Skip to main content

Advertisement

Log in

A Comprehensive Review of the Available Media and Approaches for Phosphorus Recovery from Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Phosphorus (P) is an essential element for all living organisms, and plays a major role in many physiological processes. However, in recent years, excessive amounts of P discharged into aquatic environments have become one of the main causes of water eutrophication, which has negative effects on water quality. Therefore, it is desirable to implement technologies to recover P from P-containing solutions to maintain the natural P cycle and reduce the level of P entering surface waters. This work reviews the latest studies on P recovery technologies, with a specific focus on current approaches and treatment media including seed materials, microorganisms, wetland plants, and membrane materials. This review also investigates the potential for P recovery, the purity of recovered products, the technical and economic feasibility of different approaches, and the resulting ecological and economic benefits. Building upon the outcomes of previous studies, technological innovations in P recovery media and approaches were considered to evaluate their advantages, difficulties, and inherent limitations. This comprehensive review provides the basis for additional research and the future development of P recovery in response to the increasing severity of eutrophication and the imminent depletion of P reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelhamid, A. M., & Gabr, A. A. (1991). Evaluation of water hyacinth as a feed for ruminants. Archives of Animal Nutrition, 41(7–8), 745–756.

    Google Scholar 

  • Abdelraouf, N., Alhomaidan, A. A., & Ibraheem, I. B. M. (1995). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 31(3), 205–210.

    Google Scholar 

  • Abdulsada, Z. K. (2014). Evaluation of microalgae for secondary and tertiary wastewater treatment. Department of Civil and Environmental Engineering-Carleton University/Ottawa-Carleton Institute for Environmental Engineering, Ottawa.

  • Abis, K. L., & Mara, D. D. (2005). Primary facultative ponds in the UK: the effect of operational parameters on performance and algal populations. Water Science & Technology A Journal of the International Association on Water Pollution Research, 51(12), 61–67.

    Article  CAS  Google Scholar 

  • Abma, W. R., Driessen, W., Haarhuis, R., & van Loosdrecht, M. C. (2010). Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Science & Technology A Journal of the International Association on Water Pollution Research, 61(7), 1715–1722.

    Article  CAS  Google Scholar 

  • Adey, W. H., Kangas, P. C., & Mulbry, W. (2011). Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Bioscience, 61(6), 434–441.

    Article  Google Scholar 

  • Adhikari, U., Harrigan, T., & Reinhold, D. M. (2015). Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater. Ecological Engineering, 78, 6–14.

    Article  Google Scholar 

  • Aida, T. M., Nonaka, T., Fukuda, S., Kujiraoka, H., Kumagai, Y., Maruta, R., Ota, M., Suzuki, I., Watanabe, M. M., & Inomata, H. (2016). Nutrient recovery from municipal sludge for microalgae cultivation with two-step hydrothermal liquefaction. Algal Research, 18, 61–68.

    Article  Google Scholar 

  • Ali, M. I. (2005). Struvite crystallization from nutrient rich wastewater-PhD thesis. (2005) phd thesis, James Cook University.

  • Almatouq, A., & Babatunde, A. O. (2016). Concurrent phosphorus recovery and energy generation in mediator-less dual chamber microbial fuel cells: mechanisms and influencing factors. International Journal of Environmental Research & Public Health, 13(4), 375.

    Article  CAS  Google Scholar 

  • Angel, R. (2010). Removal of phosphate from sewage as amorphous calcium phosphate. Environmental Technology, 20(7), 709–720.

    Article  Google Scholar 

  • Battistoni, P. (2004). Phosphorus recovery trials in Treviso, Italy-Theory modelling and application. In: Phosphorus in environmental technologies, principles and applications. Valsami-Jones (pp. 428–469). London: IWA Publishing.

  • Battistoni, P., Pavan, P., Prisciandaro, M., & Cecchi, F. (2000). Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants. Water Research, 34(11), 3033–3041.

    Article  CAS  Google Scholar 

  • Bauer, P. J., Szogi, A. A., & Vanotti, M. B. (2007). Agronomic effectiveness of calcium phosphate recovered from liquid swine manure. Agronomy Journal, 99(5), 1352–1356.

    Article  Google Scholar 

  • Berg, U., Donnert, D., Weidler, P. G., Kaschka, E., Knoll, G., & Nüesch, R. (2006). Phosphorus removal and recovery from wastewater by tobermorite-seeded crystallisation of calcium phosphate. Water Science & Technology A Journal of the International Association on Water Pollution Research, 53(3), 131–138.

    Article  CAS  Google Scholar 

  • Blank, L. M. (2012). The cell and p: from cellular function to biotechnological application. Current Opinion in Biotechnology, 23(6), 846–851.

    Article  CAS  Google Scholar 

  • Bojcevska, H., Raburu, P. O., & Tonderski, K. S. (2006). Free water surface wetlands for polishing sugar factory effluent in western kenya-macrophyte nutrient recovery and treatment results. In Diaz, V., Vymazal J. (eds.), Proceedings of the 10th International Conference on Wetland Systems for Water Pollution Control, 23–29 September 2006 (pp. 709–718). Lisbon: Ministerio de Ambiente, do Ordenamento do Territori e do Desenvolvimento Regional (MAOTDR) and IWA.

  • Bouchaib, E. H. (2009). Rethinking natural, extensive systems for tertiary treatment purposes: the high-rate algae pond as an example. Desalination & Water Treatment, 4(1–3), 128–134.

    Google Scholar 

  • Boyd, C. E. (1982). Utilization of aquatic plants (p. 107). New York: UNIPUB.

    Google Scholar 

  • Cai, W., Zhang, B. G., Jin, Y. X., Lei, Z. F., Feng, C. P., Ding, D. H., Hu, W. W., Chen, N., & Suemura, T. (2013). Behavior of total phosphorus removal in an intelligent controlled sequencing batch biofilm reactor for municipal wastewater treatment. Bioresource Technology, 132(3), 190–196.

    Article  CAS  Google Scholar 

  • Camargo Valero, M. A., Mara, D. D., & Newton, R. J. (2010). Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass. Water Science & Technology A Journal of the International Association on Water Pollution Research, 61(4), 1027–1034.

    Article  CAS  Google Scholar 

  • Capdevielle, A., Sýkorová, E., Béline, F., & Daumer, M. L. (2016). Effects of organic matter on crystallization of struvite in biologically treated swine wastewater. Environmental Technology, 37(7), 880–892.

    Article  CAS  Google Scholar 

  • Chen, X., Kong, H., Deyi, W. U., Wang, X., & Lin, Y. (2009). Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal. Journal of Environmental Science, 21(5), 575–580.

    Article  CAS  Google Scholar 

  • Cheng, J. J., & Stomp, A. M. (2009). Growing duckweed to recover nutrients from wastewater and for production of fuel ethanol and animal feed. Clean-soil Air Water, 37(1), 7–26.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2013). Constraints to commercialization of algal fuels. Journal of Biotechnology, 167(3), 201–214.

    Article  CAS  Google Scholar 

  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2), 292–305.

    Article  Google Scholar 

  • Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science & Technology A Journal of the International Association on Water Pollution Research, 59(6), 1069–1076.

    Article  CAS  Google Scholar 

  • Cusick, R. D., & Logan, B. E. (2012). Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technology, 107(2), 110–115.

    Article  CAS  Google Scholar 

  • Cusick, R. D., Ullery, M. L., Dempsey, B. A., & Logan, B. E. (2014). Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Research, 54(5), 297–306.

    Article  CAS  Google Scholar 

  • D’Aiuto, P. E., Patt, J. M., Albano, J. P., Shatters, R. G., & Evens, T. J. (2015). Algal turf scrubbers: periphyton production and nutrient recovery on a south florida citrus farm. Ecological Engineering, 75(4), 404–412.

    Article  Google Scholar 

  • Dai, H., Lu, X., Peng, Y., Zou, H., & Shi, J. (2016). An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. Chemosphere, 165, 211–220.

    Article  CAS  Google Scholar 

  • Dai, H., Lu, X., Peng, Y., Yang, Z., & Zhsssu, H. (2017). Effects of supersaturation control strategies on hydroxyapatite (HAP) crystallization for phosphorus recovery from wastewater. Environmental Science & Pollution Research, 24(6), 5791–5799.

    Article  CAS  Google Scholar 

  • Dam, A. M. V., & Ehlert, P. A. I. (2007). P-availability in organic fertilizers. Praktijkonderzoek Plant & Omgeving BV.

  • De-bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research, 38(19), 4222–4246.

    Article  CAS  Google Scholar 

  • Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Bruggen, B. V. D., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global phosphorus scarcity and Pfull-scale P-recovery techniques: a review. Critical Reviews in Environmental Science & Technology, 45(4), 336–384.

    Article  CAS  Google Scholar 

  • Division, M. D. S., 1983. Technical guidance manual for performing wasteload allocations, Book IV: Lakes and Impoundments. Eutrophication.

  • Dockhorn, T. (2009). About the economy of phosphorus recovery. In: International Conference on Nutrient Recovery from Wastewater Streams, Vancouver, Canada, IWA publishing (pp. 145–158), London, UK.

  • Donnert, D., & Salecker, M. (1999). Elimination of phosphorus from waste water by crystallization. Environmental Technology, 20(7), 735–742.

    Article  CAS  Google Scholar 

  • Doyle, J. D., & Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36(16), 3925–3940.

    Article  CAS  Google Scholar 

  • Driver, J., Lijmbach, D., & Steen, I. (1999). Why recover phosphorus for recycling, and how? Environmental Technology, 20(7), 651–662.

    Article  CAS  Google Scholar 

  • Duan, J. M., Cao, Y. L., & He, B. Y. (2010). Phosphates recovery through hydroxyapatite crystallization from wastewater using converter slag as a seed crystal. International Conference on Bioinformatics and Biomedical Engineering (pp. 1–4). IEEE.

  • Eggers, E., Dirkzwager, A. H., & Honing, D. H. V. (1991). Full-scale experiences with phosphate crystallization in a crystalactor. Blood, 57(3), 545–552.

    Google Scholar 

  • Egle, L., Rechberger, H., & Zessner, M. (2015). Overview and description of technologies for recovering phosphorus from municipal wastewater. Resources Conservation & Recycling, 105, 325–346.

    Article  Google Scholar 

  • Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522–542.

    Article  CAS  Google Scholar 

  • Ehrlich, P. (1998). The loss of diversity. Biodiversity Published by National Academy Press, 14, 21–27.

    Google Scholar 

  • Fenu, C., Martin, D., Reichel, L., & Rodriguez, G. (2013). Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Comprehensive Reviews in Food Science & Food Safety, 12(6), 662–678.

    Article  CAS  Google Scholar 

  • Fu, W., & Li, L. (2004). Mechanism and method for membrane washing on a membrane bioreactor. Techniques and Equipment for Environmental Pollution Control, 5(8), 43–46.

  • Garnier, J., Lassaletta, L., Billen, G., Romero, E., Grizzetti, B., Némery, J., Le, T. P. Q., Pistocchi, C., Aissa-Grouz, N., Luu, T. N. M., Vilmin, L., & Dorioz, J. M. (2015). Phosphorus budget in the water-agro-food system at nested scales in two contrasted regions of the world (ASEAN-8 and EU-27). Global Biogeochemical Cycles, 29(9), 1348–1368.

    Article  CAS  Google Scholar 

  • Gaterell, M. R., Gay, R., Wilson, R., Gochin, R. J., & Lester, J. N. (2000). An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets. Environmental Technology, 21(9), 1067–1084.

    Article  CAS  Google Scholar 

  • Gell, K., Ruijter, F. J. D., Kuntke, P., & Graaff, M. D. (2011). Safety and effectiveness of struvite from black water and urine as a phosphorus fertilizer. Journal of Agricultural Science (1916–9752), 3(3), 67–80.

    Google Scholar 

  • Gilbert, N. (2009). The disappearing nutrient. Nature, 461(7265), 716–718.

    Article  CAS  Google Scholar 

  • GMB. (2010). SaNiPhos. Obheusden, Netherlands, www.saniphos.eu.

  • Gu, C., Zhang, C., Li, Y., & Zhou, Q. (2015). Phosphorus recovery from sludge fermentation broth by cow-bone powder-seeded crystallization of calcium phosphate. Chinese Journal of Environmental Engineering, 9(7), 3127–3133.

    CAS  Google Scholar 

  • Guan, W., Ji, F., Chen, Q., Yan, P., & Zhang, Q. (2013). Preparation and phosphorus recovery performance of porous calcium–silicate–hydrate. Research of Environmental Sciences, 39(2), 1385–1391.

    CAS  Google Scholar 

  • Han, L., Randhir, T. O., & Huang, M. (2017). Design and assessment of stream–wetland systems for nutrient removal in an urban watershed of china. Water Air & Soil Pollution, 228(4), 139.

    Article  CAS  Google Scholar 

  • Hasan, M. R., & Chakrabarti, R. (2009). Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. Fao Fisheries & Aquaculture Technical Paper, (pp. 2071–7071).

  • Hau, N. T., Chen, S. S., Nguyen, N. C., Huang, K. Z., Ngo, H. H., & Guo, W. (2014). Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. Journal of Membrane Science, 455, 305–311.

    Article  CAS  Google Scholar 

  • Havukainen, J., Nguyen, M. T., Hermann, L., Horttanainen, M., Mikkilä, M., Deviatkin, I., & Linnanena, L. (2016). Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Management, 49, 221–229.

    Article  CAS  Google Scholar 

  • Heckenmüller, M., Narita, D., & Klepper, G. (2014). Global availability of phosphorus and its implications for global food supply: an economic overview. Kiel Working Papers.

  • Hirooka, K., & Ichihashi, O. (2013). Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation. Bioresource Technology, 137(6), 368–375.

    Article  CAS  Google Scholar 

  • Hirota, R., Kuroda, A., Kato, J., & Ohtake, H. (2010). Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. Journal of Bioscience and Bioengineering, 109(5), 423–432.

    Article  CAS  Google Scholar 

  • Huang, L. Y., Lee, D. J., & Lai, J. Y. (2015). Forward osmosis membrane bioreactor for wastewater treatment with phosphorus recovery. Bioresource Technology, 198, 418–423.

    Article  CAS  Google Scholar 

  • Human, L. R. D., Snow, G. C., Adams, J. B., Bate, G. C., & Yang, S. C. (2015). The role of submerged macrophytes and macroalgae in nutrient cycling: a budget approach. Estuarine Coastal & Shelf Science, 154, 169–178.

    Article  CAS  Google Scholar 

  • Husnain, T., Mi, B., & Riffat, R. (2015). A combined forward osmosis and membrane distillation system for sidestream treatment. Journal of Water Resource & Protection, 7(14), 1111–1120.

    Article  CAS  Google Scholar 

  • Ichihashi, O., & Hirooka, K. (2012). Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresource Technology, 114(2), 303–307.

    Article  CAS  Google Scholar 

  • Ishikawa, H., Shimamura, K., Sawai, K., & Tanaka, T. (2004). A2-tank type fluidized bed MAP crystallisation reactor for effective phosphorus recovery. In: Proceedings of the International Conference on Struvite: its role in phosphorus recovery and reuse, Cranfield (UK).

  • Jaffer, Y., Clark, T. A., Pearce, P., & Parsons, S. A. (2002). Potential phosphorus recovery by struvite formation. Water Research, 36(7), 1834–1842.

    Article  CAS  Google Scholar 

  • Jang, H., & Kang, S. H. (2002). Phosphorus removal using cow bone in hydroxyapatite crystallization. Water Research, 36(7), 1324–1330.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., & Wu, L. (2010). Preliminary study of calcium silicate hydrate (tobermorite) as crystal material to recovery phosphate from wastewater. Desalination & Water Treatment, 23(1–3), 49–54.

    Article  CAS  Google Scholar 

  • Joko, I. (1985). Phosphorus removal from wastewater by the crystallization method. Waterence & Technology, 17(2–3), 121–132.

    Article  CAS  Google Scholar 

  • Kaneko, S., & Nakajima, K. (1988). Phosphorus removal by crystallization using a granular activated magnesia clinker. Journal, 60(7), 1239–1244.

    CAS  Google Scholar 

  • Karapinar, N., Hoffmann, E., & Hahn, H. H. (2006). P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral. Water Research, 40(6), 1210–1216.

    Article  CAS  Google Scholar 

  • Kataki, S., West, H., Clarke, M., & Baruah, D. C. (2016). Phosphorus recovery as struvite: recent concerns for use of seed, alternative mg source, nitrogen conservation and fertilizer potential. Resources Conservation & Recycling, 107, 142–156.

  • Kebreab, E., Hansen, A. V., & Strathe, A. B. (2012). Animal production for efficient phosphate utilization: from optimized feed to high efficiency livestock. Current Opinion in Biotechnology, 23(6), 872–887.

    Article  CAS  Google Scholar 

  • Kim, Y., & Logan, B. E. (2011). Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16176–16181.

    Article  CAS  Google Scholar 

  • Kim, H. J., Hyun, M. S., Chang, I. S., & Kim, B. H. (1999). A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 9, 365–367.

    CAS  Google Scholar 

  • Kim, E. H., Yim, S. B., Jung, H. C., & Lee, E. J. (2006). Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material. Journal of Hazardous Materials, 136(3), 690–697.

    Article  CAS  Google Scholar 

  • Landolt, E., & Kandeler. R. (1987). The family of Lemnaceae-a monographic study, Veroeffentlichungen Des Geobotanischen Instituts Der Eth Stiftung Ruebel, p. 2.

  • Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: a review. Critical Reviews in Environmental Science & Technology, 39(6), 433–477.

    Article  CAS  Google Scholar 

  • Liberti, L. (2001). Feasibility study on application of Rem Nut process to phosphate recovery from wasterwater. Paper of the 2nd International Conference on Phosphate Recover for Recycling from sewage and animal wastes. Noordwijkerhout, the Netherlands.

  • Liberti, L., Limoni, N., Lopez, A., Passino, R., & Boari, G. (1986). The 10 m3 h−1 rim-nut demonstration plant at west Bari for removing and recovering N and P from wastewater. Water Research, 20(6), 735–739.

    Article  CAS  Google Scholar 

  • Liu, Y. H., Rahman, M. M., Kwag, J. H., Kim, J. H., & Ra, C. S. (2011). Eco-friendly production of maize using struvite recovered from swine wastewater as a sustainable fertilizer source. Asian Australasian Journal of Animal Sciences, 24, 1699–1705.

    Article  CAS  Google Scholar 

  • Liu, X., Xiang, L., Song, Y., Qian, F., & Meng, X. (2015). The effects and mechanism of alkalinity on the phosphate recovery from anaerobic digester effluent using dolomite lime. Environmental Earth Sciences, 73(9), 5067–5073.

    Article  CAS  Google Scholar 

  • Lodder, R., & Meulenkamp, R. (2011). Fosfaatterugwinning in communale afvalwaterzuiveringsinstallaties (Recuperation of phosphate in communal wastewater treatment plants), Report, (pp. 2100–2124).

  • Lucy, E. E. (2014). Waste stabilization pond ecology: a molecular approach. University of Newcastle Upon Tyne.

  • Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., Yamamoto, K., & Nghiem, L. D. (2016). Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system. Bioresource Technology, 200, 297–304.

    Article  CAS  Google Scholar 

  • Mako, A. A., Babayemi, O. J., & Akinsoyinu, A. O. (2011). An evaluation of nutritive value of water hyacinth (eichhornia crassipes mart. solms-laubach) harvested from different water sources as animal feed. Livestock Research for Rural Development, 23(5), 10.

  • Maurer, M., Abramovich, D., Siegrist, H., & Gujer, W. (1999). Kinetics of biologically induced phosphorus precipitation in waste-water treatment. Water Research, 33(2), 484–493.

    Article  CAS  Google Scholar 

  • Mcleod, K., Kumar, S., Smart, R. S. C., Dutta, N., Voelcker, N. H., Anderson, G. I., & Sekel, R. (2006). XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings. Applied Surface Science, 253(5), 2644–2651.

    Article  CAS  Google Scholar 

  • Mehta, C. M., & Batstone, D. J. (2013). Nucleation and growth kinetics of struvite crystallization. Water Research, 47(8), 2890–2900.

    Article  CAS  Google Scholar 

  • Metson, G. S., Bennett, E. M., & Elser, J. J. (2012). The role of diet in phosphorus demand. Environmental Research Letters, 7(4), 11–21.

    Article  Google Scholar 

  • Moerman, W., Carballa, M., Vandekerckhove, A., Derycke, D., & Verstraete, W. (2009). Phosphate removal in agro-industry: Pilot- and full-scale operational considerations of struvite crystallization. Water Research, 43(7), 1887–1892.

    Article  CAS  Google Scholar 

  • Monma, H., & Kamiya, T. (1987). Preparation of hydroxyapatite by the hydrolysis of brushite. Journal of Materials Science, 22(12), 4247–4250.

    Article  CAS  Google Scholar 

  • Montag, D. M. (2008). Phosphorrückgewinnung bei der Abwasserreinigung: Entwicklung eines Verfahrens zur Integration in kommunale Kläranlagen. Rwth Aachen.

  • Montastruc, L., Azzaro-Pantel, C., Biscans, B., Cabassud, M., & Domenech, S. (2003). A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal, 94(1), 41–50.

    Article  CAS  Google Scholar 

  • Morse, G. K., Brett, S. W., Guy, J. A., & Lester, J. N. (1998). Review: phosphorus removal and recovery technologies. Science of the Total Environment, 212(1), 69–81.

    Article  CAS  Google Scholar 

  • Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21(3), 285–293.

    Article  CAS  Google Scholar 

  • Moussa, S. B., Maurin, G., Gabrielli, C., & Amor, M. B. (2006). Electrochemical precipitation of struvite. Electrochemical and Solid-State Letters, 9(6), C97–C101.

  • Mulbry, W. (2006). Biofertilizers from algal treatment of dairy and swine manure effluents: characterization of algal biomass as a slow release fertilizer. Heat Treatment of Metals, 12, 80–85.

    Google Scholar 

  • Muster, T. H., Douglas, G. B., Sherman, N., Seeber, A., Wright, N., & Güzükara, Y. (2013). Towards effective phosphorus recycling from wastewater: quantity and quality. Chemosphere, 91(5), 676–684.

    Article  CAS  Google Scholar 

  • Ohlinger, K. N., Young, T. M., & Schroeder, E. D. (1998). Predicting struvite formation in digestion. Water Research, 32(12), 3607–3614.

    Article  CAS  Google Scholar 

  • Ohlinger, K. N., Young, T. M., & Schroeder, E. D. (1999). Kinetics effects on preferential struvite accumulation in wastewater. Journal of Environmental Engineering, 125(8), 730–737.

    Article  CAS  Google Scholar 

  • Okano, K., Uemoto, M., Kagami, J., Miura, K., Aketo, T., Toda, M., Honda, K., & Ohtake, H. (2013). Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs). Water Research, 47(7), 2251–2259.

    Article  CAS  Google Scholar 

  • Oladoja, N. A., & Ahmad, A. L. (2012). Low-cost biogenic waste for phosphate capture from aqueous system. Chemical Engineering Journal, 209(41), 170–179.

    Article  CAS  Google Scholar 

  • Oladoja, N. A., Ololade, I. A., Adesina, A. O., Adelagun, R. O. A., & Sani, Y. M. (2013). Appraisal of gastropod shell as calcium ion source for phosphate removal and recovery in calcium phosphate minerals crystallization procedure. Chemical Engineering Research & Design, 91(5), 810–818.

    Article  CAS  Google Scholar 

  • Oladoja, N. A., Adelagun, R. O. A., Ahmad, A. L., & Ololade, I. A. (2017). Green reactive material for phosphorus capture and remediation of aquaculture wastewater. Process Safety & Environmental Protection, 105, 21–31.

    Article  CAS  Google Scholar 

  • Petzet, S., & Cornel, P. (2012). Prevention of struvite scaling in digesters combined with phosphorus removal and recovery—the fix-Phos process. Water Environment Research A Research Publication of the Water Environment Federation, 84(3), 220–226.

    Article  CAS  Google Scholar 

  • Petzet, S., & Cornel, P. (2013). Phosphorus recovery from wastewater. Water Science & Technology, 59(6), 1069–1076.

    Google Scholar 

  • Posadas, E., García-Encina, P. A., Soltau, A., Domínguez, A., Díaz, I., & Muñoz, R. (2013). Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresource Technology, 139(13), 50–58.

    Article  CAS  Google Scholar 

  • Posadas, E., Morales, M. D. M., Gomez, C., Acién, F. G., & Muñoz, R. (2015). Influence of pH and CO2, source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chemical Engineering Journal, 265, 239–248.

    Article  CAS  Google Scholar 

  • Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae-defining the polyphosphate dynamics. Water Research, 43(17), 4207–4213.

    Article  CAS  Google Scholar 

  • Pretty, J. N., Mason, C. F., Nedwell, D. B., Hine, R. E., Leaf, S., & Dils, R. (2003). Environmental costs of freshwater eutrophication in England and Wales. Environmental Science & Technology, 37(2), 201–208.

    Article  CAS  Google Scholar 

  • Qiu, G., & Ting, Y. P. (2014). Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresource Technology, 170(5), 221–229.

    Article  CAS  Google Scholar 

  • Qiu, G., Law, Y. M., Das, S., & Ting, Y. P. (2015). Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution. Environmental Science & Technology, 49(10), 6156–6163.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Chang, S. R. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arabian Journal of Chemistry, 7(1), 139–155.

    Article  CAS  Google Scholar 

  • Regy, S., Mangin, D., Klein, J. P., & Lieto, J. (2002). Phosphate recovery by struvite precipitation in a stirred reactor, phosphate recovery in waste water by crystallization (pp. 54–58). UK: CEEP.

    Google Scholar 

  • Roy, E. D. (2017). Phosphorus recovery and recycling with ecological engineering: a review. Ecological Engineering, 98, 213–227.

    Article  Google Scholar 

  • Sengupta, S., & Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 45(11), 3318–3330.

    Article  CAS  Google Scholar 

  • Shaw, S., Clark, S. M., & Henderson, C. M. B. (2000). Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2)·4H2O and xonotlite (Ca5Si6O17(OH)2): an in situ synchrotron study. Chemical Geology, 167(1–2), 129–140.

    Article  CAS  Google Scholar 

  • Shepherd, J. G., Sohi, S. P., & Heal, K. V. (2016). Optimising the recovery and re-use of phosphorus from wastewater effluent for sustainable fertiliser development. Water Research, 94, 155–165.

    Article  CAS  Google Scholar 

  • Shi, J., Lu, X., Yu, R., & Zhu, W. (2012). Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process. Bioresource Technology, 121(2), 183–189.

    Article  CAS  Google Scholar 

  • Shi, J., Lu, X., Xu, Z., & Fang, M. (2016). A novel anaerobic–anoxic/nitrifying- induced crystallization sequence batch reactor (a2n-ic-sbr) process for enhancing phosphorus recovery and nutrient removal. Desalination & Water Treatment, 57(16), 7358–7368.

    Article  CAS  Google Scholar 

  • Shih, Y. J., Abarca, R. R. M., Luna, M. D. G. D., Huang, Y. H., & Lu, M. C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466–473.

  • Shilton, A. N. (2005). Pond treatment technology (pp. 77–99). London: IWA Publishing.

  • Shilton, A. N., Powell, N., & Guieysse, B. (2012). Plant based phosphorus recovery from wastewater via algae and macrophytes. Current Opinion in Biotechnology, 23(6), 884–889.

    Article  CAS  Google Scholar 

  • Song, Y., Hahn, H. H., & Hoffmann, E. (2002). The effect of carbonate on the precipitation of calcium phosphate. Environmental Technology, 23(2), 207–215.

    Article  CAS  Google Scholar 

  • Song, Y., Weidler, P. G., Berg, U., Nüesch, R., & Donnert, D. (2006). Calcite-seeded crystallization of calcium phosphate for phosphorus recovery. Chemosphere, 63(2), 236–243.

    Article  CAS  Google Scholar 

  • Steen, I. (1988). Phosphorus availability in the 21st century: manage-ment of a non-renewable resource. Phosphorus Potassium, 217, 25–31.

    Google Scholar 

  • Suzuki, K., Tanaka, Y., Osada, T., & Waki, M. (2002). Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Research, 36(12), 2991–2998.

    Article  CAS  Google Scholar 

  • Takashi, W., Noriatsu, O., Kazuhiro, I., Tsutomu, F., & Haruyuki, I. (2008). Breeding of wastewater treatment yeasts that accumulate high concentrations of phosphorus. Applied Microbiology & Biotechnology, 80(2), 331–338.

    Article  CAS  Google Scholar 

  • Tanner, C. C., & Headley, T. R. (2011). Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering, 37(3), 474–486.

    Article  Google Scholar 

  • Tao, Q., Luo, J., Zhou, J., Zhou, S., Liu, G., & Zhang, R. (2014). Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresource Technology, 164(7), 402–407.

    Article  CAS  Google Scholar 

  • Tarayre, C., De, C. L., Charlier, R., Michels, E., Meers, E., Camargo-Valero, M., & Delvigne, F. (2016). New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresource Technology, 206, 264–274.

    Article  CAS  Google Scholar 

  • Tervahauta, T., Van, R. D., Flemming, R. L., Hernández, L. L., Zeeman, G., & Buisman, C. J. (2014). Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery. Water Research, 48(1), 632–642.

    Article  CAS  Google Scholar 

  • Ueno, Y., & Fujii, M. (2001). Three years’ experience of operating and selling recovered struvite from full scale plant. Environmental Technology, 22(11), 1373–1381.

    Article  CAS  Google Scholar 

  • Ugurlu, A., & Salman, B. (1998). Phosphorus removal by fly ash. Environment International A Journal of Environmental Science Risk & Health, 24(8), 911–918.

    CAS  Google Scholar 

  • Vaccari, D. A. (2009). Phosphorus: a looming crisis. Scientific American, 300(6), 54–59.

    Article  CAS  Google Scholar 

  • Vanotti, M., & Szogi, A. (2009). Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation. International Conference on Nutrient Recovery from Wastewater Streams: May 10–13.

  • Vanotti, M. B., Garcia, M. C., Szogi, A. A., Hunt, P. G., & Millner, P. D. (2012). Method for recovery of phosphorus from animal wastewater. Weftec 2012, Water Environment Federation Technical Exhibition and Conference, 2012(7).

  • Vendramelli, R. A., Vijay, S., & Yuan, Q. (2016). Phosphorus removal mechanisms in a facultative wastewater stabilization pond. Water Air & Soil Pollution, 227(11), 417.

    Article  CAS  Google Scholar 

  • Wang, X., Chen, Y., Yuan, B., Li, X., & Ren, Y. (2014). Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor. Bioresource Technology, 161(3), 340–347.

    Article  CAS  Google Scholar 

  • Watanabe, Y., & Kimura, K. (2006). Hybrid membrane bioreactor for water recycling and phosphorus recovery. Water Science & Technology A Journal of the International Association on Water Pollution Research, 53(7), 17–24.

    Article  CAS  Google Scholar 

  • Weng, B., Zhou, J., Zheng, S., Chen, X., Zhang, W., & Huang, Q. (2012). Field utilization of dried water hyacinth for phosphorous recovery from source-separated human urine. Journal of Environmental Protection, 3(8), 715–721.

    Article  CAS  Google Scholar 

  • Wild, D., Kisliakova, A., & Siegrist, H. (1996). P-fixation by Mg, Ca and zeolite a during stabilization of excess sludge from enhanced biological p-removal. Water Science & Technology, 34(1–2), 391–398.

    Article  CAS  Google Scholar 

  • Woods, N. C., Daigger, G. T., & Sock, S. M. (2000). Sewage sludge reductions offered by phosphate recycling. Chimica Oggi, 18(5), 68–70.

    Google Scholar 

  • Wu, Q., Bishop, P. L., Keener, T. C., Stallard, J., & Stile, L. (2001). Sludge digestion enhancement and nutrient removal from anaerobic supernatant by Mg(OH)2 application. Water Science & Technology A Journal of the International Association on Water Pollution Research, 44(1), 161–166.

    Article  Google Scholar 

  • Xie, M., Long, D. N., Price, W. E., & Elimelech, M. (2014). Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis–membrane distillation process. Environmental Science Technology & Letters, 1, 191–195.

    Article  CAS  Google Scholar 

  • Xu, J., & Shen, G. (2011). Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresource Technology, 102(2), 848–853.

    Article  CAS  Google Scholar 

  • Yaakob, Z., Kamarudin, K. F., Rajkumar, R., Takriff, M. S., & Badar, S. N. (2014). The current methods for the biomass production of the microalgae from wastewaters: an overview. World Applied Sciences Journal, 31(10), 1744–1758.

    CAS  Google Scholar 

  • Ye, Y., Jing, G., & Hu, B. (2015). Screening of phosphorus-accumulating fungi and their potential for phosphorus removal from waste streams. Applied Biochemistry and Biotechnology, 177(5), 1127–1136.

    Article  CAS  Google Scholar 

  • Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Li, J., Liu, Y., Zhang, X., & Jia, H. (2017). Insight into chemical phosphate recovery from municipal wastewater. Science of the Total Environment, 576, 159–171.

    Article  CAS  Google Scholar 

  • Yoshida, M., Tanabe, Y., Yonezawa, N., & Watanabe, M. M. (2012). Energy innovation potential of oleaginous microalgae. Biofuels, 3(6), 761–781.

    Article  CAS  Google Scholar 

  • You, J., Greenman, J., Melhuish, C., & Ieropoulos, I. (2014). Electricity generation and struvite recovery from human urine using microbial fuel cells. World Renewable Energy Congress – WREC XIII, 91, 647–654.

    Google Scholar 

  • Yu, R., Geng, J., Ren, H., Wang, Y., & Xu, K. (2013). Struvite pyrolysate recycling combined with dry pyrolysis for ammonium removal from wastewater. Bioresource Technology, 132(2), 154–159.

    Article  CAS  Google Scholar 

  • Yu, M., Yin, D., Shi, J., Song, D., & Xu, Z. (2016). Phosphorus removal and recovery from high phosphorus wastewater by the HAP crystallization process. Oriental Journal of Chemistry, 32(1), 235–241.

  • Yuan, Z., Pratt, S., & Batstone, D. J. (2012). Phosphorus recovery from wastewater through microbial processes. Current Opinion in Biotechnology, 23(6), 878–883.

    Article  CAS  Google Scholar 

  • Zhang, J., She, Q., Chang, V. W. C., Tang, C. Y., & Webster, R. D. (2014). Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering. Environmental Science & Technology, 48(6), 3386–3394.

    Article  CAS  Google Scholar 

  • Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P., & Herrmann, I. (2006). Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environmental Science & Technology, 40(17), 5193–5199.

    Article  CAS  Google Scholar 

  • Zhao, Y., Fang, Y., Jin, Y., Huang, J., Bao, S., Fu, T., He, Z., Wang, F., & Zhao, H. (2014). Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth. Bioresource Technology, 163, 82–91.

    Article  CAS  Google Scholar 

  • Zhao, Z. M., Song, X. S., Xiao, Y. P., Zhao, Y. F., Gong, Z. J., Lin, F. D., Ding, Y., Wang, W., & Qin, T. L. (2016). Influences of seasons, N/P ratios and chemical compounds on phosphorus removal performance in algal pond combined with constructed wetlands. Science of the Total Environment, 573, 906–914.

    Article  CAS  Google Scholar 

  • Zhi, W. T., Yue, C., Ong, Y. K., & Chung, T. S. (2016). Molecular design of nanofiltration membranes for the recovery of phosphorus from sewage sludge. ACS Sustainable Chemistry & Engineering, 4(10), 5580–5577.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Major Science and Technology Project of Water Pollution Control and Management in China (2012ZX07101005), the National Science and Technology Support Program in China (2015BAL01B01), the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1643), and Water pollution control project in Taihu (TH2016203). We thank the anonymous reviewers for their constructive comments that improved the manuscript.

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/index/LONgIk

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwu Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Dai, H., Wu, Y. et al. A Comprehensive Review of the Available Media and Approaches for Phosphorus Recovery from Wastewater. Water Air Soil Pollut 229, 115 (2018). https://doi.org/10.1007/s11270-018-3706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3706-4

Keywords

Navigation