Skip to main content
Log in

Phosphorus Fractions Transformation in Sediments Before and After Cyanobacterial Bloom: Implications for Reduction of Eutrophication Symptoms in Dam Reservoir

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In order to observe the spatial phosphorus (P) fractions transformations in sediments in relation to bacterial abundance and enzyme hydrolysing organic P-alkaline phosphatase (APA), samples from 35 stations from eutrophic Sulejow Reservoir were taken in spring after flood and in summer after cyanobacterial bloom breakdown. The results show pronounced fluctuations: decrease of average total P in sediments, despite organic matter delivery after cyanobacterial bloom, in parallel with increase of labile P (8.3%) and Ca-bounded P (16.6%) fractions and decline of organic P fraction (28.5%). Higher alkaline activity in sediments in the spring delivered nutrients to water column and supported cyanobacterial bloom development during the summer. Positive correlation between APA and organic P (r = 0.37, p < 0.01, n = 70) and negative with labile inorganic P (r = −0.44, p < 0.01, n = 70) in sediments proved significant role of the APA in phosphorus transformation in sediments and internal loading in the reservoir. During summer, APA was significantly related to bacterial number (r = 0.36, p < 0.01, n = 35) and bacterial abundance was correlated to organic matter content (r = 0.36, p < 0.01, n = 35). Such pattern of temporal variations of P transformation in sediments indicates order of solutions for enhancement of recultivation effects of eutrophic dam reservoirs: (1) reduction of organic matter supply in spring and (2) sediment inactivation during summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambrożewski, Z. (1980). Monograph of the Sulejow Reservoir [in Polish: Monografia Zbiornika Sulejowskiego]. WKiL Warszawa, pp. 84.

  • Barbiero, R. P., & Welch, E. B. (1992). Contribution of benthic blue green algal recruitment to lake populations and phosphorus translocation. Freshwater Biology, 27, 249–260.

    Article  Google Scholar 

  • Bloesch, J., Armengol, J., Giovanoli, F., & Stabel, H. H. (1988). Phosphorus in suspended and settling particulate matter of lakes. [In:] Sediment phosphorus group: working group summaries and proposals for future research. Arch. Hydrobiol. Beih. Ergebn. Limnol, 30, 84–90.

    Google Scholar 

  • Boavida, M. J. (2000). Phosphatases in phosphorus cycling: a new direction for research on an old subject. Arch. Hydrobiol. Spec. Issues Advanc. Limnol, 55, 433–440.

    CAS  Google Scholar 

  • Boers, P. C. M., & Hese, O. V. (1988). Phosphorus release from the peaty sediments of the Loosdrecht Lake (Netherlands). Water Research, 22, 355–363.

    Article  CAS  Google Scholar 

  • Carman, R., Edlund, G., & Damberg, C. (2000). Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: a 31P-NMR study. Chemical Geology, 163(1–4), 101–114.

    Article  CAS  Google Scholar 

  • Chróst, R., & Overbeck, J. (1987). Kinetics of alkaline phosphatase and phosphorus availability for phytoplankton and bacterioplankton in Lake Plubsee (North German Eutrophic Lake). Microbial Ecology, 13, 229–248.

    Article  Google Scholar 

  • Chróst, R. J., & Siuda, W. (2006). Microbial production, utilization, and enzymatic degradation of organic master in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnology and Oceanography, 51, 749–762.

    Article  Google Scholar 

  • Chróst, R. J., Siuda, W., & Halemejko, G. (1984). Long term studies on alkaline phosphatase activity (APA) in a lake with fish aquaculture in relation to lake eutrophication and phosphorus cycle. Arch Hydrobiol Suppl, 70, 1–32.

    Google Scholar 

  • dos Santos Furtado, A. L., & Casper, P. (2000). Different methods for extracting bacteria from freshwater sediment and a simple method to measure bacterial production in sediment samples. Journal of Microbiological Methods, 41, 249–257.

    Article  Google Scholar 

  • Espeland, E. M., & Wetzel, R. G. (2001). Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microbial Ecology, 42, 572–585.

    Article  CAS  Google Scholar 

  • Furczak, J. (2000). Activity of total alkaline phosphatase In water and bottom sediemnt of selected lasek of the Łęczyńsko-Włodawskie Lake District. Part II: Eutrophic Głebokie Lake. [In Polish: Aktywność ogólnej fosfatazy zasadowej w wodzie i osadzie dennym niektórych jezior pojezierza Łęczyńsko-Włodawskiego. Cz. II. Eutroficzne jezioro Głębokie]. Acta Agrophysica, 4(2), 291–299

  • Goedkoop, W., & Pettersson, K. (2000). Seasonal changes in sediment phosphorus forms in relation to sedimentation and benthic bacterial biomass in Lake Erken. Hydrobiologia, 431, 41–50.

    Article  CAS  Google Scholar 

  • Golterman, H. L. (1995). The role of the ironhydroxide–phosphate–sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia, 297, 43–54.

    Article  CAS  Google Scholar 

  • Golterman, H. L., Clymo, R. S., & Ohstand, M. A. M. (1978). Methods for physical and chemical analysis of freshwater. London: Blackwell Scientific Publication, pp. 214.

  • Hadas, O., & Pinkas, R. (1997). Arylsulfatase and alkaline phosphatase activity in sediments of Lake Kinneret, Israel. Water, Air, and Soil Pollution, 99, 671–679.

    Article  CAS  Google Scholar 

  • Håkanson, L., & Jansson, M. (1983). Principles of lake sedimentology (p. 316). Berlin: Springer.

    Google Scholar 

  • Huber, A. L., & Hamel, K. S. (1985). Phosphatase activities in relation to phosphorus nutrition in Nodularia spumigena (Cyanobacteriaceae). Hydrobiologia, 123, 145–152.

    Article  CAS  Google Scholar 

  • Istvanovics, V., Petterson, K., Pierson, D., & Bell, R. (1992). Evaluation of phosphorus deficiency indicators for summer phytoplankton in Lake Erken. Limnology and Oceanography, 37(4), 890–900.

    Article  CAS  Google Scholar 

  • Izydorczyk, K., Jurczak, T., Wojtal-Frankiewicz, A., Skowron, A., Mankiewicz-Boczek, J., & Tarczyńska, M. (2008). Influence of abiotic and biotic factors on microcystin content in Microcystis aeruginosa cells in a eutrophic temperate reservoir. Journal of Plankton Research, 30, 393–400.

    Article  CAS  Google Scholar 

  • Izydorczyk, K., Skowron, A., Wojtal, A., & Jurczak, T. (2008). The stream inlet to a Shallow Bay of a drinking water reservoir, a ‘hot-spot’ for Microcystis blooms initiation. International Review Hydrobiology, 93(3), 257–268.

    Article  CAS  Google Scholar 

  • Jacoby, J. M., Lynch, D. D., Welch, E. B., & Perkins, M. A. (1982). Internal phosphorus loading in a shallow eutrophic lake. Water Research, 16, 911–919.

    Article  CAS  Google Scholar 

  • Jansson, M., Olson, H., & Petterson, K. (1988). Phosphatase origin, characteristics and function in lakes. Hydrobiologia, 170, 157–175.

    CAS  Google Scholar 

  • Jensen, H. S., & Andersen, F. (1992). Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnology and Oceanography, 37, 577–589.

    Article  Google Scholar 

  • Marxsen, J., & Schmidt, H. (1993). Extracellular phosphatase activity in sediments of the Breitenbach, a Central European mountain stream. Hydrobiology, 253, 207–216.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L.-A. (1987). Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Applied and Environmental Microbiology, 53, 1748–1755.

    CAS  Google Scholar 

  • Morris, R. J., Williams, D. E., Luu, H. A., Holmes, C. F., Andersen, R. J., & Calvert, S. E. (2000). The adsorption of MCYST-LR by natural clay particles. Toxicon, 38, 303–308.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single-solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Newman, S., & Redy, K. R. (1992). Sediment resuspension effects on alkaline phosphatase activity. Hydrobiologia, 245, 75–86.

    Article  CAS  Google Scholar 

  • Penn, M. R., Auer, M. T., Van Orman, E. L., & Korienek, J. J. (1995). Phosphorus diagenesis in lake sediments: investigations using fractionation techniques. Marine & Freshwater Research, 46, 89–99.

    CAS  Google Scholar 

  • Perakis, S. S., Welch, E. B., & Jakoby, J. M. (1996). Sediment-to-water blue-green algal recruitment in response to alum and environmental factors. Hydrobiologia, 318, 165–177.

    Article  CAS  Google Scholar 

  • Porter, K. G., & Feig, Y. G. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25, 923–948.

    Article  Google Scholar 

  • Psenner, R., Bostrom, B., Dinka, M., Petterson, K., Pucska, R., & Sager, M. (1988). Fractionation of phosphorus in suspended matter and sediment. Arch Hydrobiol Beih Ergebn Limnol, 30, 83–112.

    Google Scholar 

  • Robinson, J. S., Johnston, C. T., & Reddy, K. R. (1998). Combined chemical and 31P-NMR spectroscopic analysis of phosphorus in wetland organic soils. Soil Science, 163(9), 705–713.

    Article  CAS  Google Scholar 

  • Rydin, E. (2000). Potentially mobile phosphorus in Lake Erken sediment. Water Research, 34, 2037–2042.

    Article  CAS  Google Scholar 

  • Rydin, E., & Brunberg, A. (1998). Seasonal dynamics of phosphorous in Lake Erken surface sediments. Arch Hydrobiol Spec Issues Advanc Limnol, 51, 17–167.

    Google Scholar 

  • Selig, U., & Schlungbaum, G. (2002). Longitudinal patterns of phosphorus and phosphorus binding in sediment of a lowland lake–river system. Hydrobiologia, 472, 67–76.

    Article  CAS  Google Scholar 

  • Sinke, A. J. C., & Cappenberg, T. E. (1988). Influence of bacterial processes on the P release from sediments in the eutrophic Loosdrecht lakes, the Netherlands. Arch Hydrobiol Beih Ergebn Limnol, 30, 5–13.

    CAS  Google Scholar 

  • Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506–509, 135–145.

    Article  Google Scholar 

  • Straškraba, M., & Tundisi, J. G. (1999). Reservoir water quality management. Guidelines of lake management 9. International Lake Environment Committee, pp 229.

  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.

    Article  CAS  Google Scholar 

  • Tarczyńska, M., Romanowska-Duda, Z., Jurczak, T., & Zalewski, M. (2001). Toxic cyanobacterial blooms in drinking water reservoir – causes, consequences and management strategy. Water Science and Technology Water Supply, 1, 237–246.

    Google Scholar 

  • Taylor, M. D. (2000). Determination of total phosphorus in soil using simple Kjeldahl digestion. Communications in Soil Science and Plant Analysis, 31, 2665–2670.

    Article  CAS  Google Scholar 

  • Thornton, K. (1990). Sedimentary processes. In K. W. Thornton, B. L. Kimmel & F. E. Payne (Eds.), Reservoir limnology: ecological perspectives. A Wiley-Interscience Publication. New York: Wiley.

    Google Scholar 

  • Trimbee, A. M., & Harris, G. P. (1984). Phytoplankton population dynamics of a small reservior: use of sedimentation traps to quantify the loss of diatoms and recruitment of summer bloom-forming blue-green algae. Journal of Plankton Research, 6(5), 897–918.

    Article  Google Scholar 

  • Turner, B. L., McKelvie, I. D., & Haygarth, P. M. (2002). Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biology and Biochemistry, 34, 27–35.

    Article  CAS  Google Scholar 

  • Uhlmann, D., Röske, I., Hupfer, M., & Ohms, G. (1990). A simple method to distinguish between polyphosphate and other fractions of activated sludge. Water Research, 24, 1355–1360.

    Article  CAS  Google Scholar 

  • Wagner, I., & Zalewski, M. (2000). Effect of hydrological patterns of tributaries on biotic processes in a lowland reservoir —consequences for restoration. Ecological Engineering, 16, 79–90.

    Article  Google Scholar 

  • Wang, H., Appan, A., & Gulliver, J. S. (2003). Modeling of phosphorus dynamics in aquatic sediments: I—model development. Water Research, 37, 3928–3938.

    Article  CAS  Google Scholar 

  • Zakaria, A. M., El-Sharouny, H. M., & Ali, W. S. (2007). Microcystin concentrations in the Nile River sediments and removal of microcystin-LR by sediments during batch experiments. Archives of Environmental Contamination and Toxicology, 52, 489–495.

    Article  CAS  Google Scholar 

  • Zalewski, M., Wagner-Lotkowska, I., & Tarczyńska, M. (2000). Ecohydrological approaches to the elimination of toxic algal blooms in the lowland reservoir—Verh. Int Ver Theor Angew Limnol, 27, 3176–3183.

    CAS  Google Scholar 

  • Zhang, T., Wang, X., & Jin, X. (2007). Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu). Environmental Pollution, 150, 288–294.

    Article  CAS  Google Scholar 

  • Zhou, Y., Li, J. Q., & Zhang, M. (2001). Vertical variations in kinetics of alkaline phosphatase and P species in sediments of shallow Chinese eutrophic lake (Lake Donghu). Hydrobiologia, 450, 91–98.

    Article  CAS  Google Scholar 

  • Zhou, Y., Li, J. Q., & Zhang, M. (2002). Temporal and spatial variations in kinetics of alkaline phosphates in sediments of a shallow Chinese eutrophic lake (Lake Donghu). Water Research, 36, 2084–2090.

    Article  CAS  Google Scholar 

  • Zhou, Y., Cao, X., Song, C., Chen, G., & Peng, L. (2007). Variation in kinetics of alkaline phosphatase in sediments of eutrophic, shallow, Chinese lakes. Hydrobiologia, 581, 109–116.

    Article  CAS  Google Scholar 

  • Zhou, Y., Song, C., Cao, X., Li, J., Chen, G., Xia, Z., et al. (2008). Phosphorus fractions and alkaline phosphatase activity in sediments of a large eutrophic Chinase lake (Lake Taihu). Hydrobiologia, 599, 119–125.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by Ministry of Science and Higher Education of Poland: Grant No. 2 PO4G 120 27. We would like to acknowledge Sebastian Ratajski and Zbigniew Kaczkowski for their substantial help in field studies and Sebastian Ochocki for his help in analytical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Anna Trojanowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trojanowska, A.A., Izydorczyk, K. Phosphorus Fractions Transformation in Sediments Before and After Cyanobacterial Bloom: Implications for Reduction of Eutrophication Symptoms in Dam Reservoir. Water Air Soil Pollut 211, 287–298 (2010). https://doi.org/10.1007/s11270-009-0299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0299-y

Keywords

Navigation