LS
i is a location at south border

which corresponds to the horizontal coordinate xi
? of the actor’s destination location

Lþ
i ¼ ðxþi ; yþi Þ:

LS
i ¼ ðxþi ; fSðxþi ; yþi ÞÞ; ð6Þ

and fSðxþi ; yþi Þ is a function defining south border of the monitored area.

Magnitudes of the repulsive forces from the remaining three borders, i.e., jFi;Wj, jFi;Nj,
and jFi;Ej, are evaluated based on appropriately modified versions of Eq. (5). The functions

that define the border locations (fS, fW, fE, fN) are known to all actors.

The destination locations of actors are updated in discrete time steps. It was assumed for

the proposed method that at each time step the destination location of i-th actor is shifted

by a vector, which has the same direction as the resultant force Fi and length is propor-

tional to the magnitude of this force. Thus, the updated destination location for i-th actor is

given by the formula:

Lþ
i ¼ L�

i þ minða � jFij; vmax � DtÞ; ð7Þ

where L�
i denotes the destination location of actor i at previous time step, a is a scaling

factor, vmax is maximum actor speed in meters per second, and Dt is time step of the

algorithm in seconds. It was further assumed that a = 1.

When using the proposed method, actors move until stable destination locations are

found at which the repulsive forces compensate each other. If the virtual charge qi has the

same value for each actor then the stable destination locations of actors are almost equally

Fig. 3 Suboptimal metastable state: actor locations (triangles) in square area, no target detected
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spaced. Figure 4 shows an example of the stable locations for 50 actors with equal charges

in a square monitored area.

The uniform spatial distribution of actors is not effective if targets are detected more

frequently in some regions of the monitored area. In such regions, where more targets have

to be captured, the distances between actors should be reduced. Shorter distances between

actors can be obtained by decreasing the virtual charges. Therefore in the proposed

method, the actor’s charge decreases with growing workload of the actor. Such effect is

obtained by using the following formula to calculate current charge of i-th actor:

qi ¼ qA � ð1 � ŵiÞe; ð8Þ

where qA is an initial actor’s charge (equal for all actors), ŵi denotes recent workload of i-

th actor, and the exponent e is a parameter of the algorithm. The recent workload ŵi is

estimated by using the exponential forgetting approach [25]. According to this approach,

the following update operation is performed at each time step:

ŵi ¼ ð1 � bÞ � ŵ�
i þ b � wi; ð9Þ

where 1/b is the time constant of the forgetting process, ŵ�
i is the recent workload of i-th

actor estimated at previous time step, and wi denotes current workload of i-th actor (wi = 0

if the actor is idle and wi = 1 if the actor is busy, i.e., moves toward a selected target). It is

important to note that ŵi can take values between 0 and 1.

Algorithm 1. Pseudo-code of mobility algorithm executed by i-th actor
1 for each time step do
2 begin
3 if statusi = busy then
4 if d ( iL , +

iL ) ≤ rACT then statusi := idle //target eliminated
5 if at least one unselected target is registered then
6 begin
7 select the nearest unselected target
8 +

iL := location of the selected target
9 statusi := busy
10 end
11 if statusi = idle then
12 begin
13 calculate force Fi using Eq. (2)
14 −

iL := +
iL

15 calculate location Li
+ using Eq. (7)

16 end
17 −

iŵ := iŵ
18 update workload estimate iŵ using Eq. (9)
19 calculate charge qi using Eq. (8)
20 if broadcast time interval Bτ passed then
21 broadcast +

iL , qi, statusi to actors

22 if d( iL , iL̂ ) > δ or new target registered then
23 broadcast iL , +

iL , statusi, and list of targets to sensor nodes

24 if d( iL , +
iL ) > rACT then move toward +

iL
25 end
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The virtual electrostatic forces govern movement of an actor only if no target was

reported to the actor. When an actor receives information about locations of detected

targets from sensor nodes then it moves toward the nearest target. A target is eliminated if

it is within acting range of an actor. Details of the operations executed by actors are

presented in Algorithm 1.

The sensor-actor communication is based on geographical routing [26]. Hence, the

sensor nodes need the information about actual locations of actors. In this study, an energy-

aware location management scheme is applied, which includes location updating and

location prediction operations [10]. According to this scheme, sensor nodes predict loca-

tions of actors based on previously received updates by using Kalman filter. An actor

broadcasts updates in its communication range if its actual location Li is far from location

L̂i predicted by the sensor nodes. Additionally, the broadcasts are used as acknowledge-

ments to handle communication failures. Thus, actors broadcast the updates after receiving

a message about new detected target. Each update includes actor’s actual position, desti-

nation position, status, and list of registered targets.

A sensor node, which detects a new target, reports the target location to a selected actor.

Two actor selection conditions are considered in this study. According to the first actor

selection condition, a sensor node reports its reading to the nearest known actor. The

rationale behind this condition is that the nearest actor is expected to capture the target in

shortest time and the additional benefit is that the transmission requires minimum hop

count. The second actor selection condition aims at balancing the actors’ workload. When

using this condition, a sensor node selects the actor with minimum number of targets

registered in the target list. If more actors have the same minimum number of registered

targets, then the distance to target is also taken into account to select one of them.

After transmitting target coordinates, the sensor node waits for acknowledgement

(broadcast) from the actor. If the acknowledgement is not received, then the coordinates

are retransmitted at the next time step. The source sensor node executes retransmissions

until the acknowledgement is delivered or a limit of retransmissions is reached.

Fig. 4 Stable actor locations (triangles) in square area, no target detected
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4 Experiments

Simulation experiments were performed to compare performance of the proposed actors’

mobility control method with state-of-the-art approaches. The comparison was made by

taking into account two criteria: mean time from target detection to target elimination, and

mean distance covered by one actor during simulation period.

4.1 Simulation Setup

The simulations were conducted for six scenarios that correspond to different spatial

distributions of targets and different numbers of targets generated during simulation period.

Settings of the simulation scenarios are presented in Table 1. Three spatial distributions of

targets are considered. In case of the uniform distribution, the probability of target

occurrence is equal for all locations in the monitored area. The non-uniform distributions

of target localization (single Gaussian and double Gaussian) are presented in Fig. 5. During

simulation, targets are generated in time steps of one second. The simulation scenarios

involve two cases described as low and high number of targets generated at one time step.

These two cases are defined by the probability distributions shown in Fig. 6.

Table 2 includes parameters of the WSAN model, which was used in the simulation

experiments to evaluate performance of the compared mobility control algorithms. This

model was implemented in Matlab. The sensor nodes are deployed in randomized grid

topology. Initially, a square grid topology is created and then the sensor nodes are dis-

tracted randomly from their initial position. Implementation of the energy model is the

same as in the work by Zeng et al. [12]. This simple model assumes that during data

transmission both the transmitting and the receiving nodes consume 50 nJ of energy per bit.

Table 1 Simulation scenarios
Scenario Targets distribution Targets number

UL Uniform Low

UH Uniform High

SGL Single Gaussian Low

SGH Single Gaussian High

DGL Double Gaussian Low

DGL Double Gaussian High

Fig. 5 Probability distributions of target localization: a single Gaussian (simulation scenarios SGL and
SGH), b double Gaussian (simulation scenarios DGL and DGH)
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4.2 Compared Algorithms

In this study, the performance is analysed of eight mobility control algorithms that are

listed in Table 3. The differences between these algorithms lie in the applied actor

deployment method, and the condition of actor selection.

Algorithms EVN, EVW, ECN, and ECW are based on the proposed method, which is

discussed in Sect. 3. However, in case of algorithms ECN and ECW, the proposed method

is used without the procedure for modification of actor’s charge according to recent actor’s

workload (Eq. 8). It means that for these two algorithms the virtual charges of actors are

constant (qi = qA), equal to the initial value.

The last four algorithms in Table 3 utilize state-of-the-art approaches for actor

deployment. According to the uniform deployment approach [15], a default initial location

is determined for each actor to create an ideal square grid topology, which ensures full

coverage of the monitored area. In this scheme, an actor which does not have information

Fig. 6 Probability of creating a given number of targets at one time step: a low target intensity (simulation
scenarios UL, SGL and DGL), b high target intensity (simulation scenarios UH, SGH and DGH)

Table 2 Parameters of WSAN
model

Parameter Value

Monitored area 300 m 9 300 m

Number of sensor nodes 841

Number of actors 16

Transmission range of sensor node 15 m

Sensing range of sensor node 15 m

Transmission range of actor 60 m

Acting range of actor 5 m

Maximum speed of actor 2 m/s

Bandwidth 250 kbit/s

Packet size 56 bytes

Packet error rate 1 %

Broadcast time interval 10 s

Sensor initial energy 1 J

Sensor trans/recv power 50 nJ/bit
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about target locations always moves toward its default location. The random deployment

scheme means that the uniform probability distribution is used to determine initial actors’

locations. Each randomly deployed actor moves only if it possesses information about

target location and remains static in opposite situation.

The examined algorithms combine the above methods of actor deployment with two

different conditions that are used by sensor node for selection of an actor to which it reports

a detected target. As discussed earlier in Sect. 3, the sensor node selects the nearest actor or

the actor with the lowest workload (the lowest number of registered targets).

For all considered mobility algorithms, the decisions about actors’ movements are taken

in discrete time steps of one second.

4.3 Experimental Results

The experimental results discussed in this section were obtained from 20 simulation runs

for each algorithm and scenario. The simulation run is finished when the number of

eliminated targets reaches 1000.

Initial experiments were performed to find effective settings of the algorithm parame-

ters, i.e., the initial value of actor’s charge qA, the forgetting parameter b which is used for

estimation of recent actors’ workload, and the parameter e of the charge function (8). The

simulations were conducted for: qA between 10 and 100, b between 0 and 1, and e between

1 and 5. It was assumed that the virtual charge of borders qB is equal to the initial actor’s

charge qA. In most of the simulation scenarios, the minimum target elimination time and

the minimum distance covered by actor were observed for qA = 60, b = 0.1, and e = 3.

Therefore, these parameter settings were selected for further experiments.

The simulation results obtained for particular scenarios are shown in Figs. 7, 8, 9, 10, 11

and 12. The charts in those figures compare the mean values of target elimination time and

distance covered by one actor during simulation period for all examined algorithms.

In case of the scenarios with uniformly distributed targets (UL—Fig. 7 and UH—

Fig. 8) a low target elimination time is obtained for the mobility algorithms UN and UW

that assume the ideal, uniformly distributed grid of actors. The short target elimination time

can be achieved by these state-of-the-art algorithms because both the targets distribution

and the actors’ distribution are uniform. It should be noted that such assumptions are rarely

met perfectly in practice. However, in these scenarios it can be observed that the proposed

self-organizing algorithms reach the target elimination time obtained for the idealized

uniform actors’ deployment. When considering the scenario with high number of targets

Table 3 Compared algorithms

Algorithm Actor deployment Actor selection

EVN Electrostatic, variable charge Nearest distance to target

EVW Electrostatic, variable charge Lowest workload

ECN Electrostatic, constant charge Nearest distance to target

ECW Electrostatic, constant charge Lowest workload

UN Uniform Nearest distance to target

UW Uniform Lowest workload

RN Random Nearest distance to target

RW Random Lowest workload
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(Fig. 8a), the shortest elimination time was observed for the proposed ECN algorithm with

constant charges as it tends to distribute the actors uniformly and adapts to local variations

of targets density. The longest elimination time was obtained for the random actors’

deployment (algorithms RN and RW). Figures 7b and 8b show that in both scenarios with

Fig. 7 Simulation results for UL scenario: a mean time between target detection and elimination, b mean
distance covered by one actor during simulation period

Fig. 8 Simulation results for UH scenario: a mean time between target detection and elimination, b mean
distance covered by one actor during simulation period

Fig. 9 Simulation results for SGL scenario: a mean time between target detection and elimination, b mean
distance covered by one actor during simulation period

Self-Organizing Mobility Control in Wireless Sensor and Actor… 5095

123



the uniform target distribution, the shortest mean distance covered by actor was obtained

for RN and RW algorithms. For those algorithms actors do not move until they receive

information about target location. This approach ensures short distances covered by actor

for all scenarios but require a long time to eliminate the targets.

Fig. 10 Simulation results for SGH scenario: a mean time between target detection and elimination,
b mean distance covered by one actor during simulation period

Fig. 11 Simulation results for DGL scenario: a mean time between target detection and elimination,
b mean distance covered by one actor during simulation period

Fig. 12 Simulation results for DGH scenario: a mean time between target detection and elimination,
b mean distance covered by one actor during simulation period
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The benefits of introducing variable virtual charges of actors for the proposed approach

are especially visible in the simulation scenarios with Gaussian distributions of target

localization. Figures 9 and 10 show the results obtained for the single Gaussian distribu-

tion, which causes a high density of targets in centre of the monitored area. In this scenario

both the uniform and the random actors’ deployment do not match the targets distribution.

Thus, the results obtained for the state-of-the-art algorithms (UN, UW, RN, and RW) are

evidently worse in comparison with those of EVN algorithm, which significantly reduces

the target elimination time. The reason of this improvement is the ability of adapting the

actors’ deployment to the targets distribution. It should be noted that the results of the

algorithm with constant actors’ charges (ECN) are not as good as those of EVN, which

updates the charges according to recent actor’s workload. The mean distance covered by

actor in case of EVN is not significantly longer than the distance obtained for the state-of-

the-art approach based on uniform actors’ deployment (UN algorithm). The selection of

actor with minimum workload (EVW, ECW) decreases the performance of the proposed

approach.

The simulation results for DGL and DGH scenarios (Figs. 11, 12) confirm that the EVN

algorithm, which is based on the proposed method, has the ability to adapt the actors’

deployment to more complex target distributions than those considered in previous sce-

narios. In this case the double Gaussian distribution is used for targets localization. Thus,

there are two regions in the monitored area, where the targets are detected more frequently.

For both low and high number of targets, the EVN algorithm outperforms the remaining

algorithms in terms of the target elimination time (Figs. 11a, 12a). The distance covered by

actor for EVN algorithm is at the same level as that observed for UN algorithm (Figs. 11b,

12b). When the high number of targets is generated then all the algorithms that are based

on the proposed method (EVN, EVW, ECN, and ECW) allow a lower elimination time to

be obtained in comparison with the state-of-the-art approaches (Fig. 12a).

Figure 13 illustrates actors’ deployments in SGL simulation scenario for different

algorithms. In this figure the crosses represent targets that correspond to current destina-

tions of selected actors, and circles show new targets, which will be eliminated subse-

quently. It can be observed in these examples that the proposed method adapts the actor

deployment to the single Gaussian distribution of targets (Fig. 13a, b). The actors’ loca-

tions are closer to the new targets thus the shorter elimination time can be obtained. In case

of EVN algorithm, actors are localised closer to the centre of the monitored area because

the virtual repulsive forces are decreased for the busy actors. When using the state-of-the-

art algorithms (Fig. 13c, d), the actors localized close to the borders of the monitored area

are idle most of the time.

Further simulation experiments were conducted to take into account failures of actors. It

was assumed that probability of failure equals 0.004 at each time step for every actor. After

failure, the actor is removed from the simulation. Thus, 4 actors are removed on average

during the simulation period of 1000 time steps (seconds). Results of the simulations for

the UL, SGL, and DGL scenarios with actor failures are presented in Figs. 14, 15 and 16.

These results reveal robustness of the proposed approach. The proposed method allows the

actors to be appropriately repositioned after failure, without significant negative effect on

the performance. Thus, the algorithms that are based on the proposed method achieve

shorter target elimination time than the state-of-the-art approaches. It should be also noted

that in case of scenarios with actor failures the mean distance covered by actor for the

proposed algorithms (EVN, EVW, ECN) is at the same low level as for the algorithms with

random actors deployment (RN, RW).
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Figure 17 shows examples of actors’ deployments during simulation of SGL scenario

with failures. In these examples it can be observed that the introduced method suitably

relocates the actors after failure to ensure coverage of the central region, where the targets

are detected more frequently (Fig. 17a, b). The state-of-the-art algorithms (Fig. 17c, d)

leave some parts of this area uncovered.

Fig. 13 Snapshots of WASNS deployment in SGL scenario for the compared algorithms: a EVN, b ECN,
c UN, d RN (actors are represented by triangles, targets are shown as circles and crosses)

Fig. 14 Simulation results for UL scenario with actor failures: a mean time between target detection and
elimination, b mean distance covered by one actor during simulation period
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Energy consumption of sensor nodes is an important factor for the effectiveness of

WSAN applications. Thus, residual sensor energy was evaluated during the simulation

experiments. Results of this evaluation are presented in Fig. 18. These results were col-

lected after 5000 s of the simulation and averaged for all considered scenarios. The lowest

energy consumption and minimum standard deviation of the residual energy was observed

for EVN algorithm. The EVN algorithm uses the proposed mobility control method, which

ensures a relatively low distance between actors and detected targets, especially for the

scenarios with non-uniform target distribution. Thus, lower number of sensor nodes is

involved in relaying data to the actors and the mean energy consumption is reduced. In

case of the uniform targets distribution (scenarios UL and UH) the energy consumption for

the proposed method is at the same level as for the state-of-the-art approaches. For

remaining scenarios, the proposed method reduces the energy consumption. It should be

also noted that the residual energy is more evenly dispersed across the sensor nodes in the

network.

According to the presented results, it can be concluded that the proposed approach

enables more effective organization of the actors’ mobility than the state-of-the-art

methods. In case of the uniform target distribution with low number of targets, the pro-

posed approach allows the actors to eliminate the detected targets as fast as in case of the

Fig. 15 Simulation results for SGL scenario with actor failures: a mean time between target detection and
elimination, b mean distance covered by one actor during simulation period

Fig. 16 Simulation results for DGL scenario with actor failures: a mean time between target detection and
elimination, b mean distance covered by one actor during simulation period
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idealized square grid deployment. For all remaining scenarios, a considerably shorter time

of target elimination can be obtained by using the proposed approach. The distance cov-

ered by one actor during simulation period for the proposed approach is kept at the low

level for the realistic scenarios that take into account actor failures. The best results were

obtained for EVN algorithm, which is based on the proposed virtual electrostatic

Fig. 17 Snapshots of WASNS deployment in SGL scenario with actor failures for the compared
algorithms: a EVN, b ECN, c UN, d RN (actors are represented by triangles, targets are shown as circles
and crosses)

Fig. 18 Residual energy of sensor nodes averaged for all scenarios: a mean value of residual sensor energy,
b standard deviation of residual sensor energy
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interactions with variable actors’ charges. In general, the proposed algorithms with vari-

able virtual actors’ charges (EVN, EVW) obtain a better performance that their counter-

parts with constant charges (ECN, ECW). The introduction of variable actors’ charges

improves the control performance especially for non-uniform target distributions. When

comparing the proposed algorithms that use the selection of nearest actor (EVN, ECN)

with those that implement the selection of actor with lowest workload (EVW, ECW), it is

evident that the proposed approach performs better if the nearest actor is selected. The

introduced method enables effective self-organized actors’ relocation in case of actor

failure. Thus the superior performance can be achieved by this method also in case when

some actors are out of order.

5 Conclusions

New surveillance applications of WSANs require appropriate algorithms to control the

mobility of actors. The mobility control algorithms should enable a self-organizing

deployment of actors in the monitored area and ensure a fast access of actors to detected

targets. In this paper a mobility control method is introduced based on virtual electrostatic

interactions inspired by Coulomb’s law from physics. The objective of this method is to

enable effective relocation of actors that have to reach targets detected by sensor nodes in

minimum time.

The virtual forces allow the actors’ deployment to be dynamically adapted to local

probability of target detection. The adaptation ability was obtained for the proposed

method by introducing variable virtual electrostatic charges of actors. The virtual charge of

an actor is updated as a function of recent actor’s workload. Exponential forgetting

algorithm is applied to estimate the workload of each actor in some recent time period. The

proposed definition of virtual electrostatic charges leads to reduced distances between

actors in regions, where targets are detected more frequently. Thus, the resulting spatial

distribution of actors is more effective than the uniform one, and the targets can be

eliminated in shorter time. In case of actor failure, the proposed method allows the

remaining active actors to be appropriately repositioned. Moreover, the introduced

approach is beneficial owing to low consumption of sensor nodes energy. Main advantages

of the proposed self-organizing mobility control are robustness, scalability, flexibility,

adaptivity, and low computational cost.

In contrast with the state-of-the-art methods, the proposed method does not require any

additional energy-expensive communication with sensor nodes. The virtual forces and

charges are determined on the basis of data transmitted only between neighbouring actors.

They enable appropriate relocation of actors prior to target detection. This method is

effective also in case when the locations of targets cannot be accurately predicted.

Effectiveness of the proposed data mobility control method for WSAN was verified in

simulation experiments. The experimental results show that proposed method enables more

effective organization of the actors’ mobility than the state-of-the-art approaches based on

uniform and random deployment. In comparison with the state-of-the-art solutions, the

proposed method has enabled considerable reduction in mean target elimination time. It

ensures a relatively low mean distance that has to be covered by actors during targets

chasing. The benefits of introducing variable virtual charges of actors for the proposed

method are especially visible in case of non-uniform distributions of target localization.
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Robustness of the proposed method was demonstrated in simulation scenarios that take into

account actor failures.

An interesting topic for future works is to investigate applicability of the proposed

method for surveillance tasks with mobile targets in complex scenarios with obstacles.

Another direction for future research is experimental evaluation of the proposed approach

in more advanced simulators that include detailed models of the physical layer and the

wireless channel. It is also planned to verify robustness, scalability, flexibility, adaptivity

and evaluate computational cost of the introduced approach in a real-world test bed. The

real-world experiments will be conducted using Zigbee or Bluetooth Low Energy mesh

communication. The actors will be implemented by means of mobile platforms (robots)

managed by system on chip and supporting the aforementioned transmission standards.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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