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Abstract Statistical properties of the reception angle have a significant impact on the

choice of the antenna system patterns and decide on the received signal-processing

methods. For angle of arrival in azimuth plane, comparative analysis of the empirical

models and the approximation error evaluation are the purpose of this paper. Here, the

presented analysis is focused on models such as the von Mises, modified Gaussian,

modified Laplacian, and modified logistic. For each model, the approximation accuracy is

determined with respect to measurement data for seven different propagation scenarios.

The measures such as the least-squares error, difference of standard deviations, Kol-

mogorov–Smirnov statistic, and Cramer–von Mises statistic are used for evaluation of the

approximation errors. Comparative analysis for four empirical models, differentiation of

propagation environments, multi-criterial evaluation of approximation errors in significant

degree fill a gap in the previous analysis presented in the literature. The obtained results

show that the empirical models provide a better fit to the measurement data than the

geometrical models, and the smallest errors of approximation are for the modified

Laplacian and logistic distributions.
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1 Introduction

In multipath propagation environments, the reception angle spread is one of the main

causes of received signal distortions. Statistical properties of the angle of arrival (AOA) are

critical to select both the antenna system pattern and signal-processing method. Therefore,

the probability density function (PDF) models of AOA are important for the design of

antenna systems and theoretical and simulation studies of signals in wireless systems.

In practice, the theoretical (geometrical) and empirical models of PDF are used to

reproduce the statistical properties of AOA. The first group of models is defined by

geometrical structures that describe the spatial location of the scattering areas in 2D or 3D.

The most commonly used geometrical structures are: circle [1–4], ellipse [3, 5–7], ring [8],

hemisphere [9], cutting hemisphere [10], and cylinder [11–13]. Distribution of scatterers in

propagation environment is an additional characteristic that defines each geometrical

model. For these models, the following distributions are used: uniform [2, 4, 5, 8, 14],

Gaussian [15, 16], Raleigh and exponential [2], hyperbolic [1], conical [17], parabolic

[3, 18], and inverted parabolic [19]. The choice of the geometrical structure (shape,

position, size) and scattering distribution determines the accuracy of the mapping of the

actual propagation conditions.

The empirical models are based on the standard PDFs that are used in the calculus of

probability. The adaptation of empirical model to different environment conditions

involves selecting PDF parameter that minimizes the approximation error for measurement

data. The advantage of these models is simplicity of the analytical form in which the spread

of AOA is described by a single parameter.

In [20], the comparative analysis of the 2D geometrical models with respect to mea-

surement data for different propagation scenarios is presented. However, this analysis

applies only to the geometrical models. Therefore, in order to assess the effectiveness of

PDF of AOA mapping by the various models, extending the comparative analysis on the

empirical models it is reasoned. The results allow for a comparison of PDF approximation

errors for the simple empirical and analytically complex geometrical models. The sim-

plicity of the analytical description of PDF significantly simplifies the correlation and

spectral analysis of the received signal. Therefore, the purpose of the comparative analysis

is to assess and identify those empirical models that minimize PDF of AOA approximation

error for the different propagation scenarios.

This paper focuses on statistical properties of the azimuthal AOA (AAOA). The

presented analysis refers to wireless access systems, for which the propagation has a

dominant role in azimuth plane. In practice, this means that the power pattern width is

no more than a dozen degrees in elevation plane. In the first part of this paper, the main

purpose is a comparative analysis and approximation error evaluation of the empirical

models for different propagation environments. In [20], the obtained results show that

none of the geometrical models provides minimization of the approximation error for all

analyzed measurement scenarios. With regard to the empirical models, certain attempts

to compare them are shown in [21]. However, the presented results do not provide a

generalization of the conclusions because the single propagation scenario and only two

models (truncated Laplacian and truncated Gaussian) are analyzed. In this paper, a wider

analysis is presented. Here, the following models are considered: modified Gaussian,

modified Laplacian, modified logistic, and von Mises. For each model, the approximation

accuracy is evaluated with respect to measurement data from seven different propagation

scenarios. In the literature, there are also other models such as the truncated cosine and
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uniform distribution in a limited angle range [22]. These models are not considered

because their graphical representations are significantly different from the measurement

data.

In this part of the paper, the comparative analysis of statistical AAOA models is based

on the approximation error evaluation relative to measurement data. This error is deter-

mined by the classic measure that is the least-square error (LSE), and the statistical

measures such as the standard deviation, Kolmogorov–Smirnov and Cramer–von Mises

statistic. Thus, the obtained results provide a reliable assessment of the suitability of the

different empirical models to represent the statistical properties of the signal reception

angle in an azimuth plane. Comparative analysis of four models, a variety of propagation

environments, and multi-criteria evaluation of approximation error largely fill the gaps in

the existing analyses that are presented in the open literature.

In this paper, the presented results have a practical significance. They are the basis to

select model and to evaluate its approximation error for different types of environments.

Angular dispersion of the received signals depends on the type of propagation environ-

ment. Therefore, analytical and simulation studies need to clearly identify the model

parameter. For each type of environment, the selection method of the model parameter is

presented in Part II of this paper [23].

Part I of the paper is organized as follows. For description of the angle statistical prop-

erties, the method for modification of the standard PDF is presented in Sect. 2. Descriptions of

the scenarios and the results that are reference data for empirical models are contained in

Sect. 3. For particular models, the criteria and the evaluation of approximation errors are

presented in Sect. 4. As a result of a comparative analysis, the empirical models, which

accurately map the measurement data for the analyzed scenarios, are indicated in Sect. 5.

2 Empirical Models of AAOA

In the open literature, the statistical AAOA analysis shows that the empirical data

approximation is based on PDF such as the Laplacian [15, 21, 22, 24–29], Gaussian

[22, 24, 30, 31], and von Mises [22, 32–36]. In this paper, the logistic distribution [37–40]

Fig. 1 Differences between the truncated and modified Laplacian distributions in a Cartesian and b polar
coordinate systems
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Table 1 Empirical models of PDF of AAOA (h0 2 �p; pð i)

Empirical model PDF of AAOA
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von Mises

Model parameter: j
fM hð Þ ¼ exp j cos h� h0ð Þð Þ

2pI0 jð Þ for h 2 �p; pð i (4)

I0 �ð Þ is the zero-order modified Bessel function
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is also taken into consideration because its graph is very similar to the measurement

results. The range of AAOA limits the support of PDF to �p; pið interval. For creating

PDF with limited support, the commonly used method consists of the truncated standard

PDF and the introduction of normalizing constant. However, for asymmetrical position of

PDF extreme relative to the interval center (h0 6¼ 0, where h0 is the average AAOA), the

truncated PDF does not provide a mapping of AAOA real properties. In the polar coor-

dinate system, this function is not continuity. Therefore, in the analytical description of the

truncated distribution, the introduction of the additional modification is necessary. For

example, the differences between the truncated and modified Laplacian distributions are

presented in the Cartesian (Fig. 1a) and polar (Fig. 1b) coordinate systems.

The analytical relationships that define the empirical models of PDF such as the

modified Gaussian, fG hð Þ, modified Laplacian, fL hð Þ, modified logistic, fS hð Þ, and von

Mises, fM hð Þ are shown in Table 1.

Minimization of the approximation error is a criterion to fit the model to measurement

data. The ranges of the model parameters are determined by the boundary conditions of

reception angle. These conditions are defined by the standard deviation, rh, which is a

measure of real angle dispersion. For the case of maximum reception angle concentration

(receiving direct path), PDF approaches delta distribution. In practice, a finite accuracy of

measurements is the basis to adopt rh ¼ 1�. For the von Mises distribution, this value is

obtained for j ! 1. Because of numerical calculation complexity of the Bessel function,

the following approximation is used [41]:

lim
j!1

I0 jð Þ ffi exp jð Þ
ffiffiffiffiffiffiffiffi

2pj
p ð5Þ

For this case, the von Mises PDF is

lim
j!1

fM hð Þ ffi
ffiffiffiffiffiffi

j
2p

r

exp j cos hð Þ � 1ð Þð Þ ð6Þ

For maximum spread of the reception angle, PDF of AAOA tends to uniform distri-

bution, that is rh ¼ 103�. For the reception boundary conditions, the ranges of parameters,

r, k, s, j for the modified Gaussian, modified Laplacian, modified logistic, and von Mises

distributions are contained in Table 2.

The modified Gaussian, Laplacian, and logistic PDF require the introduction of the

normalized factors, CG rð Þ, CL kð Þ, CS sð Þ, respectively

Table 2 The ranges of the parameters for empirical models

Empirical model Model parameter Boundary values of model parameter

rh = 1� rh = 103�

Modified Gaussian r (�) 1.0 492

Modified Laplacian k (1/�) 1.4 0.00039

Modified logistic s (�) 0.56 347

von Mises j (1) 3283 &0
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CG ¼ 1
R p
�p fG hð Þ dh

¼ 1

erf p
ffiffi

2
p

r

� � ð7Þ

CL ¼ 1
R p
�p fL hð Þ dh

¼ 1

1 � exp �kpð Þ ð8Þ

CS ¼
1

R p
�p fS hð Þ dh

¼
1 þ exp p

s

� �� �

1 þ exp � p
s

� �� �

exp p
s

� �

� exp � p
s

� � ð9Þ

where erf(�) is the error function. These factors depend on parameters of particular PDFs.

The normalized factors versus parameters of analyzed PDFs are contained in Table 1,

whereas their graphical presentations are shown in Fig. 2.

The graphs show that the normalized factors are approximately equal to 1 for specified

range of parameters of analyzed PDFs. For particular models, CG ffi 1:000 for r� 44�,

CL ffi 1:000 for k� 0:056=�, and CS ffi 1:000 for s� 23�.

The angle spread of the received signals depends on the type of propagation environ-

ment. The empirical model adaptation to different environment conditions consists of such

matching of its parameter that provides the best fit to the real PDF of AOA. For analyzed

models, the graphical representations of parameter influence on the mapping of the

reception angle spread are presented in Fig. 3.

The graphs show that the appropriate choice of PDF parameter enables the model fit to

the measurement data.

Fig. 2 Normalized factor versus model parameter for the modified distributions: a Gaussian, b Laplacian,
c logistic
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3 Measurement Scenarios

Presented in [20], a review and evaluation of the theoretical models of PDF of AAOA are

the basis for the selection of the measurement scenarios for comparative analysis of

empirical models. In this part of the paper, the comparative analysis is focused on scenarios

that concern the homogeneous propagation environments. With respect to empirical PDF,

it means a unimodal function type. Compared to [20], here the set of measurement results

is limited to seven scenarios that are described in [21, 42–46]. Out of all unimodal,

empirical PDFs that are included in [20], the measurement data from [47] are not contained

in this paper. For this case, the correction changing position of transmitter (Tx) is not

included in AAOA averaging procedure.

The choice of the measurement scenarios provides the differentiation of the analyzed

propagation environments. Reference data are derived from the measurements that have

been made in both rural environment [43] as well as urban environment with different

density of buildings [21, 42, 44–46]. The type of propagation environment is determined

by the height of the receiving antenna location relative to the mean height of buildings. For

[42, 45, 46] and [21] (Aarhus) scenarios, the location height of antennas significantly

exceed the mean height of buildings. As a result, the propagation conditions correspond to

the typical urban environment type. Some important factors that affect the wave propa-

gation are the distance between Tx and receiver (Rx), and a carrier frequency of the

sounding signal. For particular scenarios, these data are included in Table 3.

For the macro- and microcell, the measure that defines the type of propagation envi-

ronment is the rms delay spread (DS)

Fig. 3 Influence of the model parameter on the mapping of reception angle spread for the following PDFs:
a modified Gaussian, b modified Laplacian, c) modified logistic, d von Mises
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rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1
0

s2P sð Þ ds
R1

0
P sð Þ ds

�
R1

0
sP sð Þ ds

R1
0

P sð Þ ds

 !2
v

u

u

t ð10Þ

Table 4 Optimal parameters of empirical models for individual scenarios

Empirical model Model
parameter

Measurement scenario

1 2 3 4 5 6 7

Modified
Gaussian

r (�) 7.952 1.170 1.918 6.018 5.570 4.133 7.673

Modified
Laplacian

k (1/�) 0.125 0.844 0.620 0.167 0.174 0.249 0.135

Modified
Logistic

s (�) 4.922 0.720 1.129 3.732 3.460 2.494 4.649

von Mises j (1) 52.2 2398.4 893.5 90.9 106.1 192.5 56.0

Fig. 4 Scenario 1. Matthews et al. [42]—Leeds
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where P sð Þ is the power delay profile (PDP) or power delay spectrum (PDS).

PDP and PDS are the basis for numerical calculation of DS. In Table 3, these functions

are presented in the form of a discrete set of sl and P slð Þ.
The diversity of DSs shows the different types of propagation environments such as

rural, suburban, and urban areas with sparse and dense buildings. The antenna heights of

Tx and Rx relative to the average height of the buildings is the main factor, which decides

about diversity propagation conditions. In [43] (scenario 2), time characteristics such as

PDS or PDP are not included in measurement data set. In this case, the descriptions of the

propagation environment and measurement conditions are utilized. Hence, to assess the

type of propagation environment, sl and P slð Þ are adopted according to COST 207 for rural

area [48].

4 Comparative Analysis of Empirical Models

The assessment of the approximation error is the basis for comparative analysis of

empirical models of PDF of AAOA for different environmental conditions. Here, as in

[20], LSE is used as a measure of goodness of fit of the model to the measurement data

Fig. 5 Scenario 2. Pedersen et al. [43]—Bristol
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LSE ¼ 1

K

X

K

k¼1

fE hkð Þ � f hkð Þ½ �2 ð11Þ

where fE hkð Þ (k ¼ 1; . . .;K) denotes the normalized values from empirical dataset, K refers

to the cardinality of the set of measurement data, and f hkð Þ represents the values for the

analyzed empirical model of PDF.

The application of this measure gives the opportunity to use the results from [20] to

compare the empirical models and the best geometrical models against the measured data.

LSE minimize is also used as a criterion for matching model parameters to measurement

data for the particular propagation scenarios. The empirical model parameters that mini-

mize the approximation errors of measurement data are included in Table 4, whereas the

graphical representations of PDFs are shown in Figs. 4, 5, 6, 7, 8, 9 and 10. For the

empirical PDFs, the standard deviation is marked as rE.

The empirical data are obtained on the basis of measurement data graphs that are

presented in [20]. To extract the numeric data, the software WebPlotDigitizer is applied

[49].

Fig. 6 Scenario 3. Takada et al. [44]—Yokosuka
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For the analyzed scenarios, LSE is the basis for the fit accuracy evaluation of the

empirical models to measurement data. LSE is calculated for optimal parameters, and the

obtained results are included in Table 5. In [20], the same measure is used to assess the

approximation accuracy of the geometrical models. This gives us the opportunity to

compare the approximation errors for empirical and theoretical models of PDF of AAOA.

Therefore, the smallest approximation errors for the geometrical models from [20] are also

included in Table 5.

For different measuring scenarios, the obtained results show that the uniform elliptical

model (Rx outside) provides the smallest LSE in a group of the geometrical models. But a

more accurate mapping of measurement data can be obtained by making use of the

modified Laplacian model, which belongs to the simple empirical models. In general, the

results in the Table 5 show that in addition to the uniform elliptical model (Rx outside), all

the geometrical models give greater approximation errors as compared to the empirical

models.

In this paper, the presented comparative analysis concerns the statistical functions that

described the properties of AAOA. Therefore, the statistical measures should be used to

assess the accuracy of PDF approximation.

Fig. 7 Scenario 4. Fleury et al. [45]—Aalborg
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The basic measure, Dr, is based on a comparison of the standard deviations for model

and measurement data

Dr ¼ rE � rhj j ð12Þ

where rE, rh are the standard deviations for measurement data and PDF model, respec-

tively. These parameters are also called the rms azimuth angle spread, when they are

determined on the basis of the power azimuth spectrum.

For the analyzed scenarios and PDF models, the comparative analysis results based on

Dr are included in Table 6.

However, the application of Dr is limited only to assess the dispersion degree of PDFs.

Therefore, the similarity assessment of PDFs requires the use of dedicated statistical

measures such as the Cramer–von Mises and Kolmogorov–Smirnov statistics [55]. These

statistics are described by, respectively

Fig. 8 Scenario 5. Mogensen et al. [46]—Aalborg
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W2 ¼
Z

p

�p

FE hð Þ � F hð Þ½ � 2
dF hð Þ ð13Þ

Dn ¼ sup
h

FE hð Þ � F hð Þj j ð14Þ

where FE hð Þ ¼
R

h

�p
fE uð Þdu is the cumulative distribution function (CDF) for the PDF

based on the empirical data, and F hð Þ ¼
R

h

�p
f uð Þdu is CDF for the analyzed empirical PDF

model.

Based on (13) and (14), the obtained results of the numerical calculations are included

in Tables 7 and 8, respectively.

For each PDF model, to assess the accuracy of the approximation, the average values

of the utilized measures are included in the last column of each table. Table 5 shows that

Fig. 9 Scenario 6. Pedersen et al. [21]—Aarhus
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the empirical models generally provide a better fit to the measurement data than the

geometrical models. Only the uniform elliptical (Rx outside) and Gaussian models

provide the results similar to the empirical models. Furthermore, for empirical models,

the simplicity of analytical description is a significant prerequisite for the use of these

models to assess AAOA statistical properties in analytical and simulation studies.

Tables 6, 7 and 8 show that for all statistical measures, Laplacian and logistic models

provide the smallest approximation error for large number of measuring scenarios. When

choosing the best model, ambiguity occurs only for scenarios 1 and 3. Unlike other

scenarios, the measurement results were obtained for the fixed positions of Tx and Rx.

Thus, the empirical data from Leeds [42] and Yokosuka [44] do not account for the

spatial averaging of measurements. This means that the evaluation of PDF of AAOA

requires not only defining the model, type of environment, but also the choice of an

appropriate measure for measurement campaign. The obtained results show that for a

pair of the modified Laplacian–modified logistic and the modified Gaussian–von Mises

models, convergence of the approximation errors occurs. Thus, these models can be used

interchangeably for each pair.

Fig. 10 Scenario 7. Pedersen et al. [21]—Stockholm
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5 Conclusion

In this paper, the comparative analysis of PDF empirical models has been performed based

on approximation accuracy evaluation of the reception angle distribution to the mea-

surement data for different propagation environments. The obtained results are an exten-

sion of comparative analysis that is presented in [20] and focus only on geometrical

models.

Here, the classical PDFs are used to determine the empirical models of AAOA distri-

butions. However, the mapping of the statistical properties of AAOA requires appropriate

Table 6 Results of the comparative analysis based on Dr

Empirical model Measurement scenario Average value

1 2 3 4 5 6 7

Modified Gaussian 0.963 0.916 2.468 4.132 4.184 2.269 1.781 2.388

Modified Laplacian 1.755 0.444 1.971 1.726 1.685 0.811 0.317 1.244

Modified logistic 0.043 0.783 2.308 3.379 3.484 1.879 1.278 1.879

von Mises 0.945 0.916 2.468 4.124 4.178 2.266 1.766 2.380

Table 7 Results of the comparative analysis based on the Cramer–von Mises statistic

Empirical
model

Measurement scenario Average
value

1 2 3 4 5 6 7

Modified
Gaussian

0.005888 0.106933 0.103394 0.040058 0.089772 0.070401 0.048080 0.066361

Modified
Laplacian

0.025826 0.052498 0.160256 0.028138 0.029616 0.018224 0.003668 0.045461

Modified
logistic

0.008097 0.085342 0.121122 0.023961 0.053179 0.043446 0.030093 0.052177

von Mises 0.005918 0.106852 0.103283 0.039815 0.089315 0.070177 0.047527 0.066127

Table 8 Results of the comparative analysis based on the Kolmogorov–Smirnov statistic

Empirical
model

Measurement scenario Average
value

1 2 3 4 5 6 7

Modified
Gaussian

0.021816 0.089507 0.096766 0.049073 0.051052 0.047000 0.046356 0.057367

Modified
Laplacian

0.058585 0.044165 0.113555 0.032925 0.025971 0.020886 0.012385 0.044067

Modified
logistic

0.032103 0.075160 0.100261 0.043378 0.042719 0.035806 0.035452 0.052126

von Mises 0.022023 0.089484 0.096701 0.049017 0.050963 0.046909 0.046037 0.057305
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modification of these PDFs. The modifications, which are introduced into the classical

models such as Gaussian, Laplacian, and logistic ensure the continuity of PDFs in polar

coordinates. In physical interpretation, it provides the convergence of the measurement

data and empirical models. For empirical and geometrical models, the comparison of

approximation errors shows that simple empirical models fit better with the measurement

data, whereas for most of the analyzed scenarios, the modified Laplacian and modified

logistic models are best adopted to the empirical data. The obtained results show that

minimizing the approximation error requires the selection and fitting of the model to the

propagation environment type. The problem of the model adaptation to research scenario,

that is, matching of model parameter to the type of propagation environment is essential for

theoretical and simulation studies. This issue is examined in Part II of this paper [23].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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