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however challenged by the presence of many chemi-
cals of natural origin. We developed a novel approach 
to screen for anthropogenic chemicals using non-
parametric tests on the time trends of yet unidentified 
chemicals. The approach uses PARAFAC2 to extract 
unknown components present in GC–MS data and 
provides an assessment of whether such components 
may be anthropogenic. This significantly reduces 
screening efforts required by human laboratory staff. 
In total, out of twelve suspect unknown components, 
eleven were classified as anthropogenic, providing 
compelling evidence that studying unknown com-
ponents can be highly valuable for regulatory bod-
ies. This approach filters out many naturally occur-
ring compounds, leaving more resources available 
for wet-lab identification of suspected anthropogenic 
chemicals.

Keywords River Rhine · GC–MS · Statistical tests · 
Pollution detection · Untargeted identification

1 Introduction

The river Rhine is one of the largest rivers in Europe 
with a catchment area of 185.000  km2 and an aver-
age discharge of 2300  m3/s (Diehl et al., 2005; Ruff 
et  al., 2015). The Rhine is used in many ways: as a 
source for leisure and recreation, as a waterway, for 
the discharge of wastewater, and as a source of drink-
ing water. It comes as no surprise that the surface 
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source of the Dutch drinking water. To improve pro-
tection of the environment and drinking water supply, 
it is important to have a continuous overview of the 
chemical composition of the river. Such an overview 
may be obtained with contemporary, untargeted ana-
lytical platforms like gas chromatography-mass spec-
trometry. Interpretation of such untargeted data is 
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water of the Rhine has a strong influence on the qual-
ity of drinking water (Loos et al., 2009) if not treated 
adequately.

Pollution, caused by industry, agriculture, or 
wastewater, can have grave consequences for river 
water quality. Therefore, it is important to protect the 
surface water against pollution and make sure that 
it meets strict standards and guidelines to be able to 
produce high-quality drinking water. The most exten-
sive guidelines are drawn up in the European Water 
Framework Directive (WFD, 2000/60/EG) (EC, 
2000) and the Priority Substance Directive 2013/39/
EU, amending Directives 2000/60/EC and 2008/105/
EC. These directives define “good chemical status” 
for surface waters. A list of priority chemicals and 
priority hazardous substances (industrial chemicals, 
pesticides, and heavy metals) has been drawn up for 
the Netherlands. In this list, threshold levels are set 
for several chemicals.

Due to improved legislation and regulations, water 
quality has attracted much attention over the past dec-
ades, with respect to these priority compounds (Her-
ing et al., 2010). Nowadays, dozens of anthropogenic 
compounds are being monitored daily by the Dutch 
water authority, Rijkswaterstaat (RWS). However, 
not all compounds can be taken into consideration 
for intensive monitoring since each one costs time 
and resources. Industry continuously develops novel 
compounds that end up in the environment, poten-
tially in degraded form. Therefore, non-target screen-
ing for environmental monitoring becomes crucial to 
help the government/society make effective use of all 
available information from modern analytical plat-
forms (Hollender et al., 2017). This allows regulatory 
bodies to prioritize compounds for further analysis 
and quantification.

Many sources of pollution exist. While factories 
may receive licenses to discharge certain chemicals 
under strict requirements, illegal discharges still hap-
pen and medicine, drugs, waste, and other toxic items 
still find their way into the river daily. Surface water 
and, in the end, drinking water are at risk by these 
pollutions. Regulatory bodies and drinking water pro-
ducers such as the Association of River Water Sup-
ply Companies (RIWA) are therefore interested in 
the detection and identification of various chemicals 
which occur in the river. A significant benefit of cor-
rect identification is that it may help regulatory bod-
ies to find the pollution source and take necessary 

steps to prevent further pollution. One way to find 
the source of contamination is by analyzing trends 
observed in the measurements of certain chemicals.

Many xC-MS techniques are widely used for the 
detection of chemicals (e.g., Campo et  al., 2006). 
Pena-Abaurrea et  al. (2014) described an approach 
using data acquired by GC × GC-TOF MS to identify 
potentially novel chemicals. Consequently, it has the 
potential to discover and analyze novel chemicals. 
In this paper, comprehensive analysis was done by 
combining GC–MS measurements and chemometric 
methods to analyze chemicals in the surface water of 
the Rhine.

Using statistical techniques like PARAllel FACtor 
analysis 2 (PARAFAC2), it is possible to compare the 
presence of unidentified chemicals across multiple 
measurements in the form of (mathematical) com-
ponents related to the chemicals present in the sam-
ples. In this paper, we present a methodology to use 
the extracted components in a time series analysis 
and, using non-parametric tests, determine whether 
a component relates to an anthropogenic or naturally 
occurring chemical. The underlying assumption is 
that natural chemicals behave with a relatively pre-
dictable pattern over time. This proposed approach 
was validated both on thirty anthropogenic chemicals 
which are continuously monitored due to regulatory 
demands and on simulated data. By adding  the sus-
picious untargeted chemicals to the regulatory list of 
targeted chemicals, it is possible to quickly detect and 
identify these chemicals in the future. Furthermore, 
illegal discharges may be tracked down to stop related 
pollution events (Hollender et  al., 2017; Schlüsener 
et al., 2015).

2  Materials and Methods

2.1  Sampling

The dataset consists of water samples collected by 
Rijkswaterstaat from the river Rhine at Bimmen. 
Hourly sample collection is automated, but only four 
samples per day were chemically analyzed, unless a 
relevant event was detected in which case the analy-
sis frequency was increased. The data set is composed 
of one GC–MS measurement per day from January 1 
through December 31, 2014.
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2.2  Analytical Methods

This study focuses on purge and trap GC–MS analy-
sis, for which the water sample is spiked with a mix-
ture of deuterated internal standards (deuterochloro-
form, toluene, chlorobenzene, 1,4-dichlorobenzene, 
and naphthalene) to a final concentration of 1.0 μg/L. 
GC–MS spectra were obtained using a Varian Saturn 
ion trap instrument (in single MS mode) with elec-
trospray ionization (ESI) and an electron multiplier 
detector (EMT). Volatile components of the sample 
were extracted by purging with an inert gas. Interac-
tion with the stationary face of the GC column sepa-
rates chemicals based on chemical and physical prop-
erties with a retention time range of 0–22.5 min. For 
further identification, fractions from the GC column 
were injected into the mass spectrometer where they 
are separated based on mass-to-charge-ratio (m/z). 
These mass scans were acquired with 0.1  m/z reso-
lution. Chemicals in the sample can be identified by 
the combination of retention time and relative intensi-
ties of signals at specific m/z values. Target chemicals 
can be quantified by comparing the integrated peak 
area to a calibration curve (see Appendix 1 Table  5 
for the list of target chemicals). Unknown chemicals 
are challenging to identify because many potential 
chemicals can have similar mass spectra and retention 
times.

2.3  PARADISe

For the whole GC–MS spectrum, it is difficult to 
extract all present chemicals and it is laborious to 
compare each MS spectrum with chemical libraries 
(like NIST or ChemSpider). Therefore, it is neces-
sary to use an automatic program to help us identify 
unknown chemicals. To separate the chemicals peaks, 
the PARADISe toolbox was used, which is based on 
PARAllel FACtor analysis 2 (PARAFAC2), to resolve 
the untargeted GC–MS data (Bro et al., 1999; John-
sen et al., 2017; Kiers et al., 1999).

PARAFAC2 analyzes three-way chemical data 
and has been applied in multiple research areas 
(Kamstrup-Nielsen et  al., 2013) It allows for vari-
able elution profiles of each present chemical over 
multiple GC–MS measurements. A PARAFAC2 
model outputs components which are mathematical 
representations of chemicals based on similarities in 
retention time and m/z profile. We will use the term 

“component” in the remainder of this paper to indi-
cate the outputs of PARADISe and “chemical” for 
molecules which can be found in the river.

The PARAFAC2 model can be written as

where Xk is an I × J matrix with k = 1,… ,K as the 
k th data point of an I × J × K three-way data X . 
Among these parameters, A is the score matrix, and 
B is the loading matrix, while D is diagonal ( R × R ) 
matrix containing the weights for the kth slab of X . 
Figure  1 demonstrates a profile separation result 
where panel a is the total ion current (TIC, on the ver-
tical axis) for each retention time (in minutes, on the 
horizontal axis) and panel b is the weighted elution 
profile. Figure 1b shows the elution profiles of differ-
ent components. According to the separated result, it 
is possible to identify whether a particular (unknown) 
component is present in multiple samples.

The Varian Saturn GC–MS instrument outputs 
GC–MS spectra in Varian’s proprietary.SMS format. 
This was converted to.CDF format with Open Chrom 
(OpenChrom® 1.2.0 “Alder,” https:// www. openc 
hrom. net) for use with PARADISe (Version 2.3, http:// 
www. models. life. ku. dk/ parad ise). The.CDF files were 
imported into the PARADISe toolbox and then inter-
vals were selected in regions where there are possible 
existing peaks. Intervals were chosen without overlap 
to avoid duplicate peak detection. Considering the 
deconvolution capability and accuracy, a maximum 
of 8 components per interval was set. The maximum 
number of iterations was set to 2000, which was 
enough to reach model convergence in a reasonable 
computation time. The model was finalized by select-
ing the right number of components, according to the 
core consistency and model fit percentage, such that 
the components correspond to the number of chemi-
cals present in the sample. Thereafter, a table of sam-
ples with components and total ion current (TIC) was 
created, which was used for trends analysis.

2.4  Preprocessing

To accurately identify pollution events, component con-
centrations should be transformed into loads. That is, con-
centrations are affected by natural phenomenon like rainfall 
(which increases the amount of water in the river), making 
variations in natural and anthropogenic components harder 

(1)Xk = ADkB
T
k
, k = 1,… ,K
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to distinguish. While concentrations are important criteria 
for the toxicity and regulatory monitoring, loads are related 
to the amount of component that entered the river and are 
independent of how much water there is in the river at a 
current time. Therefore, all concentrations obtained by the 
GC–MS measurements are divided by the water flow (in 
 m3/s). Furthermore, to compensate for changes in ioniza-
tion efficiency between GC–MS runs, all TICs are divided 
by the average TIC of the 5 internal standards (Appendix 
2), which is standard practice in analyzing GC–MS data. 
Figure 2 shows an example of how the patterns change due 
to this preprocessing.  Additionally, we corrected for the 
water flow, resulting in the data being represented as loads 
instead of concentrations.

2.5  Tests for time trends

For the current application, non-parametric tests 
(García et al., 2009) were devised to classify compo-
nents as natural or anthropogenic based on the vari-
ability in their concentration and specifically based 
on patterns in their concentration over time. In total, 
five tests on the variability of each component can 
distinguish anthropogenic components from natural 
components. If a component passes all five tests, it is 
defined as natural; otherwise, it is anthropogenic.

Overall variations in river flow and the abun-
dance of natural components in the water do not vary 
extremely. As a basic test of the proposed method-
ology, random normally distributed data was gener-
ated and analyzed with each test. For these tests, the 
simulated data was generated with a mean of 3 and a 
standard deviation of 1 to simulate variation in natu-
rally occurring components over a year (not consider-
ing seasonal trends).

2.5.1  Period Test

The period test is designed to identify production 
breaks over time: factories might have production 
breaks due to maintenance. Observing periods with 
concentrations of zero are unlikely to occur for nat-
ural chemicals (except for seasonal variations) and 
hence may indicate anthropogenic origin. A period 
of 7  days with a concentration of zero was consid-
ered a possible production break. If a production 
break was found, the component was classified as 
anthropogenic. If no production break was found dur-
ing the entire period, the component was not classi-
fied as anthropogenic according to this test. Experi-
ence has shown that production breaks, like planned 

Fig. 1  Taken from the PARADISe software output, each line 
in panel a represents the elution profiles of a sample in the 
retention time interval given on the x-axis. By applying PAR-
AFAC2 to the data, the mass spectra associated to each data 

point can separate co-eluted chemicals. Panel b shows the 
same samples as in a but then colored according to the simi-
larities in mass spectra present in the sample
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maintenance, take 7  days or more. Smaller breaks 
will not be detected by this test.

2.5.2  Peak Test

Theoretically, chemicals in nature will generally 
not fluctuate in extreme manners. Quickly emerging 
signals may therefore indicate anthropogenic ori-
gin. We assume that the concentration of a natural 
chemical changes gradually over time and that com-
ponents with patterns that are strongly spiked may 
be anthropogenic. In this test, we search for these 

spikes. All the component’s concentrations were 
sorted in order from small to large. Then, the first 
quartile (Q1) and the third quartile (Q3) of the data 
were calculated from this data.

To define peaks, the limit value was calculated 
with the following equation:

If one or more values above the limit value were 
found, the component was classified as anthropo-
genic. The variable c in Eq.  (2) is used to specify 

(2)Limit value = Q3 + (c(Q3 − Q1))

Fig. 2  Observed total ion 
currents (TIC) (a) and 
corrected TIC (b) of the 
internal standard deu-
terochloroform over time, 
corrected with respect to 
river flow. Variability in 
the corrected TIC relates to 
the natural variations in the 
river water flow

Page 5 of 14    241



Water Air Soil Pollut (2022) 233: 241 

1 3
Vol:. (1234567890)

the cutoff for what is considered a peak. Higher val-
ues will lead to stricter classification. For this appli-
cation, c was rather arbitrarily set to 3.

2.5.3  Extreme Test

In the extreme test, it was determined whether an 
unknown component contained outliers. By setting a 
limit value higher than the peak test, the data could be 
evaluated for extreme values.

Assigning extreme values was done like the peak 
test, but here ten times the interquartile range was 
used. This value was added to Q3 to reach the limit 
value. This results in the following equation:

Components with values over this limit value are 
classified as anthropogenic. This test may reduce the 
set of results from the peak test.

2.5.4  Day Test

The day test is based on a periodic difference in con-
centrations for days of the week. Production cycles 
will likely follow weekly patterns, so a deviation on a 
certain day, with respect to the other days, could indi-
cate an anthropogenic origin.

The standard deviation was calculated from the 
data corresponding to the same day of the week. 
Ultimately, seven standard deviations per compo-
nent were calculated. The highest standard devia-
tion was compared with the lowest one. If the high-
est standard deviation was more than 1.6 times the 
lowest standard deviation, the null hypothesis was 
rejected. The value of 1.6 was chosen ad hoc, spe-
cifically for this dataset. Any value can be used, 
but it was determined that a value of 1.6 classified 
unknown components correctly in this research, 
according to the optimal results evaluated based on 
the RIWA dataset.

2.5.5  Visual Inspection Check

Visual inspection of the time trend of the unknown 
component was performed when all other tests were 
negative. For patterns over time which stand out, 
the null hypothesis was rejected, and the alternative 
hypothesis was accepted. The visual inspection was 

(3)Limit value = Q3 + (10(Q3 − Q1))

added for components whose outcome was “natural” 
with all other tests. With an extra visual check, it was 
possible to determine if a natural component indeed 
looks like a natural occurring component, or whether 
there was an abnormal pattern that the tests did not 
recognize. Note that in this study, the visual check did 
not influence whether a component was classified as 
anthropogenic. Classification was only based on the 
statistical tests described before.

3  Results

3.1  Assessment of Tests

3.1.1  Application to Simulated Data

The tests were applied to simulated datasets. A thou-
sand normally distributed data points were generated 
with an average of three and a standard deviation of 
one, as natural components to validate the tests in 
this study. In statistics, a 95% confidence interval 
could represent the reliability of the data, so the error 
smaller than 5% could be acceptable in this dataset. 
For repeatability, five simulated data sets of 1000 
components were assessed. The results are given in 
Table 1. The table shows that the type I errors are all 
smaller than 5%, which indicates that the tests work 
well on the simulated data (e.g., the extreme test does 
not identify more false positives than can be expected 
from the random data).

3.1.2  Application to Target Components

The results of assessing the components in the tar-
geted regulatory monitoring set are provided in 
Table  2. Indeed, every component was correctly 

Table 1  Results of applying the tests on simulated data with 
five repetitions. False positives are situations in which the tests 
indicate that a component is anthropogenic

Repetition False positives Error rate (%)

1 37 3.7
2 30 3
3 37 3.7
4 27 2.7
5 36 3.6
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classified as being anthropogenic. Because the pro-
posed methodology had low type I error rates in the 
generated data of non-anthropogenic components, 
and high power in this test set of known anthropo-
genic components, the methodology is valuable for 
analysis of unknown components.

Especially for the visual check, we can take 
Fig.  2 of deuterochloroform as an example. It 
passed three tests but failed the peak test (test 2). 
Besides, the high TIC after correcting for water 
flow also indicates an anthropogenic origin with the 
visual check.

3.2  Extracting Untargeted Components with 
PARADISe

In PARADISe, 12 retention time intervals that do 
not include peaks for the internal standards were 
selected from the GC–MS data file (details are given 
in Table 3).

Take interval 3 for example; the TICs of all sam-
ples in the selected retention time interval are shown 
in Fig.  3. The main goal is to decompose the data 
and find all of the components inside. Therefore, 
the number of components was evaluated, using fit 

Table 2  Results of the non-parametric tests for the thirty 
anthropogenic chemicals of the Rijkswaterstaat dataset. The 
data was corrected for internal standards and water flow; 0 

indicates that the chemical was classified as natural, 1 indicates 
that it was classified as anthropogenic

Component Test 1 Test 2 Test 3 Test 4 Visual check Result

Methyl tertiary-butyl ether (MTBE) 1 1 1 1 1 Anthropogenic
Diisopropyl ether 1 1 1 1 1 Anthropogenic
Cis-1,2-Dichloroethene 1 1 1 0 1 Anthropogenic
Ethyl tertiary-butyl ether (ETBE) 1 1 1 1 1 Anthropogenic
Chloroform 0 1 0 0 1 Anthropogenic
Ethyl sec-butyl ether (ESBE) 1 1 1 0 1 Anthropogenic
1,1,1-Trichloroethane 1 1 1 1 1 Anthropogenic
Cyclohexane 1 1 1 1 1 Anthropogenic
1,2-Dichloroethane 1 1 1 1 1 Anthropogenic
Benzene 0 1 1 1 1 Anthropogenic
Tertiary amyl methyl ether (TAME) 1 1 1 1 1 Anthropogenic
Trichloroethylene 1 1 1 0 1 Anthropogenic
Tertiary amyl ethyl ether (TAEE) 1 1 1 0 1 Anthropogenic
Methylisothiocyanate 1 1 1 0 1 Anthropogenic
Toluene 0 1 1 1 1 Anthropogenic
1,1,2-Trichloroethane 1 1 1 1 1 Anthropogenic
Tetrachloroethylene 1 1 0 0 1 Anthropogenic
Chlorobenzene 1 1 1 1 1 Anthropogenic
Ethylbenzene 1 1 1 1 1 Anthropogenic
m/p-Xylene 1 1 1 1 1 Anthropogenic
o-Xylene 1 1 1 1 1 Anthropogenic
Styrene 1 1 1 1 1 Anthropogenic
Cumene 1 1 1 1 1 Anthropogenic
n-Propylbenzene 1 1 1 0 1 Anthropogenic
2-Chlorotoluene 1 1 1 0 1 Anthropogenic
t-Butylbenzene 1 1 1 1 1 Anthropogenic
1,2,4-Trimethylbenzene 1 1 1 0 1 Anthropogenic
1,2-Dichlorobenzene 1 1 1 0 1 Anthropogenic
Hexachlorobutadiene 1 1 1 0 1 Anthropogenic
Naphthalene 1 1 1 0 1 Anthropogenic
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percentage and core consistency. When the num-
ber of components was set to 6, the core consistency 
reached almost 100 (Fig.  4), and the fit percentage 
was high (Fig. 4). When the number of components 

increased  more, the core consistency dropped, sug-
gesting that there are indeed  6 components in the 
data. We analyzed the component mass spectra, 
weighted elution profiles, and residuals to check the 
result; see Fig. 5.

There is no pattern in the residuals, which indi-
cates that spectra are well decomposed, and all com-
ponents are extracted. Components 5 and 6 show 
clear peaks in the elution profiles, which indicates 
they relate to actual chemicals in the sample. Compo-
nents 1, 2, 3, and 4, on the other hand, show quite low 
intensity which can be judged as background. There-
fore, components 5 and 6 represent the components in 
interval 3.

3.3  Application of Trend Analysis to Untargeted 
Pseudo-components

The same procedure as described above was applied 
to all intervals. That resulted in 12 extracted com-
ponents for use in further trend analysis. Then, we 
can output a result table with retention times of all 
extracted components and their corresponding TICs 
per sample. Like the targeted data, these untargeted 

Table 3  Details of intervals definition and optimal number 
of components as determined by core consistency. In total, 12 
intervals are selected with different retention time

Interval Start (minutes) End (minutes) Optimal 
number of com-
ponents

1 2 2.6674 1
2 2.6674 3.5305 2
3 3.5354 4.8185 5
4 4.8234 6.1583 2
5 6.1583 7.4659 3
6 7.4708 9.0515 6
7 9.0633 11.4151 2
8 11.4268 12.3896 2
9 13.5208 14.6768 2
10 15.3008 17.2995 1
11 19.0695 19.9409 1
12 21.6190 23.4635 3

Fig. 3  Observed chroma-
tograms over interval 3, 
used to illustrate how to 
determine the number of 
components. The retention 
time interval is given on the 
x-axis and total ion current 
on the y-axis. Each color 
line represents one sample
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components were corrected for river flow and inten-
sity of internal standards. The 12 extracted compo-
nents were subjected to trends analysis.

In Fig.  6, the twelve components with their time 
trends are extracted, which represent unknown chemi-
cals present in the Rhine. A first interesting result is 
that components 11 and 12 follow similar patterns 
as the one observed for the internal standard deu-
terochloroform (cf. Fig. 2). Such similarity indicates 
a constant concentration in the river water. For a 
naturally occurring component, this is unlikely as 
the load may be constant, but not its concentration. 
Component 11 is even more suspicious as it has con-
centration measurement of (close to) zero, which is 
highly unlikely for a natural component. It has been 
observed that polluters control their waste streams to 
match the river water flow to avoid detection. Com-
ponent 11 may be one such pollutant where the zero 
concentration was related to a break in production.

To investigate whether these 12 components are 
anthropogenic, the hypothesis tests described in Sec-
tion  2.5 were applied to these components, and the 
results can be found in Table 4.

4  Discussion

In the presented work, some assumptions were made 
regarding patterns in naturally occurring chemicals. 
When implementing the tests presented in this work, 
seasonal trends will have to be included if one wants 
to rely on some of the tests. However, visual inspec-
tion of the patterns of suspicious components may give 
clear indications of seasonal trends. Variations outside 
of the expectations may still relate to influences like 
waste streams as the composition of the polluted water 
can change unpredictably, even when considering sea-
sonal variations. In the future work, simulations could 

Fig. 4  PARADISe provides 
measures of core consist-
ency and fit percentage as 
standard output for each 
specified interval 3. This 
information is used to 
estimate how many compo-
nents should be extracted
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incorporate seasonal trends and other environmental 
characteristics to make the simulations more realistic.

Selection of retention time windows and number of 
components is done manually, and these choices will 
influence the results. Too narrow time windows will 
reduce the accuracy of the extracted components and 
increase the computational load, while too wide time 
window will include too many components, which 
makes it difficult to separate them. Usually, one peak 

per retention is ideal. For example, when shifted peaks 
appear partly in a different retention time window, not 
all ions belonging to the peak are counted in its TIC. In 
that case, a slight change in the position of the window 
would lead to a different TIC. Similarly, the number of 
components is generally ambiguous, and sometimes 
it is not clear how many components there should be. 
Always choosing more components, however, would 
result in overfitting. An automated procedure (Risum & 

Fig. 5  Detailed information about the component extraction 
in a particular time interval can be obtained by looking at a 
the mass spectra of the extracted components; b the grouping 
of the chromatograms, now called “weighted elution profiles”; 

and importantly to (c) the residuals after component extraction. 
Patterns in the residuals are an indication that more compo-
nents are present in the data
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Bro, 2018) for setting retention time windows and the 
number of components is currently being developed 
but is, to our knowledge, not yet available publicly.

In the untargeted analysis of GC–MS data, 12 
unknown components were extracted from the RWS 
dataset. Among the tests, the peak test is the strong-
est indicator of anthropogenic origin, as all the defined 
anthropogenic components are detected by this test. This 

indicates that anthropogenic components indeed show 
bigger fluctuations in concentration than naturally occur-
ring components. A peak test can be the main indicator 
to monitor the components’ concentration over time. 
As internal standards are relatively constant, if not con-
trolled for river water flow, we must compare the patterns 
of other components to those of the internal standards. 
Components 11 and 12 in Fig. 6 follow similar patterns 

Fig. 6  The trends of twelve components obtained from PARADISe analysis. All the data was corrected for river flow and internal 
standards. For each subplot, x-axis is the data points of each day, while y-axis is the corrected TIC

Table 4  Results of the 
four statistical hypothesis 
tests, to judge whether 
the component is 
anthropogenic. In the 
test columns, 1 means 
it failed to pass the test 
while 0 means pass. In 
label column, 1 represents 
anthropogenic and 0 is 
natural. The last column 
indicates which component 
the component is most 
likely to be according to 
the NIST look-up. The 
top-1 percentage is given in 
parentheses

Component Test1 Test2 Test3 Test4 Label Top-1 hit (%)

1 0 1 0 0 1 2-Hexanamine, 4-methyl- (28.57%)
2 0 1 0 0 1 1,3-Benzenediamine, 2,4-dinitro-N3 (44.50%)
3 0 1 0 0 1 Octodrine (23.23%)
4 0 1 0 1 1 Acetic anhydride (37.88%)
5 0 1 1 1 1 Propane, 2-methoxy-2-methyl- (65.59%)
6 0 1 1 1 1 Formic acid, 1,1-dimethylethyl ester (45.65%)
7 0 1 1 1 1 Dodecanal (42.36%)
8 0 1 0 0 1 Oxirane, ethyl- (71.26%)
9 0 1 1 1 1 Benzene (80.30%)
10 0 1 1 1 1 Ethyl Acetate (73.04%)
11 0 0 0 0 0 Trichloromethane (88.71%)
12 0 1 0 0 1 Methylene Chloride (97.39%)

Page 11 of 14    241



Water Air Soil Pollut (2022) 233: 241 

1 3
Vol:. (1234567890)

as the one observed for the internal standard deutero-
chloroform. Importantly, component 11 has measure-
ment of zero concentrations, which is highly suspected 
to be anthropogenic. Such pollutant may be difficult to 
detect if not for the kinds of test presented in this paper. 
The next step could be to match the extracted PARA-
FAC2 component to a (online) chemical database. If a 
match is found, regulatory bodies may choose to further 
investigate the source of this chemical and identify the 
presence of it much more rapidly in the future.

The current research was based on one analytical 
platform used by the responsible regulatory body. 
When other platforms are available, additional tests 
could be devised. For example, another method to 
determine anthropogenic origin might be to evalu-
ate whether a component contains fluoride, an ele-
ment which is hardly found in naturally occurring 
components. The data used in this paper did not 
allow for identification of fluoride in the MS spec-
trum, but other application may include high-reso-
lution MS measurements if they are available.

Another promising approach is to predict the 
occurrence of components across multiple measur-
ing stations. While a component may not be exactly 
identified, the label it gets from the PARADISe analy-
sis may still be used to identify the same component 
across different measurement stations. Work has been 
by some of the current authors to relate untargeted 
GC–MS measurements of different measuring sta-
tions along the Rhine using a statistical path model 
called Process PLS (van Kollenburg et al., 2021). The 
results of this approach are forthcoming.

Various instruments are widely used to detect 
organic chemicals, like gas chromatography–mass spec-
trometry (GC–MS), and liquid chromatography–mass 
spectrometry (LC–MS). With high sensitivity and good 
separation capability, GC–MS is widely used in organic 
chemical detection. It is especially good at quantifying 
chemicals with low boiling point and good thermal sta-
bility. With the successful application of chemometrics 
in water diagnosis, the same methodology can also be 
applied to time trends extracted from other commonly 
used analytical platforms.

5  Conclusion

We have used a PARAFAC2-based method to 
extract components from water data and have 

proposed statistical hypothesis tests to judge 
whether a component in the water is anthropogenic. 
The method was validated with simulated data and 
successfully applied to real data with satisfactory 
results. For empirical data, we evaluated all the tar-
geted components which support the accuracy of 
the hypothesis. As for the untargeted components 
in river Rhine, in total, twelve components were 
identified and only one was recognized as natural 
while the others were classified as anthropogenic, 
which provides compelling evidence that studying 
unknown components can be highly valuable for 
regulatory bodies, helping them to help focus their 
attention on the most suspicious pollutants.

Because quantitative chemical analysis can be quite 
laborious and costly, screening for anthropogenic com-
ponents can be particularly useful for regulatory bodies. 
Also, identification of potential unknown components 
requires more attention to deal with, which increases treat-
ment cost. According to the distribution of mass spectra 
line and intensity difference, after comparing with the 
data library, the possibility of certain component will be 
given and the one with maximum probability is selected.

Furthermore, according to the component charac-
teristics, like m/z constitution and intensity, we could 
tentatively identify the chemical it represents. In the 
future, we could track back the location of discharge 
and help regulators deal with pollution with more 
data like factory distribution and components’ con-
centration distribution, besides river water flow.
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Appendix 1. Targeted Anthropogenic Volatile 
Chemicals

Table 5  Thirty anthropogenic chemicals with five internal 
standards, monitored multiple times a day by Rijkswaterstaat

Internal standards
  Deuterochloroform
  Toluene-D8
  Chlorobenzene-D5
  1,4-Dichlorobenzene-D4
  Naphthalene-D8

Anthropogenic chemicals
  Methyl tertiary-butyl ether (MTBE)
  Diisopropyl ether
  Cis-1,2-Dichloroethene
  Ethyl tertiary-butyl ether (ETBE)
  Chloroform
  Ethyl sec-butyl ether (ESBE)
  1,1,1-Trichloroethane
  Cyclohexane
  1,2-Dichloroethane
  Benzene
  Tertiary amyl methyl ether (TAME)
  Trichloroethylene
  Tertiary amyl ethyl ether (TAEE)
  Methylisothiocyanate
  Toluene
  1,1,2-Trichloroethane
  Tetrachloroethylene
  Chlorobenzene
  Ethylbenzene
  m/p-Xylene
  o-Xylene
  Styrene
  Cumene
  n-Propylbenzene
  2-Chlorotoluene
  t-Butylbenzene
  1,2,4-Trimethylbenzene
  1,2-Dichlorobenzene
  Hexachlorobutadiene
  Naphthalene

Table 5

Appendix 2. Correcting for Internal Standards 
and Water Flow
The available data on internal standards from Bim-
men comprised  5745 measurement points of five 
internal standards; let  C1,1 represent the first meas-
urement of the first internal standard, C1,2 as the 
first measurement of the second internal standard, 
etc. then the data matrix can be represented as

Then, for each column of the internal standards, 
the standard deviation was calculated (5).

A total of five standard deviations were calculated 
(6).

Next, each element of the BIM matrix (4) was 
divided by the  standard deviation of its respective 
column (Equ. 6), resulting in 5745 scaled values per 
internal standard, resulting in (with abuse of notation):

To get the corrected concentration, Conc∗
n,x

 , of an 
observed chemical x in the river water at time-point n, each 
measured concentration Concn,x was divided by the aver-
age of the 5 corrected internal standards (see 8 and 9). For 
the corrected data, the last step was done by dividing the 
data by the water flows at time n to obtain loads instead 
of concentrations (10). The final corrected data consisted 
out of 5745 estimated loads per component. The tests were 
performed on the loads from (Equ. 10).

(4)BIM5745∗5 =

⎡
⎢⎢⎣

C1,1 ⋯ C1,5

⋮ ⋱ ⋮

C5745,1 ⋯ C5745,5

⎤
⎥⎥⎦
5745∗5

(5)stdn = std

⎛⎜⎜⎜⎝

C1,n

⋮

C5745,n

⎞⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎣

�
1

5745

5745�
n=1

�
Cn,1 − C1

�2

⋯

���� 1

5745

5745�
i=1

�
Cn,5 − C5

�2

⎤⎥⎥⎥⎥⎥⎥⎦

(6)STDBIM =
[
std1 ⋯ std5

]
5∗1

(7)BIM∗
5745×5

=
BIM5745×5

STDBIM

=

⎡
⎢⎢⎣

C∗
1,1

⋯ C∗
1,5

⋮ ⋱ ⋮

C∗
5745,1

⋯ C∗
5745,5

⎤⎥⎥⎦

(8)C̄∗
n
= mean

(
C∗
n,1

+ C∗
n,2

+ C∗
n,3

+ C∗
n,4

+ C∗
n,5

)

(9)Conc∗
n,x

=
Concn,x

C̄∗
n
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Because internal standards have a fixed concen-
tration added into every water sample. The average 
of all the internal standards will the most robust 
way to calibrate other components.

(10)Loadn,x =
Conc∗

n,x

Water f lown
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