Water Air Soil Pollut (2022) 233: 374
https://doi.org/10.1007/s11270-022-05831-2

®

Check for
updates

Visible Light-Driven Advanced Oxidation Processes
to Remove Emerging Contaminants from Water

and Wastewater: a Review

Piotr Zawadzki

Received: 19 February 2022 / Accepted: 15 August 2022 / published online: 3 September 2022

© The Author(s) 2022

Abstract The scientific data review shows that
advanced oxidation processes based on the hydroxyl
or sulfate radicals are of great interest among the cur-
rently conventional water and wastewater treatment
methods. Different advanced treatment processes
such as photocatalysis, Fenton’s reagent, ozonation,
and persulfate-based processes were investigated to
degrade contaminants of emerging concern (CECs)
such as pesticides, personal care products, pharma-
ceuticals, disinfectants, dyes, and estrogenic sub-
stances. This article presents a general overview of
visible light—driven advanced oxidation processes
for the removal of chlorfenvinphos (organophos-
phorus insecticide), methylene blue (azo dye), and
diclofenac (non-steroidal anti-inflammatory drug).
The following visible light—driven treatment methods
were reviewed: photocatalysis, sulfate radical oxida-
tion, and photoelectrocatalysis. Visible light, among
other sources of energy, is a renewable energy source
and an excellent substitute for ultraviolet radiation
used in advanced oxidation processes. It creates a
high application potential for solar-assisted advanced
oxidation processes in water and wastewater technol-
ogy. Despite numerous publications of advanced oxi-
dation processes (AOPs), more extensive research is
needed to investigate the mechanisms of contaminant
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degradation in the presence of visible light. There-
fore, this paper provides an important source of infor-
mation on the degradation mechanism of emerging
contaminants. An important aspect in the work is
the analysis of process parameters affecting the deg-
radation process. The initial concentration of CECs,
pH, reaction time, and catalyst dosage are discussed
and analyzed. Based on a comprehensive survey of
previous studies, opportunities for applications of
AOPs are presented, highlighting the need for further
efforts to address dominant barriers to knowledge
acquisition.
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Abbreviations
AOPs Advanced oxidation processes
BCF Bioconcentration factor

Coicryp)  Initial concentration of chlorfenvinphos
Copcry  Initial concentration of diclofenac
Coms) Initial concentration of methylene blue
CECs Contaminants of emerging concern
CFVP Chlorfenvinphos

DCF Diclofenac

E° Oxidation potential

ECs, Median effective concentration

E, Activation energy

HSO; Peroxymonosulfate
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Koc Organic carbon—water partition coefficient
Kow n-Octanol/water partition coefficient

LCy, Median lethal concentration

LED Light-emitting diode

MB Methylene blue

MPs Microplastics

MSAs Methanesulfonic acids

Na,S,0g Sodium persulfate

NSAID  Non-steroidal anti-inflammatory drug
*OH Hydroxyl radical

PDS Peroxydisulfate

PEC Photoelectrocatalysis

pH,,c PH of the point of zero charge
PMS Peroxymonosulfate

PS Persulfate

SzOé‘ Peroxydisulfate/persulfate ion
SOy Sulfate radical

TBBPA  Tetrabromobisphenol A

(MY Ultraviolet

Vis Visible

1 Introduction

The problem of contaminants of emerging concern
(CECs) is an issue that is constantly being devel-
oped. CECs have been identified in groundwater and
surface water, in treated municipal and industrial
wastewaters, and even in drinking water (Bolong
et al., 2009; Coadou et al., 2017; Montagner et al.,
2019; Troger et al., 2018). New groups of compounds
have also been reported as potential substances clas-
sified as emerging contaminants: halogenated meth-
anesulfonic acids (MSAs) such as chloro-, bromo-,
or iodo-methanesulfonic acids (Zahn et al., 2016);
microplastics (MPs) (Wright & Kelly, 2017); flame
retardants including tetrabromobisphenol A (TBBPA)
(Ballesteros-Gomez et al., 2017); compounds used in
ultraviolet (UV) filters and sun creams such as eth-
ylhexyl dimethylaminobenzoate and benzocaine (Li
et al., 2017; Tsui et al., 2017); contrast agents used
in computed tomography such as those containing
gadolinium (Rogowska et al., 2018); pharmaceutical
substances such as lidocaine (Jakab et al., 2020); and
even drugs such as cocaine and its metabolites identi-
fied in pool waters (Fantuzzi et al., 2018).

The presence of contaminants of emerging con-
cern in the environment is not normally related to
their negative impact on living organisms at high
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doses (acute toxicity). Their low concentrations in
water and wastewater (c.a. few ng/dm?®) and long-
term effects on humans and animals (chronic toxicity)
should be of potential concern. The toxic effects of
these substances have been confirmed by, e.g., Leusch
et al. (2017) and Lempart et al. (2020).

Since these compounds are often identified in the
environment and because of their negative impact
on living organisms, it is justified to develop new
technologies of water treatment and municipal and
industrial wastewater treatments. The scientific data
reviews show that one of the interesting alternatives
to the conventional processes used in environmental
engineering is advanced oxidation processes (AOPs).
The common feature of AOPs is the physicochemi-
cal reaction between the generated hydroxyl radical
(*OH) or sulfate radical (SO}") and organic contami-
nants. AOPs are non-selective and allow the complete
or partial decomposition of hazardous substances
by mineralization into environmentally neutral, sim-
ple chemical compounds (Mazivila et al., 2019;
Wactawek et al., 2017).

The differences between the various AOPs are the
radical generation method, efficiency, and complex-
ity. Most of them are photochemical processes, i.e.,
conducted in the presence of ultraviolet radiation
(A<400 nm). A significant drawback is a catalytic
activity, which requires using an expensive cata-
lyst activation method with artificial light sources.
The most frequently used radiation source is a lamp
emitting radiation below 400 nm (UV light). This is
essential for activating catalysts such as titanium(I'V)
oxide. Lasers, solar radiation, xenon, and sodium
lamps are rarely used. When solar radiation is used,
only 3-5% of this energy can be utilized, so the use
of UV lamps, as energy-intensive devices, is a severe
limiting factor for using these methods in the elimi-
nation of micropollutants (Ghernaout & Elboughdiri,
2019; Palit, 2014).

The scientific data also show that many works are
devoted to using sulfate radicals SO} (E°=2.5-3.1V)
for the degradation of organic contaminants (Hu
et al., 2020b; Zhou et al., 2020). The generation of
sulfate radicals is carried out by activation of persul-
fate ions (S,05) by UV radiation, heat, ionizing radi-
ation, high pH> 11.0, and transition metal ions (Cri-
quet and Karpel Vel Leitner, 2012; Peng et al., 2017;
Manz et al., 2018; Al Hakim et al., 2019). Activation
with transition metal ions at low oxidation levels such
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as Fe?*, Ni**, Co**, and Ag* is used most frequently.
As a result of the reaction, the ion SZO§‘ reacts with
the electron donor from the transition metal to form a
single sulfate radical (Nasseri et al., 2017).

A review of results in the Scholar database
(Google Scholar Database, 2022) showed that, in
recent years, there have been an increasing num-
ber of studies on the application of modifications of
advanced oxidation processes, including the visible
light—driven AOPs (Fig. 1). In recent years, research-
ers have focused on modifications of advanced oxida-
tion processes (Cheng et al., 2019; Zawadzki et al.,
2020; Zawadzki, 2020; Nguyen et al., 2020). Modi-
fications simplify the way catalysts are activated, and
increase the degree of pollutant removal efficiency
with variable wastewater quality.

One example of modifications used in heteroge-
neous oxidation processes (in the presence of solid
catalysts, e.g., titanium dioxide (TiO,)) is carbona-
ceous materials (e.g., activated carbon), acids (e.g.,
succinic acid, ascorbic acid), or metal and non-metal
species (e.g., carbon, nitrogen, sulfur, ferrum). Acti-
vation processes of persulfates (precursors of sul-
fate radicals) under visible light have also attracted
widespread interest (Du et al., 2020; Wang et al.,
2019; Zawadzki, 2019; Zhang et al., 2020), and it
is described as effective as conventional activation
methods. Appropriately chosen treatment parameters
and optimal modification methods can lower costs
compared to classical methods.

The increasing pressure of contaminants on the
environment, combined with the scarcity of water

resources in the world, justifies the need to develop
new and optimize already applied methods for the
efficient removal of contaminants from water and
wastewater. This work presents examples of methods
for the advanced oxidation of micropollutants such
as chlorfenvinphos, methylene blue, and diclofenac
carried out in the presence of visible light.

Micropollutants have a high susceptibility to
migrate in the environment and thus bioaccumulate
and migrate in the environment (Fig. 2). Micropoll-
utants are also relatively resistant to decomposition.
The emission of micropollutants to the environment
is mainly due to industrial activities. It is primar-
ily connected with thermal and chemical processes.
Coking plants, power plants, waste incineration
plants, and chemical plants are direct sources of
micropollutants. Excessive amounts of pesticides,
pharmaceuticals, and antibacterial substances are
of great importance. Micropollutants are primarily
identified in surface water, but their concentration
is also increasing in groundwater. They are mainly
transported to aquatic ecosystems with treated or
poorly treated industrial and domestic wastewa-
ters, atmospheric precipitation, and through surface
runoff from agricultural land and poorly protected
landfills (Dubey et al., 2021; Menger et al., 2021;
Ngweme et al., 2021).

The following representatives from a group
of CECs were selected as model contaminants:
chlorfenvinphos, methylene blue, and diclofenac.
These contaminants differ from each other in their
physicochemical properties, degree of impact on
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Fig. 2 Migration of micropollutants in the environment

living organisms, and persistence in the environ-
ment (Table 1).

In recent years, the number of publications on the
applications of AOPs based on hydroxyl or sulfate
radicals has been widely studied for water, waste-
water, and soil treatment (Ghernaout & Elbough-
diri, 2021; Lee et al., 2020; Ma et al., 2021; Miklos
et al., 2018; Zhou et al., 2019). Despite numerous
publications and reviews on AOPs, there is a lack
of collected and systematized information regard-
ing visible light—driven advanced oxidation pro-
cesses for the removal of emerging contaminants.
Very few studies reviewed this treatment technol-
ogy (Serpone et al., 2017; Tian et al., 2022; Yang
et al., 2021); therefore, there is a paucity of a broad
overview of its application and discussion of influ-
encing parameters. Although the large number of
publications on conventional AOPs (e.g., using UV)
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shows great success, due to the energy crisis and
the continuously increasing electricity prices, it is
important to present the potential, possibilities, and
influencing parameters affecting AOPs using solar
radiation as a renewable energy source. Thus, solar
radiation can be applied as a free source of energy,
reducing operating costs on an industrial scale.
Therefore, this review article summarizes vari-
ous methods of removing contaminants of emerg-
ing concern from water and wastewater by visible
light—driven AOPs. An important aspect in the work
is the analysis of process parameters affecting the
degradation process to enhance the efficiency of the
visible light—driven AOP system. Specifically, the
main mechanisms involved in visible light activa-
tion are also discussed. Concluding perspectives
and guidelines for future research are proposed at
the end of this paper.
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Table 1 Toxicological and physicochemical profile of CFVP, MB, and DCF

Compound CFVP MB DCF
Chemical formula C,H,,CL,0,P C,6H,3CIN;S C.,H,,CL,NO,
Molecular weight (g/mol) 359.6 319.85 296.1
CAS number 470-90-6 61-73-4 15,307-86-5
Form Amber liquid Dark green crystals or powder ~ Solid; crystals from ether—petro-
leum ether
Toxicity Daphnia magna: LCs, Daphnia: ECy Dunaliella tertiolecta
(24 h)=28.00 pg/l (48 h)=2.26 mg/l (phytoplankton): ECs
Daphnia magna: ECs, Fish: LCs; (96 h)=18.0 mg/l (96 h)=185.69 mg/l
24h)=1.2 pg/l Daphnia magna: ECs,
Gammarus fasciatus: LCs (48 h)=123.30 mg/l
(24 h)=27 pg/l
Gammarus fasciatus: LCs
(96 h)=9.6 ug/l
log Koy (&) 3.81 5.85 4.51
log Ko (-) 2.44 ND 3.81-430°
Bioconcentration factor (BCF) 36.6-661.0 <100 10
)
Solubility in water (at 25 °C)  124.0 (at 20 °C) 43,600.0 2.37
(mg/l)
Vapor pressure at 25 °C 7.5%107° 7.0x1077 6.14%x1078

(mmHg)

Environmental concentration
(ug/

References

Surface water: 0.001-47.4

Seawater and groundwater:
0.02

Rainwater: 0.05-0.12

Wastewater (effluent):
0.05-0.14

Chlorfenvinphos (Safety Data
Sheet 2022Zgheib et al.,
2012; Campo et al., 2013;
Ccanccapa et al., 2016Pérez-
Lucas et al., 2018)

Chlorfenvinfos (Compound
Summary 2022)

10x 10°~10%x 10°®

Methylene blue (Material
Safety Data Sheet 2022Rah-
man et al., 2012; Almaamary
etal., 2017)

Methylene blue (Compound
Summary 2022)

Surface water: 4.62x 1073-0.057
Groundwater: 2.5x 107°-13.48
Drinking water:
2.5%1073-56 ng/l
Wastewater effluent:
45%107°-19.0

Scheytt et al. (2005)

DeLorenzo and Fleming (2008)

Memmert et al. (2013)

De Oliveira et al. (2016)

Sathishkumar et al. (2020)

Diclofenac (Compound Sum-
mary 2022)

CFVP chlorfenvinphos, MB methylene blue, DCF diclofenac, ND no data.
*log K values based on equations by Karickhoff et al. (1979): log Ky-=1.0log K—0.21.

"No data about MB concentrations in wastewater was found: the presented data refer to initial concentrations removed during labora-

tory experiments.

1.1 Methylene Blue

Industrial wastewater contains chemical compounds
(e.g., dyes, phenols, pesticides, heavy metals), which
are by-products of the technological processes, e.g.,
in the textile, chemical, food, and tanning indus-
tries. These industries generate the most signifi-
cant industrial wastewater containing synthetic dyes
(Khamparia & Jaspal, 2018). The composition of
colored industrial effluents is chemically diverse.
The synthetic dyes commonly found in this type of

wastewater can be divided into azo dyes, reactive
dyes, triphenylmethane dyes, heterocyclic dyes, and
polymeric dyes (Guadie et al., 2017).

One example of a compound belonging to the
group of azo dyes is methylene blue (MB). Azo dyes
contain the azo functional group R-N=N-R’, in which
R and R’ can be substituted with alkyl or aryl groups.
Azo dyes are one of the leading organic compounds
identified in colored industrial effluents and can
account for up to 70% of total dye production (Oveisi
et al., 2019). Azo dyes trigger histamine, which
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can cause, for example, urticaria and can aggravate
asthma symptoms and cause uterine contractions in
pregnant women, causing miscarriage. MB is a cati-
onic thiazine dye containing a six-membered hetero-
cyclic ring with sulfur and a nitrogen atom (pheno-
thiazine ring). Methylene blue is widely used in the
textile, paper, cosmetics, plastics, and food industries
(Zawadzki, 2019). Recent literature also indicates the
potential use of MB in treating COVID-19, a disease
caused by the SARS-CoV-2 virus (Gendrot et al.,
2020; Scigliano & Scigliano, 2021).

For organic substances with a log Ky, value less
than 4.5, the affinity for the lipids of the organism is
assumed to be insufficient to exceed the bioaccumula-
tion criterion (bioconcentration factor (BCF)=2000).
The BCF is the ratio of the concentration of a sub-
stance in an organism and water, depending on the
organism and the conditions. Methylene blue exceeds
this factor (log Koy =5.85). Chemicals with high log
Kow values (>4.5) are of more significant concern
as they have the potential to bioconcentrate in living
organisms. However, MB is not expected to bioac-
cumulate significantly as the estimated BCF is below
100.

Due to the potential danger to humans and the
high resistance to biodegradation, there is a need to
develop technologies to eliminate methylene blue
from water and wastewater. Removal of dyes by
conventional processes, including activated sludge,
does not bring the expected results. Due to their low
biodegradability, almost 90% of the dyes present
in wastewater is not removed by conventional treat-
ment processes. Therefore, the degradation of dyes
from wastewater has attracted considerable interest
from researchers worldwide (Deng and Zhao, 2015).
In recent years, interesting, advanced oxidation pro-
cesses driven by visible light have been developed to
remove methylene blue from colored wastewater.

1.2 Chlorfenvinphos

For many years, interest in pesticides has focused on
four basic properties: selective toxicity, persistence in
the environment, bioaccumulation, and mobility. Per-
sistence in the environment is probably the most deci-
sive factor when considering the extent of their use.
Persistence is often expressed in terms of half-life.
Pesticide degradation can occur through biological
processes and chemical and photochemical reactions.
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A pesticide losing its characteristic activity does not
necessarily mean that it has become a harmless sub-
stance. Chemical reactions often result in more toxic
compounds than the original compounds (Mahdy &
El-Maghraby, 2010; Laws 2013; Ravoet et al., 2015).

Chlorfenvinphos (CFVP) is one of the most impor-
tant members of the organophosphorus insecticide
family. Technical chlorfenvinphos, consisting of E
and Z isomers, contains about 80-90% of this com-
pound. CFVP is a low-mammalian toxicity insec-
ticide. It is used against pests destroying crops of
potatoes, rice, carrots, oilseeds, and maize. Organo-
phosphate insecticides are phosphoric acid deriva-
tives in which the hydroxyl group (-OH) has been
replaced by —OR groups derived from alcohols.
Organophosphate pesticides inhibit the activity of
acetylcholinesterase, one of the essential enzymes for
the peripheral and central nervous systems. Chlorfen-
vinphos can cause structural and functional changes
in the liver (Lutz et al., 2006; Sismeiro-Vivas et al.,
2007; Sosnowska et al., 2013).

Chlorfenvinphos has a moderate bioconcentration
potential as indicated by a log Ky value of 3.81.
The degree of bioconcentration of CFVP ranges from
BCF=36.6 to 661.0. The organic carbon/soil parti-
tion coefficient (log K) value is approximately 2.44.
The log K, value shows a moderate susceptibility
to adsorb in bottom sediments and suspended mat-
ter, and therefore, the transport of the compound to
the solid phase is to be expected. CFVP hydrolyzes
slowly in slightly alkaline, acidic, and neutral condi-
tions. The half-life (¢,,) at pH 3 to 6 is between 170
and 200 days (T=20-30 °C). Chlorfenvinphos is
more resistant to decomposition in biologically active
waters, with half-lives ranging from 1 to 25 days. It
only decomposes thermally at high temperatures
(T>150 °C). Despite its ban in Europe, it is identi-
fied in water samples worldwide (Serrano et al., 1997;
Wu et al., 2011; Sire and Amouroux, 2016; Ccanc-
capa et al., 2016; Koranteng et al., 2018; Pérez-Lucas
etal., 2018).

The number of publications on the applica-
tion of advanced processes to eliminate chlorfen-
vinphos is not significant. The number of results in
the Scholar database in 2000-2021 containing the
phrase “advanced oxidation process for chlorfen-
vinphos removal” is 1050, while that containing the
words “visible-light-driven advanced oxidation pro-
cess for chlorfenvinphos removal” is 154. Compared
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to atrazine, an herbicide from the triazine group
(17,500 in 2000-2021 for the phrase “advanced oxi-
dation process for atrazine removal” and 5170 for
the phrase “visible-light-driven advanced oxidation
process for atrazine removal”), diuron, a phytotoxic
herbicide from the group of total herbicides (12,400
for “advanced oxidation process for diuron removal”
and 1220 for “visible-light-driven advanced oxida-
tion process for diuron removal”), has a relatively
low number. Therefore, there is a gap between the
removal processes for individual organophospho-
rus pesticides investigated so far. This is important
because atrazine, diuron, and chlorfenvinphos are on
the list of priority substances for water policy (Direc-
tive, 2013).

1.3 Diclofenac

Among the analyzed CECs, there is a group of phar-
maceutical substances. The largest pharmaceutical
substances come from hospitals, households, veteri-
nary centers, and livestock farms. Municipal waste-
water discharge is considered the dominant source of
pharmaceuticals, while discharges from manufactur-
ing plants, hospitals, and farms are locally significant
(Wohler et al., 2020). Pharmaceuticals are designed
to perform a precise function in the human body. Sig-
nificant fractions of pharmaceutical substances are
generally excreted, mainly through urine (Barreto
et al., 2021). Pharmaceutical products for use in both
humans and animals are developing together with the
global population increase and healthcare. The num-
ber of pharmaceuticals discharged into the environ-
ment is an increasingly severe problem. More than
3500 pharmaceutical substances have been identified
in surface water and treated wastewater, excluding
metabolites and other transformation products (Ais-
saoui et al., 2017).

Diclofenac (DCF) is a non-steroidal anti-inflam-
matory drug (NSAID) (Sathishkumar et al., 2020).
Anti-inflammatory painkillers are among the most
popular drugs available, mostly over-the-counter. The
most commonly purchased painkillers include ibu-
profen, paracetamol, naproxen, diclofenac, carbamaz-
epine, and salicylic acid. Diclofenac is used in both
humans and livestock. Worldwide annual consump-
tion of diclofenac is estimated to be around 1000 mg
(Moreira et al., 2018; Tomul et al., 2019).

The widespread use of pharmaceuticals results
in the almost continuous emission of these com-
pounds and their metabolites into the environment.
The increased importance of pharmaceutical sub-
stances has prompted several actions to limit or moni-
tor these compounds. For example, by Commission
Implementing Decision (EU) No. 2015/495 of 20
March 2015 establishing a watch list of substances
for monitoring purposes, diclofenac was included in
the first watch list. According to the current Com-
mission Implementing Decision (EU) No. 2020/1161
of 4 August 2020 establishing a watch list of sub-
stances for monitoring purposes, as many as four
compounds from the group of pharmaceuticals have
been included: amoxicillin (a semi-synthetic p-lactam
antibiotic with bactericidal activity), ciprofloxacin (a
second-generation quinolone chemotherapeutic with
bactericidal activity), sulfamethoxazole (a bacterio-
static antibiotic), trimethoprim (a chemotherapeutic
agent), venlafaxine, and O-desmethylvenlafaxine (a
multifunctional organic chemical compound used as
an antidepressant) (Commission Implementing Deci-
sion (EU) 2015/495; Commission Implementing
Decision (EU) 2020/1161). Furthermore, Font et al.
(2019) developed a model to predict the current and
future dilution of pharmaceuticals in freshwater eco-
systems such as rivers and lakes. Their model was
applied to diclofenac, a commonly used anti-inflam-
matory drug to reduce pain.

Approximately 65% of the diclofenac dose is
excreted in urine and 35% in bile as conjugates of
unchanged diclofenac and its metabolites (Voltaren—
Prescribing Information 2022). Diclofenac tends to
adsorb to the organic matter in soil or sediments due
to their low affinity for water (log Kqyw=4.51 and log
Koc-=3.81-4.30). The bioconcentration degree of
DCEF is 10 (diclofenac is not expected to bioaccumu-
late significantly).

Conventional treatment processes have DCF
removal efficiencies ranging from a few % to 93%
(Lonappan et al., 2016; Verlicchi et al., 2012). Zhang
et al. (2008) reported diclofenac removal efficien-
cies by wastewater treatment plants ranging from
0 to 80%, mainly in the 21-40% range. Zorita et al.
(2009) showed that the DCF reduction factor could
also be harmful, which is attributed to de-conjuga-
tion or hydrolysis of pharmaceutical metabolites,
reformation of the parent molecule, or pharmaceuti-
cal desorption from colloids and suspension (sewage
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sludge). Therefore, DCF persists in the aquatic envi-
ronment and is detected in raw wastewater, treated
wastewater, surface water, and even drinking water
(Loos et al., 2017; Sharma et al., 2019).

2 Visible Light-Driven Advanced Oxidation
Processes

There are currently many technologies for the
removal of emerging contaminants. These include
chemical precipitation, flotation, adsorption on acti-
vated carbon, wet air oxidation, supercritical water
oxidation, Fenton’s reagent, hydrogen peroxide treat-
ment, ultrasonic oxidation, ozonation, membrane
processes (microfiltration, ultrafiltration, reverse
osmosis, electrodialysis), and biological processes,
as well as combined processes such as membrane
bioreactors (biological processes and membrane pro-
cesses) or biological activated carbons (Dhaka et al.,
2019; Gogoi et al., 2018; Rodriguez-Narvaez et al.,
2017). However, the above methods have some dis-
advantages. For example, coagulation generates large
amounts of sludge formation and additional equip-
ment for sedimentation and filtration of the resulting
sludge is required. Sorption processes require optimal
adsorbents with a high affinity for the contaminants.
On the other hand, membrane processes require pre-
treatment of the wastewater to eliminate substances
that limit the life of the membranes. Wet air oxida-
tion uses air as an oxidant mixed with the contami-
nated medium and then passed through a catalyst
with increased temperature and pressure (high-tem-
perature process and high electricity consumption
are limitations of this process). In contrast, microor-
ganisms in biological methods are sensitive to toxic
substances, and pre-treatment before biological treat-
ment is required. Most of the mentioned methods do
not degrade the contaminants but only transfer them
to another phase, so CECs are still present in the envi-
ronment (Tungler et al., 2015; De Gisi et al., 2016;
Obotey Ezugbe & Rathilal, 2020).

In recent years, the interest of researchers has
focused on the development of AOPs that, under
appropriately chosen conditions (e.g., reaction time,
oxidant dose, reactor volume), allow the degradation
of almost 100% of the contaminants and minimize the
risk of generating oxidation by-products. The use of
energy-consuming UV lamps (Zou et al., 2020), the
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recombination of hole-electron pairs (photocatalysts)
(Sharma et al., 2021), the influence of interfering ions
(Ahmed et al., 2021), the result of suspended mat-
ter (slurry), the formation of post-process residues
(nanoparticles of photocatalysts, negatively affecting
ecosystems and human health by entering, for exam-
ple drinking water sources) (Zhang et al., 2017), and
the use of energy- and cost-intensive activation meth-
ods (high temperature, high pH, chemical reactants,
e.g., Fe?* for radical generation processes SO;) (Hu
et al., 2020a, 2020b; Zawadzki, 2019; Zrinyi & Pham,
2017) are significant limitations of AOPs. There-
fore, new and efficient, technologically and economi-
cally effective processes are sought in environmental
engineering to achieve simultaneously high removal
results of CECs. The analysis of literature data has
shown that three basic types of visible light—driven
AOPs are used for CFVP, DCF, and MB elimination
processes: photocatalysis, radical sulfate oxidation,
and electrochemical processes. A summary of the
identified visible light—driven processes is presented
in Table 2.

2.1 Visible Light-Driven Photocatalysis

IUPAC defines photocatalysis as the initiation of a
reaction or a change in its rate under the influence
of solar (Vis), UV, and infrared (IR) radiation in the
presence of a photocatalyst (semiconductor), which,
by absorbing the radiation, participates in the trans-
formation of the reaction substrates (Braslavsky,
2007). Photocatalysis is carried out in the presence
of metal oxides, including TiO,, zinc oxide (ZnO),
WO,, CeO,, and Fe,0;, or sulfides CdS and ZnS.
Photochemical processes are most often carried out
in TiO,. The advantage of TiO, is its chemical and
biological stability. Titanium(IV) oxide is non-toxic
and practically insoluble. From the economic point
of view, it is relatively cheap and easy to produce.
In a photocatalytic process carried out in the pres-
ence of TiO,, it is necessary to provide radiation of an
appropriate wavelength, at an energy amount higher
than that of bandgap energy. The minimum energy
required for its activation is equal to the energy of
the excited band and is E,=3.02 V for rutile form
and E,=3.2 V for anatase form. The excitation of
a semiconductor causes the transfer of an electron
from the valence band (VB) to the conduction band
(CB). A so-called electron-hole is produced, which
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Table 2 (continued)

I

References

Details

Removal
efficiency

(%)

Process

CEC

Springer

Sun et al. (2018)

Concentration Copcp

32

Photoelectrocatalytic degradation at g-C5N,/BiVO,

Diclofenac

=10 mg/l; effective area of
%, the bias potential (vs

6 cm”;

+1V;pH

photoelectrode

SCE)

composite

6.52; process time = 180 min;

300 W

xenon; lamp power=

type of lamp

Concentration Cypcp = 10 mg/l; effective area of

934

H,0,-assisted photoelectrocatalytic degradation at

2. the bias potential (vs.

=6cm

photoelectrode

SCE)

g-C;N,/BiVO, composite

3.17; process time = 180 min;

+1V;pH=

300 W; H,0,

xenon; lamp power =

type of lamp

dosage=10 mM

corresponds to the formation of redox potential on
the surface of the photocatalyst molecule. Titanium
dioxide can be activated with light energy with a
wavelength of <400 nm. This is only a fraction of
sunlight (<5%), so it is necessary to provide expen-
sive lamps that emit ultraviolet radiation in the range
A=300-388 nm. Among the main disadvantages of
the process of photocatalytic oxidation of contami-
nants, the following can be mentioned: the decompo-
sition time of contaminants, the use of energy-con-
suming UV lamps, the presence of substances (salts)
that reduce the efficiency of contaminant removal,
the nanoparticle nature of TiO,, and therefore, the
problematic isolation from aqueous solutions, as well
as the pH dependence of photodegradation process
(Ameta et al., 2018; Xing et al., 2016; Zhang et al.,
2018).

For the practical application of heterogeneous pro-
cesses involving semiconductors, it is vital to increase
the efficiency of the photocatalysis process in visible
light and to immobilize titanium dioxide nanopar-
ticles on larger surfaces. Therefore, many works are
devoted to TiO, modification. Currently, green photo-
catalysts capable of absorbing radiation in the visible
light range (1>400 nm) are of great interest. Over
the last years, authors of many works have attempted
to produce photocatalysts active in visible light or
develop methods and/or materials for semiconduc-
tor modification. This issue has been extensively dis-
cussed in the works of Parnicka et al. (2017), Liao
et al. (2018), D’Amato et al. (2018), Farhadian et al.
(2019), Qi et al. (2019), and Zawadzki (2020). In
brief, various types of metal or non-metal dopants
(e.g., carbon, silver, gold, neodymium), activated car-
bon (granular or powdered), graphene oxide or car-
bon nanotubes or biopolymers (e.g., chitosan), and
organic acids (e.g., ascorbic acid, succinic acid, pyru-
vic acid) are used to modify semiconductors.

The modifications are changing the structure of
photocatalysts, which increases the photostability
of semiconductors, and thus, their activity in visible
light and better adsorption properties are observed.
The adsorption of the micropollutants on the catalyst
surface is the key to successful photocatalysis. Due to
the nanoparticle nature of titanium dioxide and its dif-
ficult isolation from water, it has been found benefi-
cial to modify the TiO, by high porous carbon. The
dopants make it possible to broaden the absorption of
visible light by introducing additional energy states,
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inhibiting the transformation of anatase to rutile, and
intensifying the conductivity of the catalysts (Fig. 3).

CFVP removal processes during visible
light—driven photocatalysis have not been carried out
by many studies. The use of modified titanium(IV)
oxide to degrade CFVP has been studied by Zawadzki
(2020). Approximately 85% degradation of CFVP
(initial concentration Cycpypy=1 mg/l) in the pres-
ence of TiO, modified with pyruvic acid in a 90:10
ratio (TiO,:pyruvic acid (PA), 90:10) was achieved.
The decomposition of chlorfenvinphos was most
effective under the following conditions: catalyst
dose=50 mg/l, adsorption time=20 min, photoca-
talysis time =60 min, and pH of standard solution=3.
The visible light source was a 10-W tungsten lamp.
The modified titanium(IV) oxide showed activity in
visible light with activation energy (E,)=1.5 eV. The
study showed that the visible light-activated TiO,;PA
(90:10) can be used several times in the photocata-
Iytic process. After 5 cycles, the decomposition of
CFVP decreased by 12% in the presence of modified
TiO,. Based on the study, it can be concluded that
modification of TiO, with organic acids can reduce
the recombination of hole-electron pairs (acids are
electron acceptors), similarly stated by Li Puma et al.
(2008).

Residual organic pollutants may be adsorbed on
the catalyst surface, successively reducing the num-
ber of active sites of the catalysts, resulting in lower
catalyst performance. Modification of TiO, with
tungsten(VI) oxide (WO;) maintained a high degra-
dation efficiency (c.a. 80%) of diclofenac in 4 reac-
tion cycles (Mugunthan et al., 2018). The TiO,-WO;

catalyst activated under visible light allowed to obtain
91% degradation of DCF within 4 h. Some phenom-
ena such as the recombination of hole-electron pairs,
blocking of TiO, active sites, or generation of reac-
tion by-products can be reduced or eliminated due to
the catalyst modifications.

Ahmed et al. (2021) reported that the advanced
oxidation process can be affected by interfering ions.
Such ions include, for example, ClI-, NO,”, NO;™,
PO,*~, HCO;~, or CO,>". Tons can inhibit the deg-
radation process by scavenging free radicals, affect-
ing radiation absorption, or reacting with oxidative
radicals to form less reactive forms (Farner Budarz
et al., 2017). The influence of interfering ions is
important in AOP, also during DCF degradation, so
Oliveros et al. (2021) investigated the effect of chlo-
rides, nitrates, sulfates, and phosphates on the photo-
catalytic degradation of diclofenac in the presence of
vanadium pentoxide (V,0s5)-boron-doped graphitic
carbon nitride (BCN) catalyst. The V,05-BCN cata-
lyst was prepared by combining V,0s with BCN.
High concentrations of anionic compounds decrease
the reaction kinetics. When the concentration of nega-
tively charged electrolytes is increased, the efficiency
of DCF degradation decreases. This phenomenon is
related to the competition of anionic compounds for
catalytic sites and/or their reaction with oxidative
radicals. A similar phenomenon was observed by
Rehman et al. (2021).

In general, DCF removal efficiency depends on
the following parameters: initial DCF concentration,
pH of the solution, temperature, catalyst dosage, and
catalyst type.
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Mainly xenon, mercury, halogen, or monochro-
matic blue lamps ranging from a few W to 400 W
are used for DCF degradation (Chen et al., 2018;
Mugunthan et al., 2019; Oliveros et al., 2021; Shao
et al., 2017). The time required to reach adsorp-
tion equilibrium is usually provided before photo-
catalysis. This time ranges from 20 to 30 min. To
obtain a DCF removal above 90%, typically 30 to
270 min is needed, depending on the photocatalysis
configuration.

In the process studied by Oliveros et al. (2021), the
removal efficiency of diclofenac ranged from about
80% to almost 100% after 120 min of reaction. The
removal rate of DCF increased with increasing cata-
lyst dose and pH, while it decreased with increasing
initial pharmaceutical concentration. Similar results
were obtained by Rashid et al. (2020).

An important parameter determining the oxidation
reactions occurring on the surface of photocatalysts
is the pH of the solution. This parameter is related
to the value of the semiconductor isoelectric point
(pH,,), corresponding to the pH value for which the
total charge of the photocatalyst particle is zero. For
TiO, particles, the pH,, ranges from 6.0 to 6.5 (Kos-
mulski, 2011). With the change in pH, the solubility
of the substance also changes. The dissociation con-
stant of diclofenac (pK, =~ 4) determines its solubility:
below pK,, diclofenac is insoluble, and above pK,,
the DCF is negatively charged. Changing the pH also
alters the electrical charge of the substances removed,
resulting in a change in their ability to adsorb on the
catalyst surface and the efficiency of photodegrada-
tion. Modifications of TiO, can positively influence
the decomposition of contaminants. For example, the
amphoteric properties of titanium(IV) oxide can be
changed, which can increase the potential to catalyze
the degradation of negatively charged contaminants.
In the work of Oliveros et al. (2021), the DCF degra-
dation efficiency decreased with decreasing pH. Com-
plete removal of DCF was achieved within 100 min at
pH>7, while at pH 6 and 5, the removal rates were
96.4% and 84.2%, respectively. This is slightly differ-
ent for other AOPs, where, for example, an increase in
pH causes a decrease in reaction efficiency, e.g., the
UV/peroxymonosulfate (PMS)/Fe** process (Rehman
et al., 2021). This can be explained mainly by the
effect of the catalyst used and, at the same time, justi-
fies the need to select the optimum catalyst depend-
ing on the reaction conditions for DCF removal.
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Mugunthan et al. (2019) investigated the effect of dif-
ferent pH values on the DCF degradation efficiency
in a process catalyzed by ZnO-WO; composite (zinc
oxide doped with tungsten precursor). The visible
radiation source was a 400-W halogen lamp. With an
initial concentration of Cypep =20 mg/l and a ZnO-
WO; dose=800 mg/l, the highest removal of DCF
(about 75%) was achieved at neutral pH=6. This
was due to the surface charge properties of ZnO-WO;
(pH,,,.=7.35+0.2), so the catalyst surface was posi-
tively charged, and diclofenac should be negatively
charged.

The methylene blue removal in the advanced oxi-
dation processes continues to attract considerable
interest. In the Scholar database (Google Scholar
Database, 2022), between 2019 and 2021, the total
number of articles containing the phrase “advanced
oxidation of methylene blue” was 67,700 (in 2019,
19,0005 in 2020, 20,700; in 2021, 28,000).

In general, the efficiency of MB removal in pho-
tocatalytic processes is determined by the following
parameters: initial concentration, pH of the solution,
temperature, dose, and type of catalyst.

Before irradiation, the contaminants should be
adsorbed on the surface of the photocatalyst to
achieve adsorption—desorption equilibrium. Greater
adsorption on the catalyst reaction site leads to
increased MB degradation. Before MB photodegra-
dation, the adsorption time (conducted in the dark)
is usually from 30 min (El-Katori et al., 2020; Lee
et al., 2019), but depending on the catalyst used, this
time can be 60 min (Ziarati Saravani et al., 2019)
or even 120 min (Nuengmatcha et al., 2019). In the
photocatalytic process involving TiO,/NiFe,/reduced
graphene oxide, approximately 55% MB adsorption
was achieved after 60 min (Ziarati Saravani et al.,
2019). In comparison, for pure TiO,, the adsorp-
tion efficiency was set to 38%. In contrast, by using
a nanostructured Fe/FeS catalyst, Cabir et al. (2017)
obtained about 18% adsorption of methylene blue
after 30 min.

Most MB degradation work uses xenon, LED,
halogen, mercury, and tungsten lamps ranging from a
few W to 500 W. However, high-power lamps domi-
nate (>100 W) (Esmailli et al. 2018; Mahanthappa
et al.,, 2019). Higher lamp power results in higher
MB removal rates. For example, Nuengmatcha et al.
(2019) studied the effect of visible light irradiation
at different intensities (0—130 W). With an initial
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MB concentration Cyp =20 mg/l and a catalyst
dose =100 mg/1, a 25% removal rate was obtained for
40 W, 40% for 60 W, and 60% for 100 W. Increas-
ing the irradiation intensity above 100 W had no sig-
nificant effect on increasing the removal rate of DCF
(62%). The increase in the removal rate of DCFs with
increasing radiation intensity was due to an increase
in the intensity of oxidative radical production, which
was also confirmed by Liu et al. (2019).

The initial pH of the solution has a significant
influence on the efficiency of MB photodegradation
in visible light—driven processes, as it affects the
interaction between the adsorbent (catalyst) and the
adsorbate (MB). In a conventional process using
pure titanium(IV) oxide, the value of pH,,,. is approx.
6.0-6.5. Kaur et al. (2018) achieved the highest
degree of adsorption of MB on TiO, at pH=11 (from
about 41% to about 82% depending on the sample),
while at pH <6, the amount of adsorption was the
lowest, ranging from about 1% to about 6%. The MB
molecule is positively charged, so high pH (>pH,,.)
favors adsorption on the catalyst surface as it is then
negatively charged. Similar observations were noted
by Esmaili et al. (2018). The authors investigated
the effect of pH on the removal rate of MB using Fe/
FeS nanopowder as the catalyst. The highest removal
rate (96%) was obtained at pH=11. Lowering the pH
resulted in a severe efficiency drop to 78% at pH=9
and 25% at pH=4.

Typically, achieving a minimum removal rate of
90% required photocatalytic time ranging from 10 to
200 min, with an average time of 120-180 min. For
example, Lee et al. (2019) needed 180 min to achieve
a 97% removal rate of MB using a bimetallic Au/Pd
nanocomposite catalyst supported by ZnO. In contrast,
Selvaraj et al. (2019) required 90 min to achieve 93%
dye removal. The shorter process time was probably
due to the lower initial MB concentration (10 mg/l) and
higher catalyst dose (360 mg/l). Increasing the photo-
catalyst dose may improve the MB removal efficiency
(Mahanthappa et al., 2019). An increase in photodeg-
radation efficiency was observed in the process using a
CuS-CdS catalyst at concentrations ranging from 40 to
240 mg/1. The removal rate of MB ranged from 40% to
nearly 100%, while the highest removal rate was found
at a dose of 200 mg/l (nearly 100%). Higher catalyst
doses probably cause aggregation of nanoparticles
and their faster sedimentation. The so-called radiation
shielding effect of excessive particles may also occur

(Rauf & Ashraf, 2009). The photodegradation effi-
ciency also decreases with increasing dye concentra-
tion. Bagherzadeh et al. (2018) investigated the effect
of MB concentration on its photocatalytic degradation
efficiency. An increase in DCF concentration from 10
to 20 mg/1 resulted in decreased process efficiency from
92 to 73%. This phenomenon is characteristic of AOPs
(Liu et al., 2018; Zotesso et al., 2017). With increasing
concentration, the consumption of oxidative radicals is
higher, and the probability of collision of oxidative rad-
icals with dye molecules decreases (Zawadzki, 2021a).

2.2 Visible Light Activation of Persulfate

In a sulfate radical oxidation process, a radical precur-
sor (e.g., sodium persulfate Na,S,0q) requires acti-
vation. Persulfate without activation can only react
with some organic compounds, and the efficiency of
the process is significantly lower compared to that of
activated persulfates. Without activation, the persul-
fate anion has an oxidizing potential about 33% lower
than that of the sulfate radical (Karim et al., 2021;
Zhu et al., 2019). While activation can be achieved by
thermal, photolytic, sonolytic, and radiolytic actions
(Criquet, Karpel & Leitner 2011; Chen & Su, 2012;
Zhang et al., 2015; Ji et al., 2016; Ahmadi et al.,
2019), the most used activation method is the appli-
cation of low-oxidation transition metal ions such as
Fe?™, Ni**, Co**, and Ag™. Current publications also
include laboratory experiments on developing new
activation methods for persulfate. These techniques
include activation at high pH (>11), electrolysis,
the use of carbon nanotubes or polymers (polyim-
ides), and ozone (Ding et al., 2020; Fernandes et al.,
2021; Ren et al., 2019; Zou et al., 2021). Some of the
selected persulfate activation methods are graphically
shown in Fig. 4.

In persulfate (PS) activation processes, the energy
transferred to the persulfate anion by UV light, ultra-
sound, or heat results in the cleavage of the perox-
ide bond and the formation of two sulfate radicals
(Eq. (1)). The persulfate can also react with an elec-
tron donor from the transition metal to form a single
sulfate radical (Eq. (2)) (Karim et al. 2020).

8205‘ + energyinput — 250}~ (1)

S,02" +e” — SO, +SO;” )
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Fig. 4 Selected methods of persulfate activation

An alternative method for visible light activation
of persulfates has also received increasing atten-
tion in recent years. Alternative activation methods
should be as effective and cost-efficient as conven-
tional methods. Materials for visible light activation
of persulfates can be acids (e.g., ascorbic acid) and
sugars (e.g., glucose, sucrose) (Hou et al., 2020b;
Watts et al.,, 2018; Zawadzki, 2019). Degradation
of micropollutants in the presence of persulfate and
visible light is also achieved in processes involving
catalysts, e.g., TiO, (Du et al., 2020), or combined
methods, e.g., ultrasound and visible light—activated
sodium persulfate (Zawadzki, 2021a). Recently,
a promising approach to activate persulfates is the
innovative material perylene diimide (PDI). PDI
has excellent charge separation efficiency. Electron
injection from PDI into PS can more efficiently
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produce active forms of oxidative radicals (Ji et al.,
2021).

The generation of sulfate radicals was carried
out in the presence of sodium persulfate (Na,S,0y),
glucose, and visible light (an innovative activation
method) in the research by Zawadzki (2021a). Glu-
cose was essential to activate Na,S,0g in visible light.
Literature data indicate that the activation mechanism
by glucose is similar to that by phenoxides (Ahmad
et al., 2013; Watts et al., 2018). Glucose is an opti-
cally active substance (Ashenhurst 2022). An electron
from glucose is transferred to persulfate and activates
it; in turn, glucose is oxidized to products that can
activate persulfate. Some functional groups, such as
the carbonyl group, accept a negative charge, activat-
ing persulfate at near-neutral pH. Zawadzki (2021b)
performed a study on the advanced oxidation of
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chlorfenvinphos from real treated municipal waste-
water as stage [V of municipal wastewater treatment.
Under optimal conditions (pH = 6; room temperature;
Na,S,04 dose =20 mM; glucose dose =100 mM; pro-
cess time=20 min), an 81% removal rate of CFVP
was achieved. Irradiation of the solutions with vis-
ible light caused the glucose decomposition, electron
transfer from sugar towards Na,S,0Oj (activation), and
oxidation of glucose to sodium persulfate activation
products.

Besides the CFVP removal, studies show that
diclofenac can be effectively removed during reac-
tions in the presence of sulfate radicals generated
in the presence of visible light. In AOPs, an impor-
tant parameter is the pH of the solution, which
affects the performance of oxidants and catalysts
and the degradation degree of pollutants. Shao
et al. (2017) investigated the effect of initial solu-
tion pH on DCF degradation during peroxymono-
sulfate activation by g-C;N,-modified Co;0, nan-
oparticles (Co;0,4-g-C3N,). It was observed that
the first-order kinetic constant (k) decreases with
increasing pH, which also affected the final removal
rate of DCF. For example, in a strongly alkaline
medium (pH=11), a 75% removal rate of DCF was
achieved. In contrast, in a strongly acidic environ-
ment (pH=3), nearly 100% removal rate of DCF
was achieved. As explained by Ao et al. (2018) and
Xia et al. (2020), under pH <7, the predominant
radicals are SO;_, whereas above pH>7, sulfate
radicals are converted to —OH radicals by react-
ing with O5". At pH=11, Uran-Duque et al. (2021)
observed a significant inhibition of the degradation
process. Han et al. (2020a) also used BiFeO; micro-
sphere—activated (BFO) PMS to degrade diclofenac.
Bismuth ferrite (BiFeO;, BFO) is a heterogeneous
catalyst used in the work of Hussain et al. (2018)
and Ouyang et al. (2020), among others, due to its
multiferroic properties and high chemical stabil-
ity, i.e., resistance to strong acids and bases. The
authors of this study achieved an approximately
82% removal rate of DCF using a BFO dose of
500 mg/l, a PMS dose of 0.5 mM, and a process-
ing time of 60 min. The source of Vis radiation
was a led lamp. The operational parameters for
the removal of diclofenac in the BFO/PMS pro-
cess such as process time, pH, BFO dose, and PMS
dose were also determined. Firstly, the efficiency of
DCF elimination is affected by the reaction time,

i.e., the longer the reaction time, the higher the
removal degree (about 60% after 20 min of reaction
and 80% after 60 min of reaction under the follow-
ing conditions: DCF concentration=0.025 mM,
BiFeO; dose =300 mg/l, and PMS dose=0.5 mM).
The highest degree of DCF removal was obtained
after 60 min. Afterwards, the pH value of which
was indicated as optimal at pH=23. However, iron
leaching was observed at pH=3, which did not
occur at higher pH. At pH=3, the highest degree
of pharmaceutical removal was obtained (approx.
80%) under the following conditions: DCF con-
centration=0.025 mM, BiFeO; dose=300 mg/l,
and PMS dose=0.5 mM. The reduction in sulfate
radical generation may also have been due to an
increase in the mutual repulsion between BFO and
PMS. The authors observed a significant increase in
efficiency between the BFO dose of 400 mg/l and
500 mg/l (from about 65% to about 82%), whereas
an increase in dose to 600 mg/l resulted in virtually
no increase in removal efficiency. Also for the PMS,
generally an increase in dose resulted in an increase
in DCF removal with the optimum value at 0.5 mM
PMS.

Many studies on MB degradation by PS or PMS
in the presence of visible light primarily focus on the
activation of PS or PMS with solid catalysts (e.g.,
Ti0,, ZnO, carbon nanotubes, or other modified pho-
tocatalysts) and then the role of visible light. How-
ever, there are few studies on the oxidation of MB by
sulfate radicals without the introduction of solid cata-
lysts (e.g., sugars, acids, and other electron sources).
As presented in the literature (El-Sheshtawy et al.,
2020; Habib et al., 2021; Sun et al., 2020), the degra-
dation of methylene blue is determined by the follow-
ing operational parameters; among others are as fol-
lows: initial MB concentration, process time, catalyst
dose (PMS/PS), pH, lamp type, and power.

Zawadzki (2019) determined the operational
parameters for MB removal in the visible light oxi-
dation process with sodium persulfate (Na,S,0y)
activated by glucose and sucrose, such as reac-
tion time, pH, glucose/sucrose dose, and Na,S,0q
dose. The highest degree of MB degradation (84 %)
was observed in the presence of sodium persul-
fate (6.5 mM) after 90 min of visible light irradia-
tion for the process carried out in the presence of
glucose (100 mM) at pH=12. It was determined
that the radicals responsible for the decolorization
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of methylene blue were SO;_, eOH, and 0’2‘. At
pH=12, hydroxyl radicals were mainly respon-
sible for the degradation of methylene blue. The
results were similar to those obtained by Watts et al.
(2018).

For reactions carried out in the presence of sulfate
radicals, xenon, LED and tungsten lamps are used,
similar to photocatalytic processes. However, a sig-
nificant difference in the lamp power used has been
observed. Namely, lower-wattage lamps (up to 50 W)
are used for MB removal processes in the presence of
persulfates/peroxymonosulfates and catalysts, which
may probably be due to the applied synergistic effect
in these processes between catalysts and PMS/PS.
The combination of photocatalysis and PMS activa-
tion promotes charge separation in the photocatalytic
system as an electron capturing agent and improves
light utilization in the photocatalyst (Hu et al., 2019).

The combination of photocatalysis and PMS acti-
vation also extends the pH range in which the process
can still be carried out efficiently. For example, Tang
(2020) obtained a BiVO, catalyst to activate PMS.
First, a 99% removal rate of MB was achieved after
90 min of reaction (conditions as in Table 2). Then,
increasing the pH from 4 to 10, a similar degree of
BM removal determined as 95-99% was obtained. At
pH=2, the reaction efficiency decreased slightly to
about 78%. The presented method may therefore be
suitable for the treatment of colored effluents charac-
terized by a wide pH range, as the efficiency of dye
decomposition in each of the pH ranges examined
was higher than 75%.

In general, the removal rate in all analyzed pro-
cesses depended on the reaction time. The optimal
process time is also an important parameter from an
economic point of view (reactor volume, electricity
costs, automation, electronics). Typically, a period
of 60-90 min is needed to remove MB concentra-
tions from 2 to 40 mg/l. To remove 100% MB with a
concentration of 3.2 mg/l, Sabri et al. (2020) needed
90 min (for the conditions set in Table 2). The time
required for the complete removal of MB can be
reduced by increasing the dose of PS or PMS. For
example, in the study by Rizal et al. (2021), nearly
100% MB degradation was achieved after 70 min (PS
concentration=2 mM; Ag/Mn;0,/graphene cata-
lyst=500 mg/l). However, by increasing the dose to
4 mM, this time was reduced to 40 min, and at a dose
of 12 mM to 30 min.
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Han et al. (2020b) and Rizal et al. (2021) also
investigated the effect of initial MB concentration on
the dye removal rate. Both studies confirm that higher
dye concentrations inhibit the radical reactions with
dye molecules. Furthermore, a high concentration of
molecules can lead to competition effects between
dye molecules, reaction by-products, and generated
radicals (Zawadzki, 2021a).

2.3 Visible Light-Driven Photoelectrocatalysis

Photoelectrocatalysis (PEC) is a combined process
of photocatalysis and electrochemistry (Hou et al.,
2020a; Xu et al., 2019). PEC primarily aims to sup-
press the negative recombination phenomenon of
hole-electron pairs generated by photocatalysis.

In this method, a semiconductor is attached to the
surface of a conductive substrate and used as a pho-
toelectrode. Photogenerated holes on the surface of
the semiconductor trigger oxidation reactions and
electrons flow through the counter electrode where
reduction reactions take place. Thus, charge recom-
bination is minimized, and the quantum efficiency of
the photocatalytic process is improved. Irradiation of
an n-type semiconductor (e.g., TiO,) with radiation of
an energy higher than the activation energy results in
the generation of charge carriers. Most of the research
on photocatalysis is devoted to the removal of con-
taminants from a liquid medium in which the semi-
conductor is held in suspension. This way of using
catalytic nanoparticles introduces the need to separate
them from the liquid phase after the photodegradation
process. This can be avoided by coating the conduc-
tive substrate with film-forming particles (immobi-
lization). In the PEC process, the dissolved organic
substances in the electrolyte are oxidized through the
holes formed, and the electrons are transported to the
conductive substrate (Fig. 5) (Bessegato et al., 2015).

PEC shows an advantage over photocatalysis
because it applies a potential to the photoanode on
which the catalyst is deposited. This configuration
allows for more efficient separation of the charges (e/
h™) formed in the process, thereby increasing the
lifetime of electron-hole pairs (Hou et al., 2020a,
2020b; Li et al., 2018; Su et al., 2016). Photoelectro-
catalysis has been shown to efficiently degrade chlor-
fenvinphos (Ferndndez-Domene et al., 2019; Rosell6-
Marquez et al., 2021), diclofenac (Cheng et al., 2015;
Liu et al., 2017b), and methylene blue (Rosa et al.,
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2020; Wu et al., 2019). Advances in electrochemis-
try and materials science (new materials active in
visible light) have led to increased interest in using
photoelectrochemical processes to eliminate CECs.
Photoelectrocatalysis and visible light—driven pho-
tocatalysis have emerged as promising strategies for
clean, low-cost, and environmentally friendly renew-
able energy production and removal of contaminants
(Pan et al., 2020; Zhong et al., 2020).

In the work of Ferniandez-Domene et al. (2019)
and Rosell6-Marquez et al. (2021), the photoelec-
trochemical decomposition of chlorfenvinphos with
tungsten trioxide (WO;) nanotubes was investigated.
Chlorfenvinphos solutions with an initial concentra-
tion of 20 ppm were treated with visible radiation, the
source of which was a 1000-W xenon lamp. Innova-
tive nanostructured electrodes produced by anodiz-
ing tungsten and annealed at 400 °C and 600 °C were
added to the treated solutions. The process studied
achieved a 95% removal rate of CFVP under the oper-
ating parameters shown in Table 2. A more than 65%
reduction in total organic carbon was also achieved.

In a similar study, Rosell6-Marquez et al. (2021)
used a 500-W xenon lamp (visible light source).
Under the room temperature and after 24 h of
treatment, a 95% removal degree of CFVP was
obtained. The analysis of reaction intermediates
during photoelectrochemical oxidation of CFVP
also showed interesting results. As reported by

Farré et al. (2005), detoxification of chlorfenvin-
phos is achieved when the TOC remaining in solu-
tion is below 10 mg/l. Otherwise, increased toxicity
may be due to generated by-products. Depending on
the process (e.g., photo-Fenton, radiolytic decom-
position), the oxidation by-products may differ.
In the literature, CFVP degradation by-products
are reported to be, for example, 2-hydroxy-1-(2,4-
dichlorophenyl)vinyl diethyl phosphate, 2,4-dichlo-
robenzoic acid, dicarboxylic acid, 2,4-dichlorophe-
nol, triethyl phosphate, and 4-hydroxybenzoic acid
(Klamerth et al., 2009; Bojanowska-Czajka et al.,
2010; Rosell6-Marquez et al., 2021). The by-prod-
ucts are therefore aromatic acids or esters, but also
toxic products, e.g., 2,4-dichlorobenzoic acid or tri-
ethyl phosphate. Photoelectrocatalysis in the pres-
ence of WOj; resulted in the generation of, among
others, 2,4-dichlorobenzoic acid, triethyl phosphate,
and ethyl dimethyl phosphate (Rosell6-Méarquez
etal., 2021).

Similar efficiency was obtained during the removal
of diclofenac in PEC. Liu et al. (2017b) used a pho-
toelectrocatalytic purification system in the presence
of PS. The photoelectrocatalytic system consisted of a
c-Bi,MoOy photoanode and a copper foil cathode. At
an applied voltage of+1.5 V and an initial solution
pH value of 5.62, the removal efficiency of DCF with
an initial concentration of 10 mg/l was 86.3% with
the addition of 10 mM PS.
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In visible light photoelectrocatalysis, voltages
between+0.4 and+2.0 V are generally used for
CFVP degradation. In general, the degradation
degree increases with increasing voltage, whereas the
increase is not relatively high. For example, a study
by Sun et al. (2018) found that the degradation effi-
ciency of DCFs increases with increasing polarization
potential. In a photoelectrochemical process involving
a composite obtained by combining bismuth vana-
date (BiVO,) and graphitic carbon nitride (g-C;N,), a
more than fourfold increase in DCF removal rate was
obtained after 2 h of treatment when the polarization
potential was increased from O to+1 V. The increase
in polarization potential to+1.5 V increased the
removal degree from 29.4 to 31.2%. Similar obser-
vations were also confirmed in a review paper by
McMichael et al. (2021).

A significant increase in the efficiency of photo-
electrocatalysis can be achieved by combining com-
posite materials and other oxidants, such as hydro-
gen peroxide, as shown in the study of McMichael
et al. (2021). The authors investigated the effect of
hydrogen peroxide on the degradation efficiency of
diclofenac in the presence of visible light. Ten milli-
molars of H,0, was chosen as the optimal concentra-
tion, due to the increase in the removal rate of DCF
to 62.3% after 180 min of reaction. A higher concen-
tration of H,O, (15 mM) resulted in a lower removal
rate due to the probable reaction of excess H,O, with
the generated *OH radicals, thus inhibiting the deg-
radation process. Similar conclusions were postulated
by Ku et al. (2005) and Ziembowicz et al. (2017).

The idea behind photoelectrocatalytic processes
is to generate highly reactive oxidative radicals. It
can be thought that, mainly, hydroxyl radicals (*OH)
and, to a lesser extent, *O,~, H,0, and h* radicals are
responsible for the decomposition mechanism in vis-
ible light—driven photoelectrocatalysis, as shown in
Cheng et al. (2015).

In the last few years (2017-2021), there have been
few studies on the elimination of MB by photoelec-
trocatalytic processes under visible light. The Scopus
database contains 29 publications for 2017-2021 con-
taining the keywords “photoelectrocatalytic degrada-
tion of methylene blue under visible light,” with the
majority (10 articles) published in 2017.

The degradation of MB in a photoelectrocata-
lytic process is determined by the following pro-
cess parameters, among others: voltage, effective

@ Springer

photoelectron area, pH, type of electrolyte, and its
concentration.

Light-sensitive modified catalysts (e.g., CdS, TiO,,
ZnO, WO;, BiVO,) have been used for the degra-
dation of MB in visible light photoelectrocatalytic
processes. For example, Liu et al. (2017a) modified
TiO, with NH,F (source of F), yielding a visible
light—active material; in the presence of which, the
MB removal rate was 92% compared to pure TiO, at
50%. The absorption band towards visible light was
shifted by also using F-doped tin oxide (FTO) and
WO,/BiVO, (Thongthep et al., 2021).

Sampath et al. (2016) investigated the photoelec-
trocatalytic activity of the ZnO/porous silicon (PS)
over the applied voltage from —6 to+6 V. The high-
est photoelectrocatalytic activity (c.a. 96% of MB
removal at an initial concentration of 20 mg/l after
105 min) was obtained for a negative voltage (—6 V).
This was explained, among others, by the efficient
separation of charge carriers by driving the pho-
togenerated holes through an external circuit to the
counter electrode during negative voltage. Increasing
the voltage to 0 V systematically decreased the deg-
radation efficiency (up to 85% at 0 V), while further
increasing the voltage increased the MB removal effi-
ciency (up to 88% at+6 V). Different results were
presented by Zhao et al. (2019), using an indium
oxide (In,Os)-doped ZnO catalyst for MB removal
(Copmpy=20 mg/l, process time=60 min). The pho-
todegradation efficiency depended, among others,
on the amount of In,O; in ZnO and the applied volt-
age. For the optimal In:Zn ratio of 0.05:1 (photocur-
rent density=264 pA/cm?) and the applied voltage
of +0.2 V, a 95% removal rate of MB was achieved.
At a lower voltage (+0.1 V), an efficiency of 86% was
achieved, and at the highest voltage tested (+0.4 V),
the lowest MB removal rate of 79% was observed. In
general, positive voltages ranging from+0.2 to4+6 V
are used in studies on MB removal in photoelectro-
catalytic processes in the presence of visible light.

The authors of most works use photoelectrodes
with an effective area between 0.0071 and 50 cm?
(Gandamalla et al., 2021; Liu et al., 2017a; Nareejun
& Ponchio, 2020). Larger photoelectrode areas can
drastically reduce the process efficiency due to the
possible introduction of more defects in the photoan-
ode (cathode) materials (Li & Li, 2017).

In a study by Liu et al. (2017a), the effect of
solution pH on the removal rate of MB with a



Water Air Soil Pollut (2022) 233:374

Page 23 0f 38 374

concentration of 10 mg/l was tested (for conditions
given in Table 2). An increase in the degradation rate
of MB was observed from about 82% (at pH=3.14)
to about 98% (at pH=9.94). It was shown that the
MB degradation reaction occurred more efficiently
at high pH due to a change in the isoelectric point
(pH,,) value of the F-TiO, catalyst. The pH,, of the
F-TiO, catalyst (F concentration=15 wt%) was deter-
mined to be 6.72. Therefore, the catalyst surface at
pH>6.72 was negatively charged, which favored the
adsorption and photodegradation of the positively
charged MB molecule.

Gandamalla et al. (2021) performed an interesting
study on the effect of temperature on the photoelectro-
catalytic decomposition of methylene blue. Namely,
an increasing temperature increased the removal rate
of MB. For example, at 30 °C, the dye removal rate
was 97.3%, while at 50 °C, the degradation rate was
99.09%. The authors attributed the increase in photo-
degradation efficiency to increased collisions between
molecules at higher temperatures and more MB mol-
ecules adsorbed on the catalyst surface.

3 Overview of Visible Light-Driven AOP
Mechanism and Degradation

AOPs typically have complex reaction mechanisms,
and more than 150 steps have been developed to
describe them (Stanbury, 2020). It is also believed
that the chemical mechanisms of oxidation in these
systems involve multiple radical reactions (Wang
et al., 2020; Ghime and Gosh 2020). The general
mechanism of the photocatalysis process includes the
following processes (Egs. (3) —(5)):

TiO, 5 ¢ +h* 3)
Ti(IV) — OH™ + h* < Ti(IV) — "OH )
Ti(IV) — OH, + e~ < Ti(IV) + OH™ + H* (5)

When the catalyst absorbs the radiation, active
transition complexes are generated on the surface of
the semiconductor, resulting in the generation of *OH
radicals, which strongly oxidize organic chemicals.
The photogenerated electrons can react with H, and
O, dissolved in water to form H,O,, which can be

photodecomposed into *OH radicals (Gir6n-Navarro
et al., 2021). For the practical application of photo-
catalytic processes, it is important to increase the effi-
ciency of the photocatalysis process in visible light,
eliminate the agglomeration of semiconductor parti-
cles, reduce the phenomenon of blocking active sites,
and increase the efficiency of separation of catalyst
particles from the reaction mixture after the treatment
process. Therefore, numerous semiconductor modi-
fications are currently used to facilitate the absorp-
tion of visible light and simultaneously overcome
the difficulties occurring in conventional photoca-
talysis (Pirhashemi et al., 2018; Wangab et al., 2016;
Zawadzki et al., 2021).

As previously mentioned, photoelectrocatalysis
combines photocatalytic and electrochemical oxi-
dation processes. When light photons (hv) with an
energy higher than the activation energy (E,) reach
the surface of a semiconductor (S), which is depos-
ited on a solid surface, charge carriers are generated
(Egs. (6)—(8)). The recombination of photogenerated
electrons and holes occurring in the photocata-
lytic process is retarded by an applied bias potential
(Alulema-Pullupaxi et al., 2021; Peleyeju & Arotiba,
2018).

S+hv = ez +hi, (6)
h{, +H,0 - ‘OH+H" + ¢~ (7
h{, + OH™ — "OH (8)

As shown in Egs. (1) and (2), sulfate radicals are
generated by activation of the SO;™ precursor (per-
oxydisulfate (PDS)) through energy transfer to the
persulfate anion or reaction with an electron donor
from the transition metal. In general, the essence of
generating the SO} radical is to break the O-O bongi
in PDS. The O-O bond distance in PDS is 1.497 A
and must be severed in order to generate the sulfate
radical (Ghanbari & Moradi, 2017). Instead of using
energy-consuming UV lamps or transition metal ions
that generate additional costs, materials for PDS acti-
vation under visible light, such as organic promot-
ers, are currently being developed (Hu et al., 2021;
Zawadzki, 2022).

In general, in visible light—driven AOPs, the deg-
radation mechanism of emerging contaminants is

@ Springer
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similar to the conventional process. An overview of
the visible light—driven AOP degradation mechanism
of selected target pollutants is presented in Table 3.
Free radicals, such as hydroxyl or sulfate radicals,
are responsible for degradation of pollutants. O, ht,
and OH™ radicals are also involved in photodegrada-
tion. Depending on the structure of the compound,
degradation may involve a number of intermediate
reactions, for example dechlorination, decarboxyla-
tion, C—N bond cleavage, and hydroxylation reaction.
Finally, cleavage of the aromatic ring takes place. In
dye degradation, N-deethylation, chromophore cleav-
age, and ring opening can take place, leading to a
series of oxidation products with smaller molecular
sizes (Diao et al., 2017; Lops et al., 2019). The degra-
dation of azo bonds has been suggested as a possible
mechanism for MB decolorization (Mahdavianpour
et al., 2020).

Han et al. (2020b)

References

, radical.

to Fe** and the formation of

5

a triple-bond Fe”* and the SO;’ radical; then, the reac-
tions that occur lead to the formation of the SO

4 Conclusions

The wide range of contaminants entering surface
waters with wastewater makes the application of
conventional wastewater treatment technologies
insufficient. Among the compounds found in water
streams, there are micropollutants and substances of
both natural (products of the metabolism of organ-
isms) and anthropogenic origin can be found. In the
second group, there are mainly compounds such as
pharmaceuticals, pesticides, dyes, disinfection by-
products (DBP), and polycyclic aromatic hydrocar-
bons (PAHs). Micropollutants belong to a group of
chemical substances posing a particular risk to human
health and life. They are the cause of the following,
inter alia: cancer, mutations, poisoning, endocrine
system disorders, defects in fetal development, and
damage or death of embryos. These compounds are
present in the environment in concentrations ranging
from ng/1 to pg/l.

Analysis of research in recent years has shown an
increased interest in modifications of advanced oxi-

S5 Fe* represents a site on the BFO surface;
radicals and supports the Fe(III)-Fe(II)-Fe(III) redox cycle.
Degradation of DCF may occur by decarboxylation, methyl
oxidation, hydroxylation, benzene ring cleavage, C—N bond
cleavage, and dechlorination (cleavage of the C—Cl bond

The SO; radical can also react with HyO or OH™ to form
by the SO}")

the *OH radical. Thus, DCF is degraded by both sulfate
an additional way of producing the hydroxyl and sulfate

of reactions where a complex is formed between Fe**
and hydroxyl radicals. Visible light irradiation provides

electron transfer from HSO

The mechanism of PMS activation by BFO involves a series
and HSO

A brief description of the degradation mechanism

Degradation by PMS activated by BiFeO; microspheres

2150 . . : . .

§ & dation processes, including those driven by visible
=l e light. As presented in this work, advanced oxidation
E = processes driven by visible light have great poten-
§ = tial to remove organic contaminants from water and
= | = Q . . . .

- | & % wastewater, including diclofenac, chlorfenvinphos,
2 3 |e and methylene blue. Undoubtedly, research into
Q . . . . .

& § A this purification technique has made considerable

P q
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progress in recent years. Visible light-active cata-
lysts, stable over a wide pH range and capable of
simultaneous degradation of organic matter and, for
example, hydrogen production, have been devel-
oped. Methods for the activation of persulfates with
and without catalysts have been developed, and the
visible light activity of persulfates in the presence
of certain materials has been documented. A com-
bination of AOPs, e.g., photocatalysis and electro-
chemistry, has also been developed to immobilize
the catalyst on a solid substrate and use it as an
electrode, and to reduce the negative recombination
phenomenon of hole-electron pairs generated in the
photocatalysis.

The following specific research recommenda-
tions are suggested for the next few years:

e Further study on the degradation of chlorfenvin-
phos from the water and wastewater (the lowest
number of studies among the three CECs ana-
lyzed).

e More research into the influence of effective
electrode surface area should be performed.

e More exploration of catalyst modifications to
minimize defects in photoanode (cathode) mate-
rials and reduce energy consumption must be
performed.

e Focus on the development of materials that
ensure high stability and durability of catalysts
and photoelectrodes.

e Achieving materials capable of activating per-
sulfates or peroxymonosulfates without the use
of a catalyst (catalyst-free persulfate activation).

e Perform more studies on the removal of mixtures
of dyes, pesticides, and pharmaceutical sub-
stances.

e Enhance the toxicological study of advanced
oxidized solutions (e.g., MicroTox® analysis
Aliivibrio fischeri bacteria or toxicity analyses
with aquatic plant, e.g., Lemna minor).
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