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contamination in the Rur has changed slightly, but 
nevertheless, the high chemical diversity remained. A 
detailed consideration such as that undertaken in this 
study is necessary as the occurrence of substances in 
a river system depends on many different factors. For 
a holistic assessment of environmental behavior, not 
only the sampling locations and associated develop-
ment of emission profiles must be considered but also 
temporal variations and mitigation measures. Such a 
multi-parameter scenario provides an important basis 
for the mitigation and reduction of organic pollutants 
in our environment.

Keywords GC/MS non-target screening · Pollution 
pattern · River water · Organic contaminants · Fluvial 
transport

1 Introduction

Particularly in the twentieth century, anthropogenic 
activities such as changing of watercourses, increas-
ing pollution, and thus, rapid degradation impacted 
the river systems worldwide (e.g., Dsikowitzky et al., 
2004a, b; Lin et al., 2017; Wang et al., 2012). Due to 
the highly dynamic nature of rivers, a complex mix-
ture of inorganic and organic contaminants entered 
and still enters freshwater systems, released by vari-
ous activities and emission sources (Lin et al., 2017; 
Schwarzbauer, 2006). As a first rough classification, 
the sources of anthropogenic contaminants can be 
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divided into point sources (industrial and municipal 
effluents, single incidents as, e.g., industrial disasters) 
and diffuse sources (agricultural or shipping activi-
ties), leading to direct respectively indirect contami-
nation of freshwater systems (Heim & Schwarzbauer, 
2013; Morin-Crini et al., 2021; Petrovic et al., 2016).

Low-molecular-weight organic contaminants are 
used for various purposes in industry and urban appli-
cations (e.g., as pesticides, plasticizers, or pharmaceu-
ticals) so that they show an extremely high diversity 
and structural variety (Bernhardt et al., 2017; Botal-
ova et al., 2009; Lorenzo et al., 2018). Depending on 
their chemical and physical behavior and the dynamic 
nature in this compartment, the distribution processes 
in the aqueous phase are very short-term and com-
plex, which makes their determination quite chal-
lenging. Only a few substances (like PCBs, PAHs, or 
DDT) and their environmental behavior in water sys-
tems are already well studied (e.g., Cerniglia, 1993; 
Safe, 1994; Turusov et al., 2002; Zhang et al., 2007). 
But mostly specific fates and complex behaviors are 
still largely unexplored, posing unknown risks to eco-
systems and water safety.

This is of raising concern as surface waters are 
largely used as drinking water and human beings are 
thus highly interested in their respective conditioning 
and protection (Benotti et al., 2009; Houtman, 2010; 
Petrovic, 2003; Schwarzbauer, 2006; Vulliet et  al., 
2011). For instance, in North Rhine-Westphalia (Ger-
many), around 60% of the raw water for drinking is 
taken from surface waters (esp. from dams), bank fil-
trate, and enriched groundwater (IT.NRW, 2019).

Furthermore, even though wastewater treatment 
involves increasingly efficient processes, and policy 
and environmental legislation are focusing more 
and more on water protection and renaturation, new, 
unknown pollutants are still entering the environ-
ment (Morin-Crini et al., 2021; Petrovic et al., 2016). 
Our existing conventional treatment plants are not 
designed to eliminate these “emerging contaminants,” 
and there are currently no regulations regarding 
monitoring or public reporting of their presence in 
water supply and effluents (e.g., Lorenzo et al., 2018; 
Mohapatra & Kirpalani, 2019; Patel et al., 2019; Tang 
et al., 2019).

To determine the behavior and fate of contami-
nants and for risk assessment, it is therefore crucial 
to be able to assign identified substances to possible 
sources. Thus, especially dynamic and rather small 

river systems are well suited to show the general 
environmental behavior. Individual distribution pro-
cesses, influences of anthropogenic measures, as well 
as resulting impacts on the ecosystem are easier to 
identify and differentiate. In contrast, in larger river 
systems such as the Rhine, complex mixtures of pol-
lutants are often identified, resulting in a cumulative 
detection over the entire course of the river (Ruff 
et  al., 2015; Schäfer et  al., 2011). In this study, the 
Rur river as a meso-scaled catchment system was 
chosen to assess the longitudinal contamination status 
of the river water. Within this river system, heteroge-
neous emission sources as industrial and municipal 
wastewater effluents can be identified and consid-
ered. This also enables transferability to other river 
systems.

Up to now, only a few comparable studies are 
available regarding, for example, the Lippe river 
in Germany (Dsikowitzky et  al., 2004a, b) or the 
Turia and Henares rivers in Spain (Ccanccapa-Cart-
agena et al., 2019; Gómez et al., 2012). These stud-
ies involved extensive screening and detection of a 
variety of organic substances in a diverse but distin-
guishable emission situation. However, the timeframe 
investigated is usually very limited and does not fully 
cover temporal developments. Schwarzbauer and 
Ricking (2010) investigated several different-sized 
European rivers to show the high structural diversity 
of organic contaminants. As part of their studies, they 
have also revealed that each river has unique contami-
nation patterns and structures. Especially river-spe-
cific contaminants are promising candidates for moni-
toring programs. Thus, individual and fundamental 
investigations of single freshwater systems, as in this 
study, are a crucial precondition.

Consequently, the overall aim of the present study 
was to determine the chemical diversity of organic 
contaminants in the Rur river system regarding its 
aqueous phase. This river system can be considered 
as a typical and representative meso-scaled Central 
European catchment in terms of flow and emission 
sources. In general, as the inventory in the aqueous 
compartment is very dynamic, the determination of 
the distribution and fate of various substances  is chal-
lenging. However, it is indispensable to fill the gen-
eral lack of knowledge of the behavior of organic pol-
lutants in complex environmental systems and their 
impact on corresponding ecosystems and freshwater 
resources. A gas chromatography–mass spectrometry 
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(GC/MS) non-target screening was applied to iden-
tify both well-known organic pollutants and emerging 
contaminants as such screenings have been proven to 
be effective for the identification of various organic 
pollutants in aquatic systems (e.g., Grigoriadou & 
Schwarzbauer, 2011; Köppe et al., 2020; Ruff et al., 
2015; Schwarzbauer & Ricking, 2010). Additionally, 
indicative and relevant contaminants are categorized 
according to their load profiles for a distinct emission 
characteristic. Furthermore, temporal variations in 
organic contamination between 2004, 2015, and 2020 
were investigated to achieve a holistic assessment of 
emission sources and environmental fate and behav-
ior of organic contaminants.

2  Experimental

2.1  Study Area and Sampling

The Rur river is a tributary to the superordinate river 
basin of the Meuse. In total, the Rur has a flow length 
of 163  km and covers a catchment area of about 
2340   km2, so that it is classified as a meso-scaled 
catchment system. It can be divided into two geo-
logic respectively physiographic parts: The southern 
part is the mountain range landscape of the Eifel that 
contributes to the Rhenish Massif, and the northern 
lowland part belongs to the Lower Rhine Embayment 
(Staatliches Umweltamt Aachen, 2005). The upper 
course of the Rur river is close to a natural state, 
whereby the transition to its middle course is deter-
mined by various dams and water reservoirs. These 
are partly used for drinking water supply, as, for 
example, the “Rurtalsperre” which is one of the larg-
est reservoirs in Germany (Wasserverband Eifel-Rur, 
2017a). The middle course, starting at Kreuzau (south 
of Düren), is clearly more urban and less natural. 
Particularly, the influence of local industry (paper, 
metal, and textile processing) and lignite mining are 
noteworthy here. From Linnich to its confluence with 
the Meuse at Roermond, it corresponds to a classic, 
but unnatural lowland watercourse, which is predomi-
nantly used for agricultural purposes.

In total, the river flows through three different 
countries (Belgium, Germany, and the Netherlands), 
showing a highly dynamic river course with multiple 
anthropogenic impacts. The most relevant discharges 
are considered to be two wastewater treatment plants 

(WWTP) in the lower parts, the WWTP Düren 
and the WWTP Aachen-Soers (tributary Wurm) 
(Schröder, 1995; Schulze & Matthies, 2001). Their 
treatments include municipal as well as industrial 
influents. However, overall, there are more than 40 
WWTPs in the Rur catchment area influencing the 
river and its water quality (Wasserverband Eifel-Rur, 
2017b).

Grab water samples (1  L) were collected at 21 
locations on three different times over the entire 
course of the Rur river (as shown in Fig. 1). Not all 
localities could be sampled at all times. The width 
of the river is ranging from 2 m at the first sampling 
location to about 20 to 25  m at locations further 
downstream. Each water sample was scooped from 
midstream approximately 1  m below the water sur-
face. The samples were filled into pre-cleaned glass 
flasks and sealed free of air bubbles. Prior to extrac-
tion, they were stored in the darkness at 4℃. Samples 
were processed within 2 to 3  weeks after collection 
and then measured directly. The extraction and meas-
urement procedure was the same for all sampling 
campaigns. The analysis of all datasets was extended 
in 2020/2021 to include further organic contaminants.

The first sampling campaign was performed from 
November 30 to December 2, 2004. The second sam-
pling was done on March 23–24, 2015, and the third 
sampling was done on November 23–24, 2020. At 
the upstream sampling points, the mean flow over all 
sampling campaigns ranged from 1 to 4  m3  s−1, while 
further downstream, it increased to 9 to 27  m3  s−1.

2.2  Chemicals, Blanks, and Recovery Experiments

Only equipment made of glass, metal, and Teflon/
PTFE was used in the laboratory to minimize sam-
ple contamination. Prior to usage, the equipment was 
ultrasonically cleaned in detergent-containing water 
(Extran, Merck, Germany) and rinsed with high-
purity acetone and n-hexane. All solvents used were 
acquired from Merck, Germany, and distilled over 
a 0.5  m packed column (reflux ratio approximately 
1:25). The purity of the solvents was checked by gas 
chromatographic analyses. Anhydrous granulated 
sodium sulfate (Merck, Germany) and hydrochloric 
acid (Merck, Germany) required for the analytical 
procedure were cleaned with pure solvents. Blank 
analyses (n = 4) were carried out to determine pos-
sible background contaminations. They revealed the 
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presence of different plasticizers as phthalates, acetyl 
tributylcitrate, and triacetin. Recovery rates (n = 4) 
were determined by spiking 1 L of high-purity water 
(Rotisolv, Roth, Germany) with 4  µg of the respec-
tive reference compounds (Sigma-Aldrich, Germany) 
and then applying the same analytical procedure as 
described in the following for the environmental sam-
ples. The determined recovery rates are presented in 
Supplementary information.

2.3  Sample Extraction

Sample treatment and analysis followed well-estab-
lished and previously described methods (e.g., 
Dsikowitzky et  al., 2002; Grigoriadou et  al., 2008). 
Prior to the extraction, the water samples were 

filtered through pre-cleaned GF/F filters (Mach-
erey–Nagel, Düren, Germany) to remove suspended 
particulate matter from the aqueous phase. After-
wards, a liquid–liquid extraction was carried out to 
approximately 1 L samples. For this purpose, sequen-
tially, 50 mL each of n-pentane (1st fraction), dichlo-
romethane (2nd fraction), and dichloromethane after 
acidification to pH 2 (3rd fraction) were used for the 
extraction in a separatory funnel. The sample was 
shaken for 5 min each, and after separation, fractions 
1 and 2 were spiked with 50 µL of a surrogate stand-
ard solution containing the reference compounds 
fluoroacetophenone (5.8 ng µL−1), benzophenone-d10 
(6.3 ng µL−1), and hexadecane-d34 (6.0 ng µL−1). All 
fractions were then concentrated to approximately 
2 mL by rotary evaporation and dried with anhydrous 

Fig. 1  Overview of the Rur catchment (North Rhine-Westphalia, Germany) and the location of the sampling sites R1 to R21
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granulated sodium sulfate. Acidic compounds present 
in the third fraction were methylated by the addition 
of a methanolic diazomethane solution. Afterwards, 
a surrogate standard (200 μL) containing fluoroaceto-
phenone (14.4 ng μL−1) was added to the third frac-
tion. Prior to injection, all fractions were concentrated 
to final volumes of 10 to 50 µL (first two fractions) 
and 200 µL (third fractions).

2.4  Gas Chromatography–Mass Spectrometry

GC/MS analyses of the extracts were performed 
with a quadrupole ThermoQuest Trace MS mass 
spectrometer linked to a ThermoQuest Trace GC 
(ThermoQuest, Germany). The gas chromatograph 
was equipped with a ZB-5 fused silica capillary 
column (Phenomenex, Aschaffenburg, Germany; 
30  m × 0.25  mm ID × 0.25  μm film thickness), and 
carrier gas velocity (helium) was ca. 40  cm   s−1. A 
1 µL split/splitless injection (injector temperature of 
270℃) was carried out at 60℃ with a splitless time 
of 60  s. After 3  min at the initial temperature, the 
oven was programmed to 310℃ at a heating rate of 
3℃   min−1 and 20  min isothermal time. Mass spec-
trometer operation took place in electron impact ioni-
zation mode (EI + , 70 eV) using a source temperature 
of 200℃, scanning from 35 to 700  amu at a rate of 
2.5  scan   s−1 in low-resolution mode. Further details 
of chromatographic conditions and quantification pro-
cedures are given in Dsikowitzky et  al. (2004b) and 
Grigoriadou et al. (2008).

2.5  Compound Identification and Quantification

Individual compounds were identified by compari-
son of EI + mass spectra with those of mass spectral 
databases (NIST, Wiley) and published information. 
Furthermore, the identification was verified with 
mass spectra of purchased reference compounds to 
consider also specific gas chromatographic retention 
times and elution orders. Quantification was based on 
the integration of characteristic ion chromatograms 
extracted from the total ion current. In Supplemen-
tary information, all characteristic ions used for sub-
stance quantification are given. Response factors were 
obtained from four-point linear regression functions 
based on external calibration measurements with 
compound concentrations between 4  ng  µL−1 and 
40 ng µL−1 (injection of 1 µL). These concentrations 

ranged within the expected values of the compounds 
in the samples and within the linear detection range. 
If reference compounds were not commercially avail-
able, response factors of substances with a similar 
structure were used for quantification. The inaccura-
cies of injection and sample volume were corrected 
with the surrogate standard. The limit of detection 
(LOD) was in the range of 1 ng  L−1, and the limit of 
quantification (LOQ) was in the range of 5 ng  L−1.

3  Results and Discussion

3.1  Structural Diversity of Organic Contaminants in 
the Rur River

One main objective of this study was to determine 
the structural diversity of organic contaminants in the 
meso-scaled river system of the Rur river. Besides 
very well-known or widely distributed contaminants, 
also so far unknown or only sporadically identified 
substances have been detected.

In detail, the GC/MS-based non-target screenings 
over all sampling campaigns revealed the presence 
of more than 70 lipophilic to semi-polar substances. 
They were dominantly xenobiotic and therefore of 
anthropogenic origin. As summarized in Table 1, the 
substances can be divided into different categories 
based on their technical application or their chemical 
structures.

3.1.1  Pharmaceuticals

Pharmaceuticals as emerging contaminants have 
gained intensive scientific attention worldwide over 
the last two decades. They are widely used in both 
human and veterinary medicine and have been identi-
fied in various studies of different aqueous compart-
ments as wastewater, surface water, groundwater, and 
recently also drinking water (e.g., Patel et  al., 2019; 
Vulliet et  al., 2011). However, since specific com-
pounds target specific activities and, thus, have dif-
ferent effects on a target organism, this group is very 
heterogeneous. The substances show a high variety of 
chemical, physical, structural, and biological proper-
ties and, therefore, different environmental behaviors. 
Among others, caffeine, carbamazepine, diclofenac, 
and acetylsalicylic acid have been detected in the 
Rur river, which are known to be ubiquitous and 
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Table 1  Concentration ranges (ng  L−1) of organic compounds detected in Rur river water samples (taken in November 2020, March 
2015, and November/December 2004)

No Compounds Detected concentrations (ng  L−1)

November 2020 March 2015 November 2004, 
December 2004

Pharmaceuticals
1 Carbamazepine n.d.–160 n.d.–190 n.d.–400
2 Oxcarbazepine n.d.–30 n.d n.d
3 Caffeine n.d.–150  < 5–70 n.d.–170
4 Chlorobutanol n.d n.d n.d.–1600
5 Iminostilbene n.d n.d n.d.–30
6 Lidocaine n.d.–210 n.d n.d.–110
7 Acetylsalicylic acid n.d n.d n.d.– < 5
8 Diclofenac n.d n.a n.d
9 Tocopheryl acetate n.d.–250 n.d.–20 n.d.–170
Personal care products
10 N,N,N’,N’-Tetraacetylethylenediamine, TAED n.d.–80 n.d.–200 n.d.–80
11 4-Methoxycinnamic acid 2-ethylhexylester n.d.– < 5 n.d.–10 n.d.–220
12 Drometrizole n.d.– < 5 n.d n.d.–50
13 Galaxolide n.d.–70  < 5–100 10–170
14 Tonalide n.d.–6  < 5–9  < 5–30
15 4-Oxoisophorone  < 5–20  < 5–50 20–120
16 Lilial n.d.– < 5 n.d.–30 n.d.–10
17 Viridine n.d n.d n.d.– < 5
18 Dihydromethyljasmonate 6–40  < 5–70 n.d.–20
19 Cineol n.d n.d.–40 n.d.–160
20 Coumarin n.d.–30 n.d.–10 n.d
21 4-tert-Butylcyclohexanone n.d.–10 n.d n.d.–20
22 Benzophenone  < 5–30 n.d.–100 10–280
23 Isopropyllaurate 60–330 1100–16,900 20–500
24 Isopropylpalmitate 10–70 n.d.–3800 90–370
25 Methyl dehydroabietate 280–3800 290–17,700 n.d.–280
Pesticides and biocides
26 N,N-Diethyltoluamide, DEET n.d.–50 n.d.–10 n.d.–20
27 4,4’-Dichlorobenzophenone, DBP n.d n.d n.d.–240
Technical additives, plasticizers, and other industrial compounds
28 Di-iso-propylnaphthalenes, DIPN n.d.– < 5 n.d.–110 10–30
29 N-Butylbenzenesulfonamide, NBBS n.d.–110 n.d.–10 n.d.–50
30 2,4,4-Trimethylpentane-1,3-dioldi-iso-butyrate, TXIB 10–70 n.d.–3700 5–30
31 2,4,7,9-Tetramethyl-5-decyne-4,7-diol, TMDD 20–23,600 100–24,600 10–1700
32 (1-Hydroxycyclohexyl)phenylketone, Irgacure 184 n.d.–110 20–1500 n.d.– < 5
33 Triethylcitrate  < 5–120 n.d.–540 n.d.–40
34 Acetyl tributylcitrate n.d.–340 n.d.–540  < 5–40
35 Triacetin 300–11,800 n.d.–1900 n.d.–100
36 Triethylphosphate n.d.–220 n.d.–210 n.d.–160
37 Tributylphosphate n.d.–20 n.d.–4300 10–730
38 Tris(2-chloroethyl)phosphate, TCEP n.d.–10 n.d.–70 n.d.–60
39 Tris(chloropropyl)phosphate, TCPP  < 5–110 n.d.–1200 n.d.–40
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frequently detected compounds (Hughes et al., 2013). 
Acetylsalicylic acid was only detected below the limit 

of quantification, but the detected concentrations of 
carbamazepine (up to 400  ng   L−1) and caffeine (up 

n.d. (not detected) means the concentration was below the detection limit (< 1 ng  L−1); < 5 means the concentration was below the 
limit of quantification and above the detection limit (1–5 ng  L−1); n.a. means not analyzed

Table 1  (continued)

No Compounds Detected concentrations (ng  L−1)

November 2020 March 2015 November 2004, 
December 2004

40 Triphenylphosphate n.d n.d.–160  < 5–10
41 Triphenylphosphine oxide n.d.–260 n.d.–60 n.d
42 Dimethyl phthalate 10–70 30–1000 n.d.–10
43 Diethyl phthalate 50–220 120–2500 180–700
44 Di-iso-butyl phthalate 30–460 170–3900  < 5–120
45 Di-n-butyl phthalate 70–1200 210–2600 130–620
46 Benzyl butyl phthalate n.d.–40 n.d.–150 n.d.–360
47 Bis(2-ethylhexyl) phthalate, DEHP 230–1400 180–4400 n.d.–760
48 2,2-Dimethoxy-1,2-diphenylethanone, DMPA n.d.–40 n.d n.d
49 Diphenoxyethane n.d.–10 n.d.–90 n.d.–40
Miscellaneous contaminants
Halogenated compounds
50 Dichloroaniline n.d.–8 n.d n.d.–10
51 1,1,2,2-Tetrachloroethane n.d.–370 n.d.–6 n.d.–20
52 4-Bromoanisole n.d n.d  < 5–180
53 2,4-Dibromoanisole n.d n.d n.d.–20
54 2,4,6-Tribromoanisole n.d n.d  < 5
S-containing compounds
55 Diphenylsulfone n.d.–20 n.d.–80 n.d
56 Methylphenylsulfone n.d.–40 n.d n.d.–20
57 Benzothiazole n.d.–8 n.d.–20  < 5–20
58 2-Methylthiobenzothiazole n.d.–70 n.d.–50 n.d.– < 5
59 N-Phenylbenzenesulfonamide n.d.–40 n.d.–10 n.d.–10
60 N-Ethyl-o-toluenesulfonamide n.d.–180 n.d.–20 n.d.–30
61 N-Ethyl-p-toluenesulfonamide n.d.–250 n.d.–90 n.d.–120
62 2-Aminodiphenylsulfone n.d n.d n.d.–10
N-containing compounds
63 2-Methylbenzotriazole n.d.–290 n.d.–10 n.d.–30
64 Quinoline n.d.–20 n.d.–9  < 5–10
65 Quinoxaline n.d n.d n.d.– < 5
66 2,3-Diethyl-2,3-dimethylsuccinonitrile n.d.– < 5 n.d.– < 5 n.d.–170
67 Phenylisocyanate n.d.–140 n.d n.d
68 Azobisisobutyronitrile, AIBN/Tetramethylsuccinonitrile, TMSN n.d.–1300 n.d.–120 n.d.–70
69 N,N-Dibutylformamide 120–560 7–750 20–160
O-containing compounds
70 2,6-Di-tert-butyl-1,4-benzoquinone, BHT-quinone n.d.–40 10–100 n.d.–10
71 Butylated hydroxytoluene, Ionole 5–20 n.d.–330 10–40
72 1,3,3-Trimethyloxindole n.d.–30 n.d.–10 n.d
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to 170 ng  L−1) were similar to other studies (Brezina 
et al., 2017; Hughes et al., 2013; Zhang et al., 2007).

However, also some uncommon and less fre-
quently detected pharmaceuticals were identified. 
The amino compound lidocaine is a local anesthetic 
and antiarrhythmic agent that was firstly synthesized 
in the 1950s, and since then, it has been used exten-
sively for medical applications. In high doses, it can 
have a neurotoxic effect (Holmdahl, 1998). However, 
even though lidocaine is widespread used, it has only 
sporadically been noted as an environmental contami-
nant. Rúa-Gómez and Püttmann have investigated its 
presence in German wastewater treatment plants and 
the corresponding impact on surface water quality 
(2012a, b). They have shown that lidocaine is con-
stantly discharged by WWTP effluents as our con-
ventional wastewater treatment does not remove it. 
At this point, Rúa-Gómez and Püttmann recognized 
a direct relationship between the amount of connected 
population and discharge levels. Its maximum con-
centration in the Rur river was 210 ng  L−1, which is 
comparable to other German rivers (max. 176 ng  L−1) 
that have been investigated by Rúa-Gómez and Pütt-
mann (2012a). Besides lidocaine, also chlorobutanol 
(sedative hypnotic and local anesthetic), oxcarbaz-
epine (anticonvulsant, derivate of carbamazepine), 
and iminostilbene (metabolite of carbamazepine) 
have been detected as noteworthy pharmaceuticals 
with maximum concentrations between 30 ng  L−1 and 
1.6 µg  L−1.

3.1.2  Personal Care Products

Similar to pharmaceuticals, personal care products 
(PCPs) are also a very diverse group of compounds 
and are typically released via municipal wastewa-
ter effluents. Both substance classes are consumed 
by humans in rather large quantities. The group of 
PCPs typically includes constituents of lotions, 
detergents, deodorants, toothpaste, or cleaning 
products. Compounds that are frequently detected 
in various surface waters include, e.g., fragrances 
or synthetic musk compounds as galaxolide or 
tonalide (Dsikowitzky et al., 2002). They have been 
identified in the Rur river with concentrations up to 
170  ng   L−1 and 30  ng   L−1, respectively. However, 
several further fragrances have also been identified 
in this catchment area in a wide range of concentra-
tions between LOQ and 160  ng   L−1 (lilial, cineol, 

dihydromethyljasmonate, viridine, coumarin). Most 
of them have only been rarely documented as water 
contaminants so far (Klaschka et al., 2013; Matam-
oros et al., 2012). Some can be of both natural and 
artificial origin; hence, an exclusive anthropogenic 
emission cannot be assumed (e.g., coumarin). How-
ever, lilial (or butylphenyl methylpropional) is a 
synthetic aromatic aldehyde that has a floral scent 
and no known natural source (Bolek & Kümmerer, 
2010). It is considered a contact allergen and must 
therefore be labeled in cosmetic products according 
to the EU Directive 2003/15/EC (European Com-
mission, 2003). Godayol et  al. (2015) have shown 
that it cannot be efficiently removed in WWTPs by 
conventional activated sludge treatments, where 
they even refer to Lilial as the most persistent fra-
grance allergen. Since it can be easily oxidized, 
metabolization might be of relevance and requires 
further investigations (Klaschka et al., 2013).

The substance 4-oxoisophorone is also used in the 
perfume and fragrance industry. It has been detected 
ubiquitously in the Rur river with concentrations 
between LOQ and 120  ng   L−1. Similar results in 
terms of occurrence and concentrations have been 
obtained in other studies, such as in the German riv-
ers Lippe and Rhine (Dsikowitzky et  al., 2004a, b; 
Schwarzbauer & Heim, 2005). Nevertheless, it has 
not received much attention beyond that. Of emerging 
interest is also the fragrance compound 4-tert-butyl-
cyclohexanone that was only detected with low con-
centrations up to 20 ng   L−1. According to ECHA, it 
is toxic to aquatic life with long-lasting effects. How-
ever, to the author’s knowledge, 4-tert-butylcyclohex-
anone has only been reported in individual studies, so 
that the fate and behavior in the environment remains 
mainly unknown (Johnstone et  al., 2020; Jüttner, 
1999).

Besides fragrances, PCPs also include other sub-
stances and substance groups present in the Rur river. 
For instance, UV filters (benzophenone, drometrizole, 
4-methoxycinnamic acid 2-ethylhexylester) or tetraa-
cetylethylenediamine (TAED), a bleaching activator 
in laundry detergents, have been detected in concen-
trations up to 280 ng  L−1. TAED has been detected in 
surface water systems in only a few studies (Schwar-
zbauer & Ricking, 2010), and due to its high bio-
degradability and good photolysis in the presence of 
Fe(III) only at low concentrations (Brand et al., 1997; 
Schwientek et al., 2016; Sýkora et al., 2001).
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3.1.3  Pesticides and Biocides

N,N-Diethyl-m-toluamide (DEET) is mainly used as 
an insect repellent and has been detected in the Rur 
river with a maximum of  50  ng   L−1 comparable to 
several surface waters worldwide (Aronson et  al., 
2012). It is commonly found in the aquatic envi-
ronment, but its probability for adverse risks is low 
(Aronson et  al., 2012; Weeks et  al., 2012). In this 
study, DEET occurs only downstream of the WWTP 
Düren, which shows that wastewater effluents, in 
general, are an important input pathway for this sub-
stance. Nowadays, DEET is standardly considered in 
several surveys and offers a high potential as a molec-
ular marker (Dsikowitzky et al., 2014b; Weeks et al., 
2012). Eventually, benzothiazole (BT) and 2-meth-
ylthiobenzothiazole (MTBT) can also be assigned to 
this group as they are known degradation products of 
the fungicide 2-(thiocyanomethylthio)benzothiazole 
(Reemtsma et al., 1995). However, substances based 
on benzothiazole have widespread applications in 
industrial processes, e.g., in the tire and rubber manu-
facturing industry (Fiehn et al., 1994; Kloepfer et al., 
2004). Nevertheless, BT and MTBT are of concern 
because of their limited biodegradability and poten-
tial aquatic toxicity, and they have been identified as 
environmental pollutants in several studies (Asima-
kopoulos et  al., 2013; Hidalgo‐Serrano et  al., 2019; 
Reemtsma et al., 1995). In this study, the maximum 
concentrations were rather low, with 20 ng  L−1 (BT) 
and 70 ng  L−1 (MTBT) (cf. Dsikowitzky et al., 2017).

3.1.4  Technical Additives, Plasticizers, and Other 
Industrial Compounds

This group includes many and very diverse sub-
stances with different molecular structures as well 
as chemical and physical properties. Compounds 
that have been detected in the Rur river include well-
known water contaminants such as organophosphate 
flame retardants respectively plasticizers (TCPP, 
TCEP, TBP, TEP, TPP) (e.g., Cristale et  al., 2013; 
Kim & Kannan, 2018; Regnery & Püttmann, 2010). 
They have been found in a wide range of concentra-
tions from LOQ up to 1.2 µg  L−1, with high concen-
trations of TCPP comparable, e.g., to those found in 
Iberian rivers (Gorga et al., 2015). Due to their high 
production volumes and extensive usage, there is 
growing concern about their fate and behavior in the 

aquatic environment (Cristale et  al., 2013; Pantelaki 
& Voutsa, 2019). Earlier studies have determined that 
some of them can have toxic effects on living organ-
isms (Cristale et  al., 2013; Reemtsma et  al., 2008; 
van der Veen & Boer, 2012). Since they are typically 
highly water-soluble, drinking water contamination is 
also of significant and current interest (Kim & Kan-
nan, 2018; Reemtsma et  al., 2008; van der Veen & 
Boer, 2012).

However, one substance that has only been recog-
nized as an indicative marker for industrial effluents 
in recent years is the synthetic intermediate triph-
enylphosphine oxide (TPPO) (Botalova et al., 2009). 
Since then, it has been recognized as an environmen-
tal contaminant in a few studies (Bollmann et  al., 
2012; Wang et  al., 2015). Nevertheless, according 
to Wang et  al. (2015), TPPO is harmful to aquatic 
organisms and may cause long-term adverse effects 
in the aquatic environment. Thus, special attention 
should be given to corresponding contaminations. In 
the Rur river, this phosphorous-containing compound 
has been detected at all sampling locations down-
stream of the WWTP Düren with up to 260 ng   L−1. 
Furthermore, several other plasticizers (e.g., phtha-
late-based plasticizers, NBBS, TXIB) and citrate 
esters have been detected with maximum concen-
trations between 110 ng   L−1 (NBBS) and 12 µg   L−1 
(triacetin). For instance, due to its properties (lack of 
odor, low toxicity), acetyl tributylcitrate (ATBC) is 
commonly used as a phthalate substitute in pharma-
ceutical drugs or cosmetics (Takeshita et  al., 2011). 
Nevertheless, Takeshita et al. (2011) suggest handling 
ATBC products with care as they may lead to altered 
metabolism of endogenous steroid hormones and pre-
scription drugs.

Especially the paper industry is quite specific for 
the emission situation of the Rur so that the identifica-
tion of corresponding industrial substances as triace-
tin, 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD), 
DIPN, or Irgacure 184 with partly high concentra-
tions up to 25 µg  L−1 is not surprising. However, the 
surfactant TMDD and the photoinitiator Irgacure 184 
have been detected in several different river systems, 
so that these substances are recommended for interna-
tional high-scale monitoring programs rather than for 
regional approaches intended to cover the real state of 
pollution (Schwarzbauer & Ricking, 2010). Botalova 
et al. (2011) suggested triacetin as a potential marker 
for paper production and printing inks because it has 
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been detected in the effluent of an industrial plant spe-
cialized in the manufacture of paper, special cosmetic 
and pharmaceutical products, as well as materials for 
printing inks. Furthermore, according to Dsikowitzky 
et  al. (2015), 2,2-dimethoxy-2-phenylacetophenone 
(DMPA) and diphenoxyethane are characteristic com-
pounds of wastewaters from modern paper produc-
tion sites. However, they are only reported in Ger-
man wastewater influents but were not detected in the 
receiving water. Nevertheless, in the Rur catchment, 
both substances were found with concentrations up to 
40 ng  L−1 (DMPA) and 90 ng  L−1 (diphenoxyethane) 
downstream of the WWTP Düren, questioning the 
input of insufficiently treated wastewaters of the 
paper industry. Generally, data on behavior and fate 
is still missing as these compounds have only scarcely 
been identified in the aquatic environment.

3.1.5  Miscellaneous Contaminants

In addition, further halogenated and sulfur-, nitro-
gen-, or oxygen-containing compounds have been 
detected in the Rur river with maximum concentra-
tions between LOQ and 1300  ng   L−1 that were not 
able to be assigned to specific emission sources. 
Some of them have already been described as emerg-
ing or even common contaminants of the aquatic 
environment (e.g., 2-methyl-2H-benzotriazole or 
quinoline). The N-heterocyclic quinoline is used in 
several industrial processes but also occurs naturally 
in the environment (Felczak et al., 2016). It is widely 
distributed and frequently detected in water and soil, 
but nevertheless, it shows a high ecotoxic potential 
(Felczak et al., 2016; Neuwoehner et al., 2009). How-
ever, the maximum concentration of quinoline in the 
Rur river was only 20 ng  L−1.

2,6-Di-tert-butyl-p-benzoquinone (BHT-qui-
none) is an oxidant and polymerization catalyst and 
also known as a transformation product of 2,6-di-
tert-butyl-4-methylphenol/butylated hydroxytolu-
ene (BHT) (Liu & Mabury, 2020; Ma et  al., 2006). 
These substances have been detected with maximum 
concentrations of 330 ng  L−1 (BHT) and 100 ng  L−1 
(BHT-quinone) (cf. Moldovan et  al., 2018). BHT is 
a synthetic phenolic antioxidant that is extensively 
used and has gained much attention. Recently, how-
ever, there has been growing concern about toxic 
effects, environmental pollution, and challenges for 
water reuse due to its metabolite BHT-quinone (Liu 

& Mabury, 2020; Wu et  al., 2019). Earlier studies 
have shown that it can cause DNA damage even at 
low concentrations (Nagai et al., 1993). However, fur-
ther knowledge about sources, fates, and behavior is 
still lacking.

Finally, a nitrogen-containing substance was 
detected in the Rur river with a maximum concen-
tration of around 1.3  µg   L−1. It has been identified 
as azobisisobutyronitrile (AIBN) or its degradation 
product tetramethylsuccinonitrile (TMSN). AIBN 
is a well-known and widely used radical initiator for 
various polymer and organic syntheses (Malow et al., 
2015; Yamashina et al., 2014). By releasing elemental 
nitrogen  N2, AIBN generates organic radical species 
(Yamashina et  al., 2014). Since this can be a ther-
mally introduced process, the mass spectra of AIBN 
and TMSN obtained by GC/MS cannot be differen-
tiated, as the hot gas chromatographic injection may 
produce the derivative from the original compound. 
However, these substances have different effects on 
the environment as TMSN shows acute toxic prop-
erties (Johannsen & Levinskas, 1986). Nevertheless, 
to the authors’ knowledge, up to now, both have not 
been identified as environmental contaminants. Thus, 
there is no information available regarding their 
behaviors and fates, and further research is required.

3.2  Emission Profiles and Spatial Distribution of 
Selected Contaminants

Another major objective of this study was to deter-
mine emission characteristics and patterns of the 
diverse contaminants to determine their specific envi-
ronmental behaviors. Therefore, emission profiles 
showing the load over the entire longitudinal section 
of the river were calculated and categorized. In this 
context, loads are clearly more informative than con-
centrations as changing river runoffs affect the com-
pound concentrations, but not the loads. Thus, spatial 
distributions along the river course can be assessed in 
detail. In principle, increasing loads indicate the input 
of a substance, e.g., by wastewater effluents, whereas 
decreasing loads show a removal from the water 
phase. Possible processes here are partitioning into 
other phases (e.g., as volatilization or adsorption to 
particulate matter) or degradation of the substance in 
the aquatic environment. Depending on the physico-
chemical properties of the compounds, this results in 
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emission profiles that allow an estimation and assess-
ment of the environmental behavior and fate.

According to the input of the individual sub-
stances, a general distinction was made between 
profiles showing local point and multiple to diffuse 
sources. As the data from 2020 shows the current 
exposure situation and variety of organic contami-
nants, the profiles are based on this campaign, while 
the next section provides a more detailed look at 
temporal variations. According to Dsikowitzky et al. 
(2015), the load (g  d−1) was calculated with the com-
pound concentration in water, C (ng   L−1), and the 
median river runoff, MQ  (m3  s−1), as follows:

Further river data used for calculation are given 
in Supplementary information. An overview of the 
detected concentrations and loads can be found in 
Table 1 and Table 2, respectively.

3.2.1  Emission Profiles Showing One Local Main 
Emitter

In general, cities and their corresponding WWTPs 
are often local hotspots resulting in higher concen-
trations and increasing loads at the specific location. 
Located directly on the Rur river, Düren (91,000 
inhabitants in 2020) is the biggest and most important 
agglomeration. However, regarding the entire catch-
ment, Aachen (249,000 inhabitants in 2020) repre-
sents the biggest city, located at the Wurm tributary 
which flows into the Rur river north of Heinsberg, 
close to the Dutch–German border. Thus, these cit-
ies hold also the largest WWTPs in this area with 
treated annual wastewater volumes of 28 million  m3 
(Aachen) and 21 million  m3 (Düren) (Wasserverband 
Eifel-Rur, 2017b). Especially, the WWTP Düren has 
an enormous influence on the river contamination as 
it discharges its effluents directly into the Rur itself. 
Many substances have only been identified at the cor-
responding sampling location (R11) and downstream. 
Nevertheless, they show differences in their environ-
mental behavior and stability. For some, the loads 
decrease rapidly after this point source, while for oth-
ers, they remain constant or even increase.

Significant Increase due to WWTPs and Subse‑
quently Decreasing Loads The sulfur-containing 

L = CxMQx(3600x24∕106).

compound methylphenylsulfone shows a clear 
increase in both concentrations and loads at the sam-
pling location downstream of the WWTP Düren 
(R11). At this location, loads of 25 g  d−1 were deter-
mined while it was not detected earlier (cf. Figure 2). 
Furthermore, directly at the next location R12 (9.5 km 
downstream of WWTP), the values were close to the 
quantification limit again. Another increase at sam-
pling location R14 can be traced back to the input of 
the WWTP Jülich (treated annual wastewater volume 
of 5 million  m3 in 2016). In this case, too, concentra-
tions and loads quickly decrease again. This indicates 
a dynamic environmental behavior, characterized by 
local emissions and rapid elimination as the result 
of, e.g., low stability, partitioning into other phases 
or rapid degradation. However, methylphenylsulfone 
is only rarely documented as a riverine contami-
nant, and corresponding studies are lacking. While 
Schwarzbauer and Heim (2005) also mentioned, 
among others, the emission pathway as a metabolite 
of the herbicide planavin, the present emission pro-
file implies either industrial or municipal sources. 
Similar emission profiles occurred for phenyl isocy-
anate, oxcarbazepine, or TPPO. For all of them, the 
WWTP Düren is the local main emitter. The inflow of 
smaller WWTPs or the Wurm and, thus, the effluents 
of the WWTP Aachen did not lead to any significant 
increases in loads. This could be attributed to the low 
environmental stability of the specific compounds 
that got obvious within the emission profiles. In par-
ticular, after the long flow path from the discharge of 
the WWTP Aachen into the Wurm to the confluence 
with the Rur (around 45 km), no additional high loads 
are thus to be expected.

Significant Increase due to WWTPs and Subse‑
quently Constant Loads This type of substance 
also shows a local main emitter (generally the WWTP 
Düren) and subsequently almost constant loads. Simi-
lar to methylphenylsulfone, the emission profile of 
N-phenylbenzenesulfonamide clearly shows inputs 
from wastewater treatment plants. As shown in Fig. 2, 
the loads remain about the same, which indicates 
higher stability and the relative persistence of this 
substance in the water phase. However, this substance 
is also practically unknown as an environmental 
contaminant.

Better-known examples of this emission type 
are organophosphate flame retardants. Detected 
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Table 2  Span of minimum and maximum loads (g  d−1) of organic compounds detected in Rur river water samples (taken in Novem-
ber 2020, March 2015, and November/December 2004)

No Compounds Detected loads (g  d−1)

November 2020 March 2015 November 2004 
December 2004

Pharmaceuticals
1 Carbamazepine 0–124 0–225 0–935
2 Oxcarbazepine 0–17 0 0
3 Caffeine 0–110 1–87 0–410
4 Chlorobutanol 0 0 0–3235
5 Iminostilbene 0 0 0–71
6 Lidocaine 0–125 0 0–259
7 Acetylsalicylic acid 0 0 0– < 24
8 Diclofenac 0 0 0
9 Tocopheryl acetate 0–48 0–11 0–348
Personal care products
10 N,N,N’,N’-Tetraacetylethylenediamine, TAED 0–59 0–247 0–164
11 4-Methoxycinnamic acid 2-ethylhexylester 0– < 8 0–20 11–450
12 Drometrizole 0–1 0 0–126
13 Galaxolide 0–56  < 1–113 3–401
14 Tonalide 0–5  < 1–12  < 1–71
15 4-Oxoisophorone 1–12 1–63 6–204
16 Lilial 0– < 8 0–41 0–24
17 Viridine 0 0 0– < 24
18 Dihydromethyljasmonate 3–29 3–92 0–55
19 Cineol 0 0–55 0–377
20 Coumarin 0–19 0–14 0
21 4-tert-Butylcyclohexanone 0–9 0 0–41
22 Benzophenone  < 1–18 0–113 2–305
23 Isopropyllaurate 22–271 116–24,231 3–593
24 Isopropylpalmitate 3–48 7–2372 9–745
25 Methyl dehydroabietate 122–3078 76–25,386 0–36
Pesticides and biocides
26 N,N-Diethyltoluamide, DEET 0–27 0–12 0–47
27 4,4’-Dichlorobenzophenone, DBP 0 0 0–477
Technical additives, plasticizers, and other industrial compounds
28 Di-iso-propylnaphthalenes, DIPN 0– < 8 0–105 1–54
29 N-Butylbenzenesulfonamide, NBBS 0–67 0–13 0–118
30 2,4,4-Trimethylpentane-1,3-dioldi-iso-butyrate, TXIB 3–42 25–419 2–66
31 2,4,7,9-Tetramethyl-5-decyne-4,7-diol, TMDD 4–14,294 32–83,863 1–4027
32 (1-Hydroxycyclohexyl)phenylketone, Irgacure 184 0–16 8–1967 0– < 24
33 Triethylcitrate 1–70 0–351 0–94
34 Acetyl tributylcitrate 0–48 0–774  < 1–82
35 Triacetin 234–6579 39–2474 0–197
36 Triethylphosphate 0–158 0–281 0–366
37 Tributylphosphate 0–13 0–5638 2–1717
38 Tris(2-chloroethyl)phosphate, TCEP 0–8 0–43 0–130
39 Tris(chloropropyl)phosphate, TCPP  < 1–68 0–769 0–74
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compounds included TCEP, TCPP, and TEP, which 
all show similar profiles having the WWTP Düren 
as the most important emission source. These three 
substances all exhibit a high water solubility (TCEP: 

7 g  L−1, TCPP: 1.2 g  L−1, TEP: 50 g  L−1) and a rather 
low  logKOW (TCEP: 1.63, TCPP: 2.89, TEP: 0.39). 
Thus, they are commonly detected in the aqueous 
phase (Kim & Kannan, 2018; Pantelaki & Voutsa, 

Table 2  (continued)

No Compounds Detected loads (g  d−1)

November 2020 March 2015 November 2004 
December 2004

40 Triphenylphosphate 0 0–105  < 1–12
41 Triphenylphosphine oxide 0–206 0–73 0
42 Dimethyl phthalate 2–52 5–995 0–24
43 Diethyl phthalate 12–117 0–3233 45–1644
44 Di-iso-butyl phthalate 19–370 51–3375 8–165
45 Di-n-butyl phthalate 33–970 47–1562 29–850
46 Benzyl butyl phthalate 0–12 0–143 7–386
47 Bis(2-ethylhexyl) phthalate, DEHP 105–1060 56–6245 0–827
48 2,2-Dimethoxy-1,2-diphenylethanone, DMPA 0–24 0 0
49 Diphenoxyethane 0–6 0–18 0–104
Miscellaneous contaminants
Halogenated compounds
50 Dichloroaniline 0– < 8 0 0–24
51 1,1,2,2-Tetrachloroethane 0–253 0– < 14 0–45
52 4-Bromoanisole 0 0 1–197
53 2,4-Dibromoanisole 0 0 0– < 24
54 2,4,6-Tribromoanisole 0 0  < 1– < 24
S-containing compounds
55 Diphenylsulfone 0–14 0–104 0
56 Methylphenylsulfone 0–25 0 0–45
57 Benzothiazole 0–6 0–18  < 1–47
58 2-Methylthiobenzothiazole 0–42 0–63 0– < 24
59 N-Phenylbenzenesulfonamide 0–25 0– < 14 0–24
60 N-Ethyl-o-toluenesulfonamide 0–111 0– < 14 0–80
61 N-Ethyl-p-toluenesulfonamide 0–149 0–93 0–288
62 2-Aminodiphenylsulfone 0 0 0– < 24
N-containing compounds
63 2-Methylbenzotriazole 0–217 0–18 0–71
64 Quinoline 0–15 0–15  < 1–24
65 Quinoxaline 0 0 0– < 20
66 2,3-Diethyl-2,3-dimethylsuccinonitrile 0– < 8 0– < 14 0–389
67 Phenylisocyanate 0–129 0 0
68 Azobisisobutyronitrile, AIBN/Tetramethylsuccinonitrile, TMSN 0–756 0–155 0–172
69 N,N-Dibutylformamide 26–432 3–989 7–363
O-containing compounds
70 2,6-Di-tert-butyl-1,4-benzoquinone, BHT-quinone 0–10 1–118 0–31
71 Butylated hydroxytoluene, Ionole 1–13 0–435 2–75
72 1,3,3-Trimethyloxindole 0–16 0–16 0
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2019). Furthermore, TCEP and TCPP show a high 
persistence and do not degrade during wastewater 
treatment (Kim et al., 2017; Reemtsma et al., 2006). 
This clarifies both their introduction and the asso-
ciated emission profiles. Similar conclusions also 
apply to TMDD (water solubility 1.7 g   L−1,  logKOW 
2.8), which, however, was detected with significantly 

higher concentrations and loads (up to 24 µg  L−1 and 
14  kg   d−1 in 2020). Such high concentrations have 
already been attributed to its use in the paper industry 
which also occurs along the Rur river (Dsikowitzky 
et al., 2015; Guedez & Püttmann, 2011). Guedez and 
Püttmann (2011) have also shown that its removal 
efficiency during wastewater treatment varies from 33 

Fig. 2  Wastewater treatment plants in the Rur catchment and spatial distribution of carbamazepine, N-phenylbenzenesulfonamide, 
and methylphenylsulfone loads (g  d−1) at six monitoring stations on the Rur. Sampling took place in November 2020

33   Page 14 of 24 Water Air Soil Pollut (2022) 233: 33



1 3
Vol.: (0123456789)

to 68% and that its biodegradability was only 25.4% 
during 57 days using the OECD Tests Guide-line 302 
A. These properties, therefore, also indicate certain 
stability and transport in river water.

3.2.2  Emission Profiles Showing Multiple 
Anthropogenic Emitters

Emission Profile with Increasing Loads This type 
includes emission profiles of substances that show 
various emission sources with strong variations of 
concentrations but increasing loads with the course 
of the river. In particular, many of the detected fra-
grances show a corresponding environmental behav-
ior (galaxolide, dihydromethyljasmonate, 4-oxoiso-
phorone, 4-tert-butylcyclohexanone, coumarin). The 
main emitter here is again the WWTP in Düren, but 
there are also other emission sources. In the case of 
dihydromethyljasmonate, the highest concentrations 
(up to 40  ng   L−1 at R1) were detected in the upper 
reaches of the river. In this area, there are smaller 
WWTPs discharging directly into the Rur and tribu-
tary streams. However, the associated loads are very 
low due to the low river runoff in this area (6 g   d−1 
at R1). Schwarzbauer and Ricking (2010) identified 
dihydromethyljasmonate in several German and Euro-
pean rivers with the same multiplicity as the common 
synthetic musk compound galaxolide. According to 
its widespread distribution and the emission profile 
in the Rur river itself, dihydromethyljasmonate shows 
elevated stability and low degradation potential in the 
aqueous environment. Nowadays, it is therefore con-
firmed as a present environmental contaminant (Dey 
et al., 2019).

As visible in Fig.  2, increasing loads were also 
detected for the antiepileptic drug carbamazepine. 
The two largest emission sources can be assigned to 
the WWTPs Düren and Aachen. Here, the influence 
of the large volume of wastewater from Aachen can 
be seen despite its longer flow distance to the sam-
pling point (Wurm tributary). This leads to conclu-
sions about the stability of carbamazepine in the 
water phase. It exhibits a low removal efficiency at 
WWTPs as well as a low degradation potential and 
high persistence in the environment so that it has 
been detected in numerous studies worldwide (Clara 
et  al., 2004; Durán-Álvarez et  al., 2015; Leclercq 
et  al., 2009). Interestingly, the structurally similar 

oxcarbazepine shows steadily decreasing loads after 
its first introduction at the WWTP Düren, indicating 
lower stability, degradation, or partitioning into other 
compartments. According to Leclercq et  al. (2009), 
oxcarbazepine shows higher removal efficiencies in 
WWTPs than carbamazepine, and according to Kai-
ser et  al. (2014), it is biodegradable. Furthermore, 
the toxicological evaluation suggested a reduced 
(geno-)toxicity compared to carbamazepine (Brezina 
et  al., 2017). Thus, the environmental behavior of 
these structurally similar substances can be well 
differentiated.

Emission Profile with Varying Loads In contrast 
to the previously mentioned substances, there is no 
clear increase in loads of the plasticizer 2,2,4-trime-
thyl-1,3-pentanediol diisobutyrate (TXIB) along the 
river course. Nevertheless, it shows multiple emission 
sources. TXIB was also identified in a high multiplic-
ity in the European rivers investigated by Schwarz-
bauer and Ricking (2010). The emission profile of the 
Rur river shows a ubiquitous presence with varying 
loads, but peaks that can clearly be assigned to waste-
water treatment plants of different dimensions (cf. 
Figure 3). While the large plants in Düren and Jülich 
also treat industrial wastewater, the smaller ones treat 
mainly municipal wastewater revealing a municipal 
origin of TXIB. Also, according to Dsikowitzky et al. 
(2014a), it is a typical constituent of municipal sew-
age and is not readily biodegradable. However, over-
all, it can be assigned to a non-specific and diffuse 
origin as it was present at every sampling location. 
Very similar profiles with varying loads, but assign-
able main emission sources, were also observed for 
isopropyl laurate and N,N-dibutylformamide.

3.2.3  Emission Profiles Showing no Specific Emitters

Many substances of this profile type show a ubiq-
uitous appearance. In contrast to the previously 
described profiles of, e.g., TXIB, no clear emis-
sion sources can be assigned. Examples of sub-
stances showing these emission profiles are vari-
ous phthalates. These were detected at all sampling 
locations in varying concentrations and loads 
without any clear trend being identifiable. Compa-
rable dynamic profiles were also found in earlier 
investigations from the Rhine river (Schwarzbauer 
& Heim, 2005). As phthalates are well-known 
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environmental contaminants, there are several stud-
ies on their introduction, fate, and toxicity (Fromme 
et al., 2002; Staples et al., 1997). Due to their high 
production volume and wide distribution, they are 
nowadays ubiquitous and among the most common 
compounds that humans come in contact with (Net 
et  al., 2015). Even if their exposure does not lead 
to bioaccumulation, some phthalates are of concern 
due to their developmental and/or reproductive tox-
icity (Heudorf et al., 2007).

The emission profile of the plasticizer triacetin 
also shows no clearly recognizable trend. Very high 
concentrations were detected in both the upper and 
middle course (12  µg   L−1 and 8.1  µg   L−1, respec-
tively), with the associated loads only showing 
a peak in the middle course. This peak is located 
near to the cities of Düren and Jülich and could 
possibly be attributed to the paper industry located 
there. However, due to the ubiquitous occurrence in 
this river system, the substance is not suitable as a 
marker for the paper industry at the Rur river.

Quinoline also shows a highly interesting emis-
sion profile having no clear emission sources. Its 
concentrations and loads are continuously increas-
ing along the river’s longitudinal section. This sug-
gests a biogenic input.

3.3  Temporal variations

Another objective of this study was to investigate 
temporal variations in organic contamination and to 
determine whether it has decreased in recent dec-
ades. The general conditions regarding population 
development, water demand and effluent produc-
tion have remained almost the same over the period 
under consideration. Nevertheless, since the water 
compartment, in particular, is highly dynamic, these 
samplings are only to be understood as snapshots of 
contamination. Nevertheless, general trends can be 
derived if, for example, a substance shows similar 
emission profiles over several campaigns. This is the 
only way to make reliable statements about environ-
mental behavior and fate. Overall, 64 contaminants 
were identified in 2004, 54 contaminants in 2015, 
and 59 contaminants in 2020. Thus, the detected con-
taminants show a high structural diversity in all sam-
pling years. Due to new developments, but also new 
findings regarding the resistance and toxicity of the 
contaminants, the overall pollution load of the river 
changes, but nevertheless, the high diversity remains.

Especially, brominated and some chlorinated com-
pounds (e.g., bromoanisole or chlorobutanol) were 
not detected in recent campaigns of 2015 and 2020. 
Due to their partly high environmental relevance, 
this can possibly be attributed to restrictions on use 

Fig. 3  Spatial distribu-
tion of TXIB loads (g  d−1) 
over the entire river course 
with peak values at various 
wastewater treatment plant 
discharges (Düren, Jülich, 
Aachen) and tributaries 
(Kall, Wurm). Sampling 
took place in November 
2020. The sampling sites 
are indicated in Fig. 1
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or even bans (Huang et  al., 2014; Reemtsma et  al., 
2008). Furthermore, for a large number of substances, 
significantly lower loads were determined in 2020 
than in the previous samplings. These include, for 
example, the substances galaxolide, tonalide, lilial, 
4-methoxycinnamic acid 2-ethylhexylester, 2,3-die-
thyl-2,3-dimethylsuccinonitrile, and DIPN. While 
in 2004, galaxolide loads of up to 401  g   d−1 were 

found; the maximum load in 2015 was 113  g   d−1, 
and in 2020 it was even only 56 g  d−1. Nevertheless, 
due to its persistence, the emission profiles are very 
similar with relatively constantly increasing loads 
(cf. Figure  4). This indicates a lower input into the 
water body, either due to a reduced use or higher 
removal efficiencies of the respective WWTPs. The 
other before-mentioned substances were no longer 

Fig. 4  Wastewater treatment plants in the Rur catchment and temporal as well as the spatial distribution of galaxolide loads (g  d−1) 
at six monitoring stations on the Rur over three different sampling campaigns (please note the logarithmic illustration of the x-axis)
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detected beyond doubt in 2020. While in 2015, they 
were detected only sporadically and mostly with con-
centrations below the limit of quantification (except 
for DIPN); in 2004, they appeared in part with sig-
nificantly higher concentrations and loads (4-methox-
ycinnamic acid 2-ethylheylester: 450  g   d−1; 2,3-die-
thyl-2,3-dimethylsuccinonitrile: 389  g   d−1; tonalide: 
71 g  d−1). DIPN was detected frequently in both 2004 
and 2015 (maximum loads of 54 g  d−1 and 99 g  d−1), 
but only sporadically and below the limit of quantifi-
cation in 2020.

In addition to substances with lower loads, nearly 
constant (e.g., for carbamazepine, caffeine, and tri-
ethyl citrate) or even higher loads also occurred for 
some substances (e.g., for TMDD, triacetin, and 
AIBN/TMSN). For TMDD, the values were signifi-
cantly higher both in 2015 and 2020. In 2015, the 
maximum load was reached after the discharge of 
the WWTP Jülich (84 kg   d−1) and in 2020 after the 
WWTP Düren (14 kg  d−1). Thus, the local main emit-
ter differs, but in both locations, it can be traced back 
to the paper industry located there. In general, the 
booming online trade and the associated increase in 
the volume of packaging have led to an increase in 
the production capacity of the paper producers in the 
catchment area (Kaleß et  al., 2020). Therefore, this 
explains higher loads and increased detection of sub-
stances from paper production in the river water.

2-Methylthiobenzothiazole was also detected more 
frequently in both recent campaigns. In 2004, it was 
only found at sampling locations close to the mouth 

and below the quantification limit. In 2015 and 2020, 
the WWTP Düren was the main emitter resulting in 
loads of 40 g  d−1 and 42 g  d−1, respectively. In 2015, 
however, the inflow of the Wurm also led to a high 
load (63 g  d−1), which was not the case in 2020.

Moreover, the substances DMPA, phenyl isocy-
anate, and oxcarbazepine have only been detected 
in 2020. They all occur only downstream of the 
WWTP Düren and are thus discharged by industrial 
(DMPA, phenyl isocyanate) and municipal (oxcarbaz-
epine) wastewater effluents there. DMPA, oxcarbaz-
epine, and phenyl isocyanate occurred with loads of 
24 g  d−1, 17 g  d−1, and 129 g  d−1, respectively. Oxcar-
bazepine was first approved in Germany in 2000 
(Flesch, 2004). However, studies on tolerability only 
followed in subsequent years, so the detection in 2020 
may be due to an increased usage of this pharmaceu-
tical (Freidel et al., 2007; Steinhoff, 2009).

Looking specifically at the courses of the emission 
profiles and not just the loads, the greatest variations 
were noticeable for the influence of the Wurm tribu-
tary. Although the largest WWTP in the catchment 
area discharges into it, the inflow of the Wurm did 
not lead to any significant increase in concentration 
and load in 2020 for most of the identified substances. 
In 2004 and 2015, this tributary had the character of  
a main point source. For example, when considering 
the entire emission profile, the inputs of 4-oxoiso-
phorone were highest at this location, with loads of 
204 g  d−1 in 2004 and 57 g  d−1 in 2015. As shown in 
Fig. 5, this influence was no longer evident in 2020. 

Fig. 5  Temporal and 
spatial distribution of 
4-oxoisophorone loads (g 
 d−1) over the entire river 
course with peak values at 
the confluence of the Wurm 
tributary, into which the 
effluents of the wastewater 
treatment plant in Aachen 
are discharged. This influ-
ence declined from 2004 
(gray) to 2015 (orange) and 
is no longer discernible in 
2020 (blue). The sampling 
sites are indicated in Fig. 1
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However, the detected concentrations and loads of 
4-oxoisophorone were generally significantly lower 
in 2020 (max. 12 g   d−1), but its ubiquitous presence 
remained. A reason for the reduced influence of the 
Wurm could be the large-scale ozone plant at the 
WWTP Aachen, which has been in operation since 
2018. Initial investigations as well as the previous 
pilot operation already showed promising results 
regarding the elimination of trace substances (on 
average 80%) and the formation of transformation 
products (Brückner et  al., 2018). However, a final 
report on the effects and optimisation of this plant in 
operation is still pending.

It is important to include such concrete measures 
in consideration of organic contamination as well 
as temporal and spatial changes per se because the 
occurrence of substances in a river system depends 
on many different factors and parameters. Only with 
such detailed consideration of changing emission pro-
files and behaviors, a holistic assessment and evalua-
tion is possible.

4  Conclusions

GC/MS non-target screenings revealed the presence 
of a wide spectrum of low-molecular-weight organic 
compounds showing a high structural diversity as 
well as a high diversity in environmental behaviors. 
Many contaminants are of anthropogenic origin and 
used as, e.g., pharmaceuticals, personal care products, 
or in industrial processes. Based on the emission pro-
files, initial assessments are made about the stabil-
ity and environmental behavior of the contaminants. 
These largely coincide with previously published 
research results. For some substances, however, fur-
ther investigations are still necessary, as they have 
rarely been considered as environmentally relevant 
contaminants (e.g., AIBN/TMSN, BHT-quinone, 
oxcarbazepine, or methylphenylsulfone).

Their environmental pathways were mainly traced 
back to effluents of wastewater treatment plants. 
Especially the treatment plant in Düren showed a 
high input and influence on the chemical diversity in 
the river system as the diversity and loads of organic 
contaminants are clearly higher downstream of this 
WWTP than in the river upstream. However, this can 
be attributed to the diverse influents of the wastewa-
ter treatment plant which collects municipal as well 

as industrial wastewaters. The paper industry plays a 
major role here so that corresponding contaminants as 
TMDD or diphenoxyethane were also detected, partly 
with very high loads. Interestingly, the effluents of 
the even larger wastewater treatment plant in Aachen 
(which discharges into the Wurm tributary) no longer 
have a major impact on the contamination of the 
Rur river in 2020 compared to earlier investigations 
(2004 and 2015). This is probably due to an improved 
removal performance from a new ozonation system. 
In general, many decreases in loads and concentra-
tions were observed over the three sampling cam-
paigns and the corresponding 16-year time window. 
However, higher loads were also detected in indi-
vidual cases, which indicate increased consumption 
(e.g., in the paper industry). Over the years, the over-
all composition of the contamination load in the Rur 
river has changed slightly, but nevertheless, the high 
chemical diversity and structural variety remained. 
This also shows that regular surveys of river systems 
are necessary to identify current contamination and 
take appropriate action if necessary.

Overall, a detailed consideration such as that 
undertaken in this study is necessary as the occur-
rence of substances in a river system depends on 
many different factors. For a holistic assessment of 
environmental behavior, however, not only the sam-
pling locations and associated development of emis-
sion profiles over the course of the river must be 
considered but also temporal variations as well as 
associated measures (e.g., technical and technologi-
cal development of WWTPs or bans on certain sub-
stances). Such a multi-parameter scenario of chang-
ing emission profiles and environmental behavior 
provides an important basis for the mitigation and 
reduction of organic pollutants in our environment.
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