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Abstract
Assessing the impact of climate change on water demand is a challenging task. This paper
proposes a novel methodology that quantifies this impact by establishing a link between
water demand and weather based on climate change scenarios, via Coupled General
Circulation Models. These models simulate the response of the global climate system to
increasing greenhouse gas concentrations by reproducing atmospheric and ocean pro-
cesses. In order to establish the link between water demand and weather, Random Forest
models based on weather variables were used. This methodology was applied to a district
metered area in Naples (Italy). Results demonstrate that the total district water demand
may increase by 9–10% during the weeks with the highest temperatures. Furthermore,
results show that the increase in water demand changes depending on the social charac-
teristics of the users. The water demand of employed users with high education may
increase by 13–15% when the highest temperatures occur. These increases can
seriously affect the capacity and operation of existing water systems.

Keywords Water distribution network . Smart meters .Water demand . Climate change

1 Introduction

In Italy, the impact of the climate on water supply is a major concern, as it can cause problems
in terms of water shortages and energy waste (Colombo and Karney 2003).
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Several studies have used weather variables to explain demand variability (Slavíková
et al. 2013; Ashoori et al. 2016; Haque et al. 2017; Toth et al. 2018; Manouseli et al. 2019;
Xenochristou et al. 2020; Xenochristou et al. 2021). Most of these studies have found that
water demand is positively related to the temperature (Ashoori et al. 2016; Toth et al.
2018; Manouseli et al. 2019; Xenochristou et al. 2020). Furthermore, different studies
have shown the importance of accounting for additional explanatory factors, such as socio-
demographic variables and types of users, in the characterization of water demand patterns
(Mamade et al. 2014; Fiorillo et al. 2020; Xenochristou et al. 2020; Xenochristou et al.
2021).

Overall, since daily and weekly fluctuations in weather variables are highly associated with
changes in water demand (De Souza et al. 2015; Chang et al. 2014), climate change is also
expected to influence water demand (Parandvash and Chang 2016).Previous studies (Neale
et al. 2007; Zachariadis 2010; Polebitski et al. 2011; Jampanil et al. 2012; Babel et al. 2014;
Kanakoudis et al. 2017; Rasifaghihi et al 2020; Zubaidi et al. 2020) have shown that the likely
increase in water demand due to climate change would vary widelybased on geographic
location and climatic conditions (Wang et al. 2014).

Changes in water demand could affect the existing water systems in terms of
capacity and operation. Specifically, increases in water demand can cause imbalance
in water resources and problems in storage capacity, worsening the situation of water
shortages that Mediterranean countries, such as Italy, are already experiencing (La
Jeunesse et al. 2016). Therefore, knowing the extent of water demand changes due to
climate change is needed for long-term climate adaptation planning (Wang et al. 2014;
Parandvash and Chang 2016).

Despite the clear benefits, few studies have investigated climate change impacts on
water demand in Italy, focusing on climate change effects on agricultural water
demand (Bocchiola et al. 2013; Masia et al. 2018) and water supply (Peres et al.
2019). This paper aimsto improve the understanding of climate change effects in Italy,
by investigating future variations in urban water demand due to climate change for a
case study in Naples (Italy). This is achieved by linking water demand to weather
based on climate change scenarios, via Coupled General Circulation Models (Grassl
2000). This link is established by developing Random Forest models (RFs) that predict
daily water demand from weather variables. Changes in weather variables are estimat-
ed using different climate change scenarios obtained from the CCWorldWeatherGen
(Jentsch et al. 2017). This tool transforms measured weather data into climate change
adapted weather data through the “morphing” methodology developed by Belcher
et al. (2005).

This study shows that water demand variations due to climate change could vary
depending on the types of users. Previous studies focused on climate change impacts on
water demand (Neale et al. 2007; Zachariadis 2010; Polebitski et al. 2011; Jampanil et al.
2012; Babel et al. 2014; Kanakoudis et al. 2017; Rasifaghihi et al 2020; Zubaidi et al.
2020) have neglected the variation of climate change effect according to the social
characteristics of the users. This paper presents a novel methodology to assess future
variations in water demand for different types of users. The methodology allows to
determine climate change effects on water demand for different groups of users which
vary according to their social characteristics. Therefore, the proposed methodology
represents an innovative tool for water utilities to assess future variations in water
demand more accurately.
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2 Case Study

This work utilises water consumption, social characteristics and weather data from a case study
in Naples (Italy).

The consumption data were provided by the District Metered Area (DMA) located
in Soccavo, in the North-Western part of Naples (Italy). In this DMA the municipal
water company “Acqua Bene Comune Napoli” (ABC) replaced 4989 traditional water
meters with smart meters. Hourly consumption data from residential and non-
residential water meters are collected and communicated daily to the utility central
server through a fixed wireless network.

In this work, 1067 residential meters were considered, using the data collected at the
household level from 20 March 2017 to 19 March 2018. In order to analyse daily water
demand for each user, the hourly data were aggregated at the daily scale.

Furthermore, according to the data provided by Istat (Italian National Institute of
Statistics) for each census section included in the DMA, the following characteristics
were considered:

– the average level of employment of household members;
– the average educational level of household members.

The social characteristics of each household of the DMA were determined based on
the related census section. According to the available information, each household was
classified on the basis of state of employment and educational level as shown in
Table 1.

In addition, daily maximum air temperature and daily mean solar radiation data over the
same period (20 March 2017—19 March 2018) were collected. The weather data were
recorded at intervals of 30 min by the weather station of the University of Naples Federico
II. The weather station was chosen due to its proximity to the DMA. These data were also
aggregated at the daily scale. According to the recorded data, the highestdaily maximum
temperature occurred in summer, with an average of ∼ 30 °C, whereas the highest values of
daily mean solar radiation were recorded in both spring and summer, with an average of ∼
270 W/m2.

Table 1 Classification of the households of the DMA according to their main social characteristics and
description of households groups

Households classification Households groups

Characteristic Class Group Description Number of
households

State of employment Employed Group 1 Employed with high school/
university degree

622
Unemployed

Educational level Primary/secondary
school degree

Group 2 Unemployed with primary
/secondary school degree

125

High school/university
degree

Group 3 Employed with primary
/secondary school degree

320
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3 Methodology

In the following subsections an innovative methodology to assess future variations in water
demand due to climate change is proposed. First, 3 configurations of RFs based on weather
variables are presented. Then, the innovative methodology based on RFs and climate change
scenarios obtained through the CCWorldWeatherGen (Jentsch et al. 2017) is explained.

3.1 Forecasting Water Consumption using Weather Variables

In this work, regression RFs were implemented. RFs can be used for both classification and
regression, for categorical and continuous response variable, respectively (Cutler et al. 2011).

In RF regression, from the training dataD ¼ x1; y1ð Þ; ; xN ; yNð Þf g, where xi ¼ xi;1; ; xi;p
� �T

represents the p predictors and yi denotes the response, for the generic tree j j ¼ 1; 2; ; ntð Þ a
bootstrap sampleDj of size N is taken from D (Breiman 2001). Then, the tree is fitted by using
Dj as training data and applying the binary recursive partitioning (Cutler et al. 2011).
Specifically, starting with all observations in a single node, for each un-split node,m predictors
among the p available predictors are randomly selected. The node is then split into two
descendant nodes using the best binary split among all binary splits on them predictors. In the
regression context, the mean squared residual at the node is usually used as a splitting criterion.
The algorithm goes on until a stopping criterion is satisfied, i.e. when the tree has reached the
maximum allowed depth. All the resulting trees are finally combined by averaging their
responses. Therefore, the prediction at the generic point x is made as follows:

by xð Þ ¼ 1

nt

Xnt

j¼1
bhj xð Þ ð1Þ

where bhj xð Þ is the prediction of the response variable at x using the j� th tree.
RFs allow merging together the predictions of multiple decision trees to get a prediction

more accurate and stable than the one provided by individual decision trees.
In order to improve the accuracy, the following model hyperparameters were tuned:

& the number of predictors randomly selected at each node (m);
& the number of trees (nt);
& the minimum size of terminal nodes (nd).

The available dataset was split in calibration subset, made up of the odd lines, and validation
subset, made up of the even lines. RFs were trained using the calibration dataset, whereas the
validation dataset was used to evaluate the model performance on unseen data. The accuracy was
assessed using the Root Mean Square Error (RMSE) and the coefficient of determination (R2):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 byi � yið Þ2
N

s

ð2Þ

R2 ¼
PN

i¼1 byi � yð Þ2
PN

i¼1 yi � yð Þ2 ð3Þ
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where yi and byi are the observed and forecasted values respectively, y is the mean value of the
observed values yi and N is the number of observations.

RFs were then used to predict the daily water demand at aggregated scale, i.e. the demand
obtained by summing the daily demand of each user of the DMA.

Since past consumption is not always available for water utilities it is important to explore
an alternative strategy. Furthermore, past consumption can conceal the effect of other predic-
tors by carrying the same information (Xenochristou et al. 2021). For these reasons, 3
configurations of RFs, shown in Table 2, were developed to investigate the performances of
weather variables as predictors. The first configuration of the model (Model 1) accounts for the
combined effect of temperature and solar radiation, whereas Models 2 and 3 investigate the
individual effect of temperature and solar radiation, respectively. Specifically, Models 2 and 3
were developed to take into account the possible interaction between weather variables. In the
case of variable interaction, the predictors can provide overlapping information to the model.
Thus, the influence of each predictor can be concealed by overlapping information, affecting
the forecasting model. Temporal characteristics – i.e. type of day (working day or holiday),
season, month and weekday—were considered in all configurations since they are always
easily accessible to water utilities. Table 2 also shows the results of the tuning for each model.

In order to investigate the influence of weather on different user types, the models were
applied to forecast the aggregated demand of three groups of households. The description of
the groups is reported in Table 1. The groups differ in the employment state and educational
level of the residents. Group 1 consists of households where members are on average
employed with a high average educational level (high school/university degree). Group 2
has members that are on average unemployed with primary/secondary school degree. Group 3
is made up of households where members are on average employed with primary/secondary
school degree. It is worth noting that, according to the available information about the social
characteristics of the users (i.e. state of employment and educational level), all the possible
groups were identified. Further groups can be obtained by grouping the households based on
one classification rather than on both state of employment and educational level (e.g. grouping
together all households with employed members). However, these groups would be very
heterogeneous, reducing the differences between each group and, thus, the benefit of disag-
gregating water consumption.

In order to take into account the effect of the group size on the forecasting accuracy
(Xenochristou et al. 2020), groups with the same number of households were required. Given
that Group 2 was the smallest group, samples with the same size of Group 2 (i.e. 125
households) were considered for Group 1 and Group 3. In order to both limit the calculation
time and obtain representative results for each group, the number of samples was chosen
proportionally to each group size. In order to select a number of samples that was proportional

Table 2 Explanatory variables and hyperparameters of each model

Models Variables Hyperparameters

Temporal
characteristics

Daily maximum
temperature

Daily mean solar
radiation

m nt nd

Model 1 x x x 6 50 10
Model 2 x x 3 200 10
Model 3 x x 3 100 10
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to the size of Group 1, 5 samples were randomly selected for this group, since it was almost 5
times greater than the samples’ size. Then, the models were applied to each sample and the
results in terms of RMSE and R2 were averaged among all samples. The average results, and
hence the forecasting accuracy, are expected to remain almost unchanged even for higher
number of samples, since the samples selected are enough to be truly representative of all the
users of the group. Similarly, the values of RMSE and R2 for Group 3 were determined by
averaging the results obtained for 3 random samples.

3.2 Forecasting Changes in Water Consumption based on Climate Change

The aim of the methodology is to assess the impact of climate change on water demand. In the
first phase, weather time series are generated based on climate change scenarios, then RFs are
used to predict the daily aggregated water demand.

In the first phase, the CCWorldWeatherGen tool (Jentsch et al. 2017) is used to
generate reliable climate change weather scenarios. The CCWorldWeatherGen uses the
data from the HadCM3 (Hadley Centre Coupled Model, version 3) A2 experiment
ensemble provided by the IPCC Third Assessment Report (IPCC, 2001a, b, c). The
HadCM3 is a coupled atmosphere–ocean general circulation model (AOGCM or
CGCM), whose output consists of relative changes with respect to the period ranging
from 1961 to 1990 (Collins et al. 2001). The CCWorldWeatherGen accounts only for
the A2 emission scenario provided by the special report on the emission scenarios
(SRES) published by the IPCC (2000). A2 is at the higher end of the emissions
scenarios described by Nakicenovic et al. (2000). A high emission scenario, such as
the A2, is more suitable in investigating the impacts of climate change on water
consumptions. From a management standpoint, if the water company can cope with
significant changes in consumptions due to large climate changes, then the smaller
changes can be easily addressed. Once the baseline scenario (i.e. the data gathered from
1961 to 1990) is selected, the relative changes provided by the HadCM3 are
superimposed on the meteorological parameters through the CCWorldWeatherGen tool.
In this work, the baseline scenario for Naples provided by the World Meteorological
Organization Region and Country was used. The measured weather data are trans-
formed into climate change adapted weather data according to the “morphing” meth-
odology developed by Belcher et al. (2005). Finally, the CCWorldWeatherGen tool
generates climate change projections relative to the time periods 2041–2070 (Scenario-
2050) and 2071–2100 (Scenario-2080), consisting of hourly time series for the whole
year. It is worth noting that the HadCM3 A2 experiment ensemble does not provide the
data for more frequent climate projections. Therefore, the CCWorldWeatherGen
allowed to generate projections only for the time periods 2041–2070 and 2071–2100,
being based on the HadCM3 A2 experiment ensemble data.

In this work the projections of temperature and solar radiation were aggregated into daily
projections.

In the second phase, the RFs based on weather variables are used to predict the
daily aggregated water demand time series for each climate change scenario. The
measured data related to 2017–2018 (described in previous section) were used as
training dataset and represent the Current Scenario. The main changes in water
demand compared to the measured consumptions (i.e. Current Scenario) were inves-
tigated as follows.
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The seasonal percentage change in water demandΔC can be easily calculated according to
the following equation:

ΔC ¼
PNs

i¼1
byi�yi
yi

� 100
Ns

ð4Þ

where Ns is the number of observations for the season s.
Assuming a positive correlation between both weather variables and water demand (Toth

et al. 2018), forecasting errors may be taken into account by neglecting days in which changes
in water demand and weather compared to the measured data are of opposite sign.

Similarly, the percentage change in water demand during the peak periods (when the
highest increase or decrease in weather variables is expected) based on climate change
projections, can be determined. For example, after identifying the weeks with the highest
weekly weather averages (peak weeks) by using the 7-day moving average, Eq. 4 can be
applied accounting for the weekly averages of percentage change in water demand. In this
work, water demands obtained through Model 2 were used to assess the demand increase
related to the temperature peak weeks; similarly, Model 3 was used for solar radiation peak
weeks.

The social characteristics of the users can be taken into account as well. The whole
methodology can be applied to different groups of users, formed according to their social
characteristics, by using their aggregated water demands (i.e. the daily total demands of each
group). For the sake of simplicity, the methodology was applied only to Group 1 (Table 1).

Overall, the methodology allows to evaluate not only the seasonal likely variations in water
demand due to climate change, but also the variations during the peak periods to avoid failure
in water supply.

4 Results and Discussion

The following subsections discuss the results obtained applying the presented methodologies
to the case study of Naples.

4.1 Prediction Accuracy of RFs based on Weather Variables

First, the results for the daily aggregated water demand of the DMA are presented. Table 3
shows the results of the RFs in terms of RMSE and R2 for the validation dataset. All models
led to good results, showing good performances in terms of R2. Model 1 (based on temporal
characteristics, temperature and solar radiation input) resulted in the best performance, mean-
ing that this model had the highest prediction accuracy, as evidenced in the highest value of R2

(0.67) and the lowest value of RMSE (16448 L). This demonstrated the benefit of including
both the weather variables (temperature and solar radiation) as predictors. Model 3, that
besides temporal characteristics included solar radiation input, led to slightly better perfor-
mances compared to Model 2 (including only temporal and temperature input).

Figure 1 reports the comparison between measured and forecasted aggregated daily
demands for Models 1 and 3. Each point represents one day. The most of the points follow
the bisectors of the graphs, highlighting a good agreement between measured and forecasted
aggregated daily demands. However, both models seem to overestimate the lowest demands
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and underestimate the highest ones. This result can be traced back to the structure of RFs
which is based on averaging among different predictions. This could lead to underpredict the
highest demands and overpredict the lowest demands. Furthermore, many forecasting
modelsstruggle to predict outliers (Xenochristou and Kapelan 2020). In this case, bias
correction methods can be used to improve the forecasting accuracy of the peak days. Similar
results were obtained for Model 2 as well.

The good performances of the models showed that weather variables can be effectively
used to forecast water demands. These models can be used to estimate future demand changes
based on climate change scenarios, since they were able to catch the variations due to weather.

Table 3 also reports the results obtained for the aggregated demand of each group of
households. For Group 1, all models led to similar results. More specifically, Model 1 showed
slightly better performances in terms of RMSE (i.e. the lowest value of RMSE = 2937 L).
Model 3 also showed good level of accuracy (R2 = 0.66 and RMSE = 2948 L). Slightly worse
performances (R2 = 0.65 and RMSE = 2985 L) were obtained for Model 2, although the level
of accuracy is good.

For Group 2, the models showed the lowest performances. The worst performances (R2 =
0.51 and RMSE = 3216) were obtained for Model 3.

For Group 3, the best results (RMSE = 2630 L and R2 = 0.62) were obtained for Model 1.
Models 2 and 3 led to reasonable levels of accuracy. More specifically, Model 3 resulted in
slightly higher prediction accuracy compared to Model 2.

Overall, the best performances were observed for Group 1, although good performances
were obtained for Group 3 using both solar radiation and temperature input. The models
showed the lowest performances for Group 2.

Table 3 Results in terms of root mean square error (RMSE) and coefficient of determination (R2) obtained at
aggregated scale for each model, for the DMA and each group of households

Model DMA Group 1 Group 2 Group 3

RMSE (L) R2 RMSE (L) R2 RMSE (L) R2 RMSE (L) R2

Model 1 16,448 0.67 2937 0.66 3177 0.53 2630 0.62
Model 2 17,539 0.64 2985 0.65 3096 0.55 2713 0.59
Model 3 17,031 0.65 2948 0.66 3216 0.51 2701 0.60

Fig. 1 Comparison between measured and forecasted aggregated daily demand for Model 1 (a) and Model 3 (b)
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These results prove a stronger relationship between weather variables and water demand for
Group 1 and Group 3, meaning that employed users appear to be on average more affected by
weather than the unemployed ones. Indeed, employed users spend more time outside and have
more scheduled habits that can be easily affected by weather. Notably, better results were
obtained for Group 1, consisting of users with high school/university degree. Thus the
educational level seems a further discriminating factor in investigating not only the water uses
(Hurd 2006; Makki et al. 2013) but also the effects of weather variables on water consumptions.

The performed analysis showed that there are types of users that are more affected by
weather, confirming the importance of including the socio-economic status of the users when
investigating the effects of weather on water demand (Domene and Sauri 2006; Chang et al.
2010; Xenochristou et al. 2020; Xenochristou et al. 2021).

Furthermore, the types of users mostly affected by weather will likely be primarily
responsible of potential future variations in water demand related to climate change. At the
same time, the types of users less sensitive to weather will probably have less of an impact.
Knowing the number of users belonging to each type will enable the water utility to easily
assess if the total district demand is expected to rise and, thus, avoid failure in water system
capacity.

4.2 Impact of Climate Change on Water Demand

This section reports the results in terms of seasonal and peak variations in water demand with
respect to the Current Scenario (measured data from 20 March 2017 to 19 March 2018).
Figure 2 reports the seasonal values of daily maximum temperature and daily mean solar
radiation for each scenario. During the study period the temperature variations are higher than
the solar radiation ones.

Table 4 presents the results obtained using Model 1 and Model 2 for Scenario-2050 and
Scenario-2080, including the seasonal average increase of daily maximum temperature (ΔT).
This value represents the average, over each season, of the differences between the daily
maximum temperatures for the respective future and current scenarios. The same applies to the
daily mean solar radiation (ΔSR).

The seasonal percentage changes in water demand (ΔC) for Model 1 were lower than those
for Model 2, due to the low or negative ΔSR. According to the solar radiation projections of

Fig. 2 Barplot of seasonal values of daily maximum temperature (a) and daily mean solar radiation (b) for each
scenario
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both Scenario-2050 and Scenario-2080, except for spring, theΔSRwere low (Table 4). Recent
studies using regional climate models at high resolution for climate change scenarios have
shown an overall small decrease in solar radiation (Jerez et al 2015; Bartók et al 2017), in
accordance with the scenarios considered here. However, in summer, despite the low/negative
ΔSR, ΔC could rise up to approximately 5% (Scenario-2080).

ForModel 2, the highestΔC occurred in the summer, reaching up to 7.6% in Scenario-2080.
It should be noted that, even if the ΔT was comparable between summer and autumn in both
scenarios, the ΔC was higher in the summer. This suggests that with the same temperature
increase, larger demand increases occur at higher values of temperature (around 30 °C). This
observation is in accordance with the study of Xenochristou et al. (2021) which identified a
temperature threshold beyond which water consumption of UK households starts increasing.

Figure 3a shows the results of Models 2 and 3 for the peak weeks. During temperature peak
weeks, the increases in water demand were higher than the summer ones. The weeklyΔC was
equal to 9.6% in Scenario-2050 and 10.5% in Scenario-2080, for weekly temperatures equal
to 34.3 °C (Scenario-2050) and 36.5 °C (Scenario-2080). For the solar radiation peak weeks,
theΔC was equal to almost 6% for both Scenario-2050 (weekly solar radiation of 328 W/m2)
and Scenario-2080 (348 W/m2). The lower ΔC during solar radiation peak weeks demon-
strated that water demand was more affected by temperature.

Figures 3b and c show the results for the aggregated water demand of Group 1 (622
households). The summer ΔC (Figure 3b) was higher than the one obtained for the total
district demand for both scenarios. Accounting for the combined effect of temperature and
solar radiation (Model 1) resulted in ΔC equal to 3.1% and 7.0%, for Scenario-2050 and
Scenario-2080, respectively. Higher increases for both Scenario-2050 (7.1%) and Scenario-
2080 (11%) were found by considering only the temperature effect (Model 2). The ΔC for
peak weeks (Fig. 3c) was higher than the one of the total district demand. The highest ΔC
(13—15%) was observed during temperature peak weeks, although high ΔC were attained
during solar radiation peak weeks as well. Overall, the demand of Group 1 resulted to be more
affected by climate changes compared to the demand of the district.

The performed analysis showed that due to climate change the water demand could increase
mostly during the weeks with the highest temperatures. Furthermore, the results demonstrated
that the water demand of the type of users most affected by weather variables (Group 1) could
increase more than the total district demand. Thus, the results showed the relevance of

Table 4 Seasonal average of daily maximum temperature and daily mean solar radiations (Tmax andSR), seasonal
average increase of daily maximum temperature and daily mean solar radiation (ΔT and ΔSR) and seasonal
percentage change in daily water demand (ΔC) compared to the Current Scenario obtained by applying Model 1
and Model 2, for each season and climate change scenario

Scenario Scenario-2050 Scenario-2080

Season Spring Summer Autumn Winter Spring Summer Autumn Winter

Tmax ð�CÞ 23.4 31.1 21.3 14.2 24.8 33.2 22.8 15.4
ΔT ð�CÞ 0.4 1.5 1.9 -0.7 1.8 3.6 3.4 0.5
SR ðW=m2Þ 230 261 106 93.4 236 274 107 94.8
ΔSR ðW=m2Þ -44.0 -10.1 -9.3 6.9 -37.5 3.2 -7.6 8.3
ΔC %ð Þ—Model 1 -0.4 2.7 -0.1 0.1 0.1 4.9 -0.1 0.0
ΔC ð%Þ – Model 2 1.9 5.1 1.1 -0.4 2.8 7.6 1.9 0.0
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disaggregating consumption based on the social characteristics of the users to determine the
climate change effects on water demand more accurately.

5 Conclusions

This study investigates the effect of weather variables on water demand in both current and
future climate change scenarios. A novel methodology to assess the impact of climate change
on water demand is presented. This methodology allows to forecast future variations in water
demand due to likely changes in weather variables by using RFs and the
CCWorldWeatherGen. The case study of Naples (Italy) showed the effectiveness of using
weather variables in forecasting aggregated water demand.

According to future weather scenarios for 2040–2100, the daily water demand of the DMA
could increase mainly due to increases in air temperature. During the weeks with the highest
temperatures, increases in water demand could reach up to 9–10%. The increase in water
demand was different for users with different social characteristics, since they were affected by
weather to varying degrees. Employed users with high education could increase their con-
sumption by 13–15% during the weeks with the highest temperatures.

Accounting for future variations in water demand due to climate changes is needed to avoid
risks of supply and operational failures in water systems. This need is particularly remarkable
for Italy, that, as the most Mediterranean countries, is already coping with water shortages (La
Jeunesse et al. 2016).

In previous studies for the Mediterranean area (Zachariadis 2010; Collet et al. 2015;
Kanakoudis et al. 2017) climate change scenarios were used for assessing future vulnerability
of water resources. However, in these studies demographic statistics and past consumption
trends were used to determine future water demand variations (that apply to the entire year).
Instead, the methodology presented in this paper allows to directly determine future variations
in water demand due to climate change based on seasons and peak weeks. Thus, the
methodology provides more accurate projections based on future climate change scenarios,
accounting for different periods of the year.

Fig. 3 Weekly percentage change in total daily water demand of the DMA (a), and summer (b) and weekly (c)
percentage change in total daily demand of Group 1, for scenarios 2050 and 2080
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In this work, the effect of climate change on the total district demand was investigated using
information about some social characteristics of the users. However, additional socio-
economic information about the users could lead to a better disaggregation of the consumption,
allowing to increase the number of households groups. In addition, in this work only one
emission scenario was considered. Different results could be obtained with lower or higher
emission scenarios. Therefore, future works will investigate climate change impacts on water
demand of different types of users, by increasing the households grouping and using different
emission scenarios. Furthermore, the CCWorldWeatherGen provided projections only for long
timeframes. In order to more accurately assess the variations during the entire study period (i.e.
2040–2100), future works will investigate more frequent climate projections (e.g. every
5 years), especially in the near future, by using different CGCMs.
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