Skip to main content
Log in

Adsorption of As(V) Using Modified Magnetic Nanoparticles with Ascorbic Acid: Optimization by Response Surface Methodology

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the present study, response surface methodology (RSM) was applied to maximize As(V) removal from aqueous solutions by using modified magnetic nanoparticles with ascorbic acid (AA-MNPs). The structural features of the produced material were characterized by means of X-ray diffraction (XRD), N2 adsorption–desorption, Fourier transform infrared (FT-IR), vibrating sample magnetometer (VSM), thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). More specifically, the effects of pH, temperature, arsenic ion concentration, and sorbent dosage were investigated on the arsenic adsorption. A total of 20 sets of experiments were designed by the software to achieve maximum adsorption capacity (q e ) and removal efficiency (R). Analysis of variance (ANOVA) of the two-factor interaction (2FI) model suggested that the predicted values were in good agreement with experimental data. The best local maximum values for pH, arsenic concentration, and sorbent dosage were found to be 2, 5 mg L−1, and 0.1 g L−1, respectively, that yielding maximum q e of 44.99 mg g−1 and a maximum R of 42.69 %. Additionally, the obtained value for desirability was equal to 0.862. The results indicated that the Langmuir model provided the best correlation of the equilibrium data. Moreover, the obtained results revealed that the pseudo-second-order kinetic model could best describe the adsorption kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anbia, M., Kargosha, K., & Khoshbooei, S. (2015). Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48. Chemical Engineering Research and Design, 93, 779–788.

    Article  CAS  Google Scholar 

  • Atashkar, B., Rostami, A., & Tahmasbi, B. (2013). Magnetic nanoparticle-supported guanidine as a highly recyclable and efficient nanocatalyst for the cyanosilylation of carbonyl compounds. Catalysis Science & Technology, 3, 2140–2146.

    Article  CAS  Google Scholar 

  • Boruah, P. K., Borah, D. J., Handique, J., Sharma, P., Sengupta, P., & Das, M. R. (2015). Facile synthesis and characterization of Fe3O4 nanopowder and Fe3O4/reduced graphene oxide nanocomposite for methyl blue adsorption: a comparative study. Journal of Environmental Chemical Engineering, 3, 1974–1985.

    Article  CAS  Google Scholar 

  • Brechbühl, Y., Christl, I., Elzinga, E. J., & Kretzschmar, R. (2012). Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments. Journal of Colloid and Interface Science, 377, 313–321.

    Article  Google Scholar 

  • Bujňáková, Z., Baláž, P., Zorkovská, A., Sayagués, M. J., Kováč, J., & Timko, M. (2013). Arsenic sorption by nanocrystalline magnetite: an example of environmentally promising interface with geosphere. Journal of Hazardous Materials, 262, 1204–1212.

    Article  Google Scholar 

  • Burks, T., Avila, M., Akhtar, F., Gothelid, M., Lansaker, P. C., Toprak, M. S., Muhammed, M., & Uheida, A. (2014). Studies on the adsorption of chromium(VI) onto 3-mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science, 425, 36–43.

    Article  CAS  Google Scholar 

  • Cao, J., Wu, Y., Jin, Y., Yilihan, P., & Huang, W. (2014). Response surface methodology approach for optimization of the removal of chromium(VI) by NH2-MCM-41. Journal of the Taiwan Institute of Chemical Engineers, 45, 860–868.

    Article  CAS  Google Scholar 

  • Caporale, A. G., Punamiya, P., Pigna, M., Violante, A., & Sarkar, D. (2013). Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions. Journal of Hazardous Materials, 260, 644–651.

    Article  CAS  Google Scholar 

  • Chen, H., Zhao, J., Dai, G., Wu, J., & Yan, H. (2010). Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination, 262, 174–182.

    Article  CAS  Google Scholar 

  • Chen, F., Xie, S., Zhang, J., & Liu, R. (2013). Synthesis of spherical Fe3O4 magnetic nanoparticles by co-precipitation in choline chloride/urea deep eutectic solvent. Materials Letters, 112, 177–179.

    Article  CAS  Google Scholar 

  • Chowdhury, S. R., & Yanful, E. K. (2010). Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. Journal of Environmental Management, 91, 2238–2247.

    Article  CAS  Google Scholar 

  • Dabrowski, A., Hubicki, Z., Podkoscielny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56, 91–106.

    Article  CAS  Google Scholar 

  • Dong, H., Guan, X., & Lo, I. M. C. (2012). Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction. Water Research, 46, 4071–4080.

    Article  CAS  Google Scholar 

  • Feng, R., Wei, C., Tu, S., & Sun, X. (2009). Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions. Environmental and Experimental Botany, 65, 363–368.

    Article  CAS  Google Scholar 

  • Feng, L., Cao, M., Ma, X., Zhu, Y., & Hu, C. (2012). Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. Journal of Hazardous Materials, 217–218, 439–446.

    Article  Google Scholar 

  • Ghaedi, A. M., Ghaedi, M., Vafaei, A., Iravani, N., Keshavarz, M., Rad, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2015). Adsorption of copper (II) using modified activated carbon prepared from Pomegranate wood: optimization by bee algorithm and response surface methodology. Journal of Molecular Liquids, 206, 195–206.

    Article  CAS  Google Scholar 

  • Ghorbani, F., Younesi, H., Ghasempouri, S. M., Zinatizadeh, A. A., Amini, M., & Daneshi, A. (2008). Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chemical Engineering Journal, 145, 267–275.

    Article  CAS  Google Scholar 

  • Ghorbani, F., Younesi, H., Mehraban, Z., Sabri Çelikc, M., Ghoreyshid, A. A., & Anbiae, M. (2013). Aqueous cadmium ions removal by adsorption on APTMS grafted mesoporous silica MCM-41 in batch and fixed bed column processes. International Journal of Engineering, 26, 473–488.

    Article  CAS  Google Scholar 

  • Ghorbani-Choghamarani, A., Darvishnejad, Z., & Tahmasbi, B. (2015). Schiff base complexes of Ni, Co, Cr, Cd and Zn supported on magnetic nanoparticles: As efficient and recyclable catalysts for the oxidation of sulfides and oxidative coupling of thiols. Inorganica Chimica Acta, 435, 223–231.

    Article  CAS  Google Scholar 

  • Haw, C. Y., Mohamed, F., Chia, C. H., Radiman, S., Zakaria, S., Huang, N. M., & Lim, H. N. (2010). Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceramics International, 36, 1417–1422.

    Article  CAS  Google Scholar 

  • Hu, J., Chen, G., & Lo, I. M. C. (2005). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 39, 4528–4536.

    Article  CAS  Google Scholar 

  • Jabeen, H., Kemp, K. C., & Chandra, V. (2013). Synthesis of nano zerovalent iron nanoparticles—graphene composite for the treatment of lead contaminated water. Journal of Environmental Management, 130, 429–435.

    Article  CAS  Google Scholar 

  • Kakavandi, B., Kalantary, R., Farzadkia, M., Mahvi, A., Esrafili, A., Azari, A., Yari, A., & Javid, A. (2014). Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles. Journal of Environmental Health Science and Engineering, 12, 1–10.

    Article  Google Scholar 

  • Kilianova, M., Prucek, R., Filip, J., Kolarik, J., Kvitek, L., Panacek, A., Tucek, J., & Zboril, R. (2013). Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere, 93, 2690–2697.

    Article  CAS  Google Scholar 

  • Landaburu-Aguirre, J., García, V., Pongrácz, E., & Keiski, R. (2006). Applicability of membrane technologies for the removal of heavy metals. Desalination, 200, 272–273.

    Article  CAS  Google Scholar 

  • Martinson, C. A., & Reddy, K. J. (2009). Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 336, 406–411.

    Article  CAS  Google Scholar 

  • Meng, J., Yang, G., Yan, L., & Wang, X. (2005). Synthesis and characterization of magnetic nanometer pigment Fe3O4. Dyes and Pigments, 66, 109–113.

    Article  CAS  Google Scholar 

  • Mirzabe, G. H., & Keshtkar, A. R. (2015). Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent. Journal of Industrial and Engineering Chemistry, 26, 277–285.

  • Pang, Y., Zeng, G., Tang, L., Zhang, Y., Liu, Y., Lei, X., Li, Z., Zhang, J., Liu, Z., & Xiong, Y. (2011). Preparation and application of stability enhanced magnetic nanoparticles for rapid removal of Cr(VI). Chemical Engineering Journal, 175, 222–227.

    Article  CAS  Google Scholar 

  • Ranjan, D., Talat, M., & Hasan, S. H. (2009). Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. Journal of Hazardous Materials, 166, 1050–1059.

    Article  CAS  Google Scholar 

  • Rostamizadeh, S., Shadjou, N., Azad, M., & Jalali, N. (2012). (α-Fe2O3)-MCM-41 as a magnetically recoverable nanocatalyst for the synthesis of pyrazolo[4,3-c]pyridines at room temperature. Catalysis Communications, 26, 218–224.

    Article  CAS  Google Scholar 

  • Shan, H., Ma, T., Wang, Y., Zhao, J., Han, H., Deng, Y., He, X., & Dong, Y. (2013). A cost-effective system for in-situ geological arsenic adsorption from groundwater. Journal of Contaminant Hydrology, 154, 1–9.

    Article  CAS  Google Scholar 

  • Singh, D., Gautam, R. K., Kumar, R., Shukla, B. K., Shankar, V., & Krishna, V. (2014). Citric acid coated magnetic nanoparticles: synthesis, characterization and application in removal of Cd(II) ions from aqueous solution. Journal of Water Process Engineering, 4, 233–241.

    Article  Google Scholar 

  • Srivastava, P. K., Vaish, A., Dwivedi, S., Chakrabarty, D., Singh, N., & Tripathi, R. D. (2011). Biological removal of arsenic pollution by soil fungi. Science of the Total Environment, 409, 2430–2442.

    Article  CAS  Google Scholar 

  • Tang, S. C., & Lo, I. M. (2013). Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Research, 47, 2613–2632.

    Article  CAS  Google Scholar 

  • Tuutijarvi, T., Lu, J., Sillanpaa, M., & Chen, G. (2009). As(V) adsorption on maghemite nanoparticles. Journal of Hazardous Materials, 166, 1415–1420.

    Article  CAS  Google Scholar 

  • Wu, Y., Zhang, J., Tong, Y., & Xu, X. (2009). Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles. Journal of Hazardous Materials, 172, 1640–1645.

    Article  CAS  Google Scholar 

  • Wu, S., Sun, A., Zhai, F., Wang, J., Xu, W., Zhang, Q., & Volinsky, A. A. (2011). Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Materials Letters, 65, 1882–1884.

    Article  CAS  Google Scholar 

  • Wu, Y., Jin, Y., Cao, J., Yilihan, P., Wen, Y. & Zhou, J. (2014). Optimizing adsorption of arsenic(III) by NH2-MCM-41 using response surface methodology. Journal of Industrial and Engineering Chemistry, 20(5), 2792–2800.

  • Xin, X., Wei, Q., Yang, J., Yan, L., Feng, R., Chen, G., Du, B., & Li, H. (2012). Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chemical Engineering Journal, 184, 132–140.

    Article  CAS  Google Scholar 

  • Yantasee, W., Warner, C. L., Sangvanich, T., Addleman, R. S., Carter, T. G., Wiacek, R. J., Fryxell, G. E., Timchalk, C., & Warner, M. G. (2007). Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environmental Science & Technology, 41, 5114–5119.

    Article  CAS  Google Scholar 

  • Yavuz, C. T., Mayo, J. T., Suchecki, C., Wang, J., Ellsworth, A. Z., D’Couto, H., Quevedo, E., Prakash, A., Gonzalez, L., Nguyen, C., Kelty, C., & Colvin, V. L. (2010). Pollution magnet: nano-magnetite for arsenic removal from drinking water. Environmental Geochemistry and Health, 32, 327–334.

    Article  CAS  Google Scholar 

  • Yu, X., Tong, S., Ge, M., Wu, L., Zuo, J., Cao, C., & Song, W. (2013). Synthesis and characterization of multi-amino-functionalized cellulose for arsenic adsorption. Carbohydrate Polymers, 92, 380–387.

    Article  CAS  Google Scholar 

  • Zhang, S., Niu, H., Cai, Y., Zhao, X., & Shi, Y. (2010). Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chemical Engineering Journal, 158, 599–607.

    Article  CAS  Google Scholar 

  • Zhang, S., Zhang, Y., Liu, J., Xu, Q., Xiao, H., Wang, X., Xu, H., & Zhou, J. (2013). Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chemical Engineering Journal, 226, 30–38.

    Article  CAS  Google Scholar 

  • Zuo, J.-C., Tong, S.-R., Yu, X.-L., Wu, L.-Y., Cao, C.-Y., Ge, M.-F., & Song, W.-G. (2012). Fe3+ and amino functioned mesoporous silica: preparation, structural analysis and arsenic adsorption. Journal of Hazardous Materials, 235–236, 336–342.

    Article  Google Scholar 

Download references

Acknowledgments

The present research was made possible through a university grant, sponsored by University of Kurdistan (UOK), Ministry of Science, Iran. The authors wish to thank Mr. Hoshyar Gavilian, the technician of environment laboratory at environmental science departments, for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Ghorbani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikraftar, N., Ghorbani, F. Adsorption of As(V) Using Modified Magnetic Nanoparticles with Ascorbic Acid: Optimization by Response Surface Methodology. Water Air Soil Pollut 227, 178 (2016). https://doi.org/10.1007/s11270-016-2876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2876-1

Keywords

Navigation