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Abstract Resilience of a water resource system in terms of water supply meeting future
demand under climate change and other uncertainties is a prominent issue worldwide. This paper
presents an alternative methodology to the conventional engineering practice in the UK for
identifying long-term adaptation planning strategies in the context of resilience. More specifically,
a resilience-based multi-objective optimization method is proposed that identifies Pareto optimal
future adaptation strategies by maximizing a water supply system’s resilience (calculated as the
maximum recorded duration of awater deficit period over a given planning horizon) andminimizing
total associated costs, subject tomeeting target system robustness to uncertain projections (scenarios)
of future supply and demand. The method is applied to a real-world case study for Bristol Water’s
water resource zone and the results are compared with those derived using a more conventional
engineering practice in the UK, utilizing a least-cost optimization analysis constrained to a target
reliability level. The results obtained reveal that the strategy solution derived using the current
practice methodology produce a less resilient system than the similar costing solutions identified
using the proposed resilience driven methodology. At the same time, resilience driven strategies are
only slightly less reliable suggesting that trade-off exists between the two. Further examination of
intervention strategies selected shows that the conventional methodology encourages implementa-
tion of more lower cost intervention options early in the planning horizon (to achieve higher system
reliability) whereas the resilience-basedmethodology encouragesmore uniform intervention options
sequenced over the planning horizon (to achieve higher system resilience).
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1 Introduction

One of the greatest challenges facing decision makers in the water industry in the UK and
worldwide are the increasing influences of Bdeep^ climate change, population growth and
urbanization uncertainties affecting the long-term balance of supply and demand and necessitat-
ing the need for adaptive action (Environment Agency 2013). Walker et al. (2013) defines the
circumstances at which uncertainties can be classified as Bdeep^ as when Bone is able to
enumerate multiple plausible alternatives without being able to rank the alternatives in terms of
perceived likelihood^. Under this definition, which is utilized in this paper, uncertainties are often
categorized by the generation of multiple future scenarios to represent a range of Balternative
plausible conditions under different assumptions^ (Mahmoud et al. 2009). Combining these
scenarios with a suitable metric to measure system sensitivity to changing conditions (i.e.,
robustness) can then facilitate the examination of the potential benefits of alternative system
configurations (i.e., adaptation strategies) across a range of deep uncertainties. The interaction of
deep uncertainty, scenarios, robustness and adaptation is discussed in detail byMaier et al. (2016).

The complexity of these interactions brings into question the ability of current UK and
international engineering planning approaches to deal with deep uncertainties. For example,
the current water supply planning approach in the UK is to ensure a regional water system
maintains a designated ‘level of service’ to its customers (NERA 2002; Environment Agency
et al. 2012). This is essentially an agreement between a water company and its customers
describing the average frequency that a company will implement temporary restrictions on
water use. However, this ‘level of service’ calculation lacks transparency and is often presented
as a general target (e.g., a target system performance of no more than 1 in 10 or 1 in 15 years
enforced restrictions (Bristol Water 2014)). It is also calculated irrespective of the duration of
each projected restriction. Further to this it relies on an assumption that a drought event can be
assigned a probability of occurrence and associated return period despite the long acknowl-
edged liabilities of event frequency estimation techniques (Turner et al. 2014). Especially in
light of increasing climate change effects where the impacts on hydrology are likely to be non-
linear and felt most at the extremes (Allen and Ingram 2002).

In response to the rising uncertainties a range of experimental frameworks and approaches
are currently being developed and tested for potential use in the water industry. Recent
international water resources management (WRM) literature includes a wide array of contrast-
ing approaches for planning under Bdeep^ uncertainty, such as: Robust Decision Making
(Matrosov et al. 2013; Groves et al. 2015), Info-Gap decision theory (Korteling et al. 2013;
Roach et al. 2016), Decision Scaling (Brown et al. 2012; Turner et al. 2014) and Robust
Optimization (Ray et al. 2013; Kwakkel et al. 2015). Most of these approaches have been
developed to evaluate the performance of a decision or strategy by calculating system
robustness, which is the term commonly used to describe the degree, or percentage of plausible
future conditions, under which a water supply system maintains a satisfactory level of
performance. Alternative approaches incorporating flexibility analysis within the adaptive
planning process are also being examined for WRM application, such as the use of Dynamic
Adaptive Policy Pathways (Kwakkel et al. 2015). However, despite the widening range of
approaches under development, the outputs from these methods remain highly dependent on
how the water resource system performance itself is evaluated. It is within these more practical
engineering features that a wider knowledge gap is often over looked.

The more well-known performance criteria often cited within WRM literature are those of
Hashimoto et al. (1982) who were among the first to purpose the use of the terms reliability,
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vulnerability and resilience for water resource system performance evaluation. These perfor-
mance criteria, in general, refer to how likely a system is to fail (its reliability), how severe the
consequences of failure might be (its vulnerability) and how quickly it can bounce back, which is
the recovery from a failure (its resilience). The EBSD ‘levels of service’ method used in current
UK engineering practice can be most closely equated to a performance criterion of reliability and
does not explicitly consider the resilience of the system. However, the latest investigation by the
EA into WRM planning methods of the future (Environment Agency 2013), called for a review
of the EBSD ‘levels of service’method and for the advancement of incorporating more resilience
into water resource system planning, indicating it will support adaptation strategies that are aimed
at improving system resilience. Recent UK government reports have also emphasized resilience
(Defra 2016); however, there is still no standard quantitative definition of resilience (Environment
Agency 2013) and resilience remains generally poorly defined in practice to date.

The application of resilience as a criterion for measuring performance in WRM problems
has been explored (Jung 2013; Linkov et al. 2014). Matrosov et al. (2012) and Paton et al.
(2014) calculated resilience as the average duration of time a system is under a temporary
restriction. Fowler et al. (2003) calculated it as a fraction of the total future time a system is
under an unsatisfactory state. Loucks (1997) calculated it as the probability of a system
recovering once it enters an unsatisfactory state. Kjeldsen and Rosbjerg (2004) calculated
resilience in three alternative ways: the inverse of the mean value of the time the system spends
in an unsatisfactory state, the maximum duration of an unsatisfactory state and the duration of
the 90th fractile of observed unsatisfactory periods. They concluded that the maximum
duration metric provided the most accurate and comprehensible estimation of performance.
A direct maximum duration calculation was also the resilience metric of choice by Moy et al.
(1986) who selected it to enable and simplify the quantification of resilience and its
incorporation into a mathematical programming model. Kundzewicz and Kindler (1995)
argued that a resilience definition based on a maximum value is more useful than one based
on a mean, as the presence of small inconsequential events can lower the mean value and
present an inaccurate picture of actual overall system performance. Using resilience as a
performance criterion has also been investigated within several other areas of human, social
and ecological systems science, from natural resource investigations (Tompkins and Adger
2004) to coral reef surveys (Hughes et al. 2003), with a detailed review of cross sector
resilience measures conducted by Hosseini et al. (2016). It has generally been concluded that
building resilience into systems (i.e. the ability to recover quickly from detrimental periods)
can be an active and effective way to cope with environmental change characterized by future
uncertainties and unknowable risks.

Despite several investigations involving resilience criteria (see above), few to date have
applied the metric to a complex real-world WRM adaptation case study under deep uncertainty
to identify optimal adaptation strategies from a wide range of potential supply and demand
intervention options. Nor has a comparative analysis been conducted with results from current
engineering practice. The novelty of this study lies in the assessment of whether incorporating
a duration-based metric of resilience as a quantified objective in WRM assessments, in
addition to appraisals of scenario-based robustness and total costs, can improve the identifi-
cation of optimal adaptation strategies, when compared with the standard UK practice of
performing a single least-cost linear optimization analysis constrained to a single reliability
metric. To accomplish this, a novel resilience-based top-down multi-objective optimization
method for the selection of optimal water resources adaptation strategies has been developed,
validated and demonstrated.
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The general WRM problem addressed is first defined followed by the definitions and
concepts of resilience, reliability, robustness, adaptation strategies and costs. A description of
the resilience-based methodology and the water resources simulation model developed for this
study are then given. The quantitative case study of Bristol Water (BW) is then presented,
followed by results and discussion.

2 Methodology

2.1 WRM Problem Definition

The WRM problem is defined here as the regional long-term water resources planning
problem of maintaining adequate water supply to meet future demand over a pre-specified
planning horizon under uncertain future conditions of climate change and population growth.
The aim is to determine the best adaptation strategy(ies) (i.e., set of intervention options
scheduled across a given planning horizon) that can upgrade an existing WRM system to
maximize the resilience of the future regional water supply whilst minimizing the total cost of
intervention options required subject to target levels of desired robustness. Note here that
resilience is a primary planning objective being optimized for within the methodology, while
target robustness is set as a changeable constraint.

2.2 Resilience of Water System

In this study, resilience is defined and calculated as the maximum recorded duration of time
taken for the water supply system to enter, and then recover from a water deficit period. A
water deficit period is defined as a consecutive time-period where a temporary water restriction
must be put in place (e.g., a temporary water use ban). Extended water restrictions have
potentially severe economic, environmental, societal and reputational impacts, particularly in
large conurbation areas (Environment Agency 2015).

The conditions that elicit a water deficit period to occur are highly dependent on the water
system under study. In the case study analysed in this paper (see section 3) a water deficit
period is registered when the water level in the primary combined network reservoir system
falls below an unacceptable pre-specified (threshold) level. The rationale behind this is that a
water deficit period defined this way may be allowed to occur occasionally, to manage the
water supply system during periods of drought, but an empty reservoir causing an unfulfilled
water demand is deemed unacceptable. The threshold which defines a water deficit (the
vulnerability of the system (Hashimoto et al. 1982)) is pre-specified by setting the water
deficit threshold level to an appropriate magnitude. However, the frequency of deficit periods
(the reliability of the system) is left unconstrained in this methodology to examine the effect of
driving strategy optimization by resilience alone.

For comparison with the resilience-based methodology a ‘current practice’ methodology is
also tested, which represents conventional water company practice of using ‘levels of service’.
This defines the target frequency that customer water restrictions would be implemented. Rather
than using a resiliencemetric this approach involves setting a target reliability for the system (here
taken as a maximum allowable frequency of water deficit periods recorded over a planning
horizon) and then optimizing with the same definition of system robustness, calculation of total
strategy costs and utilizing the dynamic water resources simulation model as outlined below.
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2.3 Robustness of Water Supply

Robustness is most commonly described in water resources literature as the degree to which a
water supply system can maintain performance at a satisfactory level across a broad range of
plausible future scenarios or conditions (Moody and Brown 2013; Matrosov et al. 2013). A
global robustness measure of satisficing performance utilizing pre-defined domain criterions
has been selected for this study, as it elicits a transparent quantified calculation of robustness
that is suitable when examining a wide range of highly variable discrete future scenarios and
has been successfully employed in numerous recent WRM studies (Paton et al. 2014; Beh
et al. 2015; Roach et al. 2016). Robustness of long-term water supply is specifically defined
here as in Roach et al. (2016) as the fraction (i.e., percentage) of future supply and demand
scenarios that result in an acceptable system performance (here in terms of resilience), as
shown in Eq. (3). For example, if 90 out of 100 scenarios maintain a given resilience (e.g.,
maximum duration of water deficit equal to 1 month) then the robustness, of the water supply
to maintain this level of resilience is 0.9, i.e., 90%.

2.4 Adaptation Strategies and Water Resources Simulation Model

A range of different adaptation strategies can be generated by employing different combinations
of new water resources and/or techniques to reduce water losses/consumption (intervention
options) sequenced over a given long-term planning horizon (see examples in Table 2). The
total cost of an adaptation strategy is expressed in terms of Present Value (PV), as shown in Eq.
(2). Different adaptation strategies are evaluated using a dynamic water resources network
model (see Fig. 1) that is designed to simulate the supply and demand balance of a regional
water supply system/network, using a monthly time step, over a pre-established time horizon.
Different adaptation strategies and future scenarios of supply and demand can be input to the
system, analysing the performance of each system combination via system resilience results.
The dynamic water resources simulation model is written in the Python programming language
(Python Software Foundation 2013), and scenarios and strategies are selected and input
automatically using an optimization algorithm routine constructed in the R programming
language (R Core Team 2013).

2.5 Optimization Methodology

A resilience-based two-objective optimization method is presented that identifies
Pareto optimal solutions by maximizing system resilience to water deficits and
minimizing the total cost of interventions subject to target levels of robustness, i.e.,
as follows. The resilience of an adaptation strategy x to a discrete individual scenario
combination of supply and demand u is calculated as:

Resxu ¼ max
j

p jð Þf g ð1Þ

where p(j) is the duration of the jth water deficit period. The total cost of adaptation
strategy x is expressed in terms of Present Value (PV) using a standard discounting
equation applied to both the estimated capital costs Cy (£M) and operational costs Oy

(£M/yr) of each selected intervention option y, as follows:
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Fig. 1 Simplified flowchart of the dynamicwater resources simulationmodelwith resilience-basedmethodology set-up
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PVx ¼ ∑
Y

y¼1

Cy

1þ rð Þiy þ ∑
I

i¼iy

Oy

1þ rð Þi
" #

ð2Þ

where r = the annual discount rate, i = the time step of the planning horizon (in years), iy = the
year in the planning horizon option y is implemented, Y = the total number of intervention
options in the (adaptation) strategy, and I = the total number of years in the planning horizon.
The robustness of long-term water supply is then derived as follows:

Robx ¼ A
U

*100 ð3Þ

where A = the number of scenario combinations (of supply and demand) under which the system
maintains a given level of resilience and U = total number of scenario combinations considered.
Every time an adaptation strategy is evaluated during the optimization process all potential
combinations of supply and demand are generated and assessed using full enumeration sampling
of all potential scenarios. This ensures all viable futures are explored in the robustness calculation.

A discrete target level of robustness R is selected and set as a constraint in the optimization
process and the highest level of resilience that can be maintained by a system at or above this
target robustness level is recorded. For example, if target robustness is set at 80% and the highest
level of resilience maintained by a given adaptation strategy system is 5 months, then the systems
resilience is designated as 5 months. Note that if multiple optimization problems (for varying
target levels of robustness) are solved this will enable the production of a 3D trade-off surface
between resilience, cost and robustness.

The optimizing algorithm selected for this study is the NSGA-II (Deb and Pratap 2002), as its
high performance and capabilities in handling multi-objective water related optimization prob-
lems is well documented (Nicklow et al. 2010; Zheng et al. 2016) and it is recognized as an
industry standard and freely available algorithm (Wang et al. 2014). Alternative evolutionary
algorithms, such as BORG or epsilon-NSGA2, have proven superior in certain criteria in recent
studies (Reed et al. 2013; Zheng et al. 2016). However, the NSGA-II is still a reliable MOEA and
proved suitably adequate to handle the complexity of this study following extensive test runs.

The selected NSGA-II uses integer values to select from the decision variables (options) and is
modified to run using multi-processor parallel programming to increase run time efficiency. The
dynamic, monthly-time step water resources simulation model and resilience-based methodology
set-up is combined with the NSGA-II algorithm (see Fig. 1). The model then requires three data
field inputs; a pool of plausible potential new intervention options being considered by a water
company (see section 3.3) to form new adaptation strategy combinations, and a credible range of
potential supply and demand scenarios for a region (see section 3.2). The selected NSGA-II
parameters used in the case study optimization runs are fully listed in section 3.6 and further
explanation of the NSGA-II operation can be found in Deb and Pratap (2002).

3 Case Study

3.1 Description

The methodology detailed in section 2 is applied to a case study of the Bristol Water (BW) water
resource zone. Bristol Water manage a region in the south-west of the UK (see Fig. 2) supplying
approx. 1.2 million customers (as of 2015). The current water supply/demand balance (i.e. as of
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2015) is fine but this region is expected to experience increasing pressures on local water
resources from rising populations (with a 15% projected increase in demand by 2045) and
reductions in the availability of existing water resources as a consequence of climate change
leading to a supply-demand deficit by the 2030s (Bristol Water 2014). This imbalance is
anticipated to continue and worsen through to the end of the twenty-first century (HR
Wallingford 2015). The existing primary water resources are shown in Fig. 2 and listed in Table 1.

The BW water resource zone, introduced in Roach et al. (2015), is designed to operate as a
single resource zone across the whole company area. Under this set-up, no part of the BW
resource zone is remaining solely dependent upon the consistent yield of a single water resource.
Themain river and groundwater sources (resources 1 and 2 in Table 1) are designated reliable and
sustainable over the next planning period (2015–2039); whereas the resource available from the
Mendip Reservoirs is anticipated to be impacted by climate change. For the Mendip Reservoirs
there are three main input components to the combined reservoir system to be modelled when
projecting climate scenarios. These are: the direct reservoir inflows to the Mendip reservoirs; the
lake at Chew Magna and the river Axe at Cheddar (see Fig. 2 and section 3.2).

The aim of the real-life WRM problem analysed here is to determine the best adaptation
strategy(ies) to upgrade/implement within the existing water resource system/network that will
maximize the resilience of future regional water supply whilst minimizing the total cost of
intervention options required subject to different target levels of robustness. The dynamic water

Fig. 2 Bristol Water resource zone schematic

Table 1 The existing water resources of the BW resource zone (Bristol Water 2014)

Resource abstraction priority Resource description Deployable outputa (DO)
annual average - in ML/d

Projected by Bristol
Water to be affected
by climate change?

1 Sharpness canal 210 Not significantly
2 Groundwater sources 65 Not significantly
3 Mendip reservoirs 91 Significantly

a DO is the yield of the source subject to additional system constraints such as the abstraction license,
infrastructure capacity and environmental requirements
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resources simulation model (described in section 2.4) is developed for the BW resource zone to
realistically simulate themonthly supply-demand balance of the system over a 25-year planning
horizon (from year 2015 to year 2039 inclusive). A 25-year planning horizon is selected to
imitate the time frame used in a typical UK water company WRMP planning horizon.

3.2 Scenarios of Supply and Demand

In this case study, two types of scenarios are generated, supply scenarios to model the impact
of climate change on water availability at sources and demand scenarios, to model the impact
of future population growth and urbanization changes.

The supply scenarios for the BW resource zone have been generated using the Future Flows
climate/hydrology scenarios. These were used to generate future flow projections for the region’s
major contributing rivers and reservoirs (Roach et al. 2015). The Future Flows project
(Prudhomme et al. 2012) utilises the projections derived from the UKCP09 regional climate
models (RCMs) from the Met Office Hadley Centre. They provide 11 plausible realisations (all
assumed equally likely) of river flows at various river gauging stations across the UK accounting
for the impact of climate change to 2100 under aMedium emission scenario. The key advantage of
the Future Flow scenarios is that they are transient flow projections, so they do not require
additional rainfall-runoff modelling and so can be directly utilized to continuously simulate the
supply-demand balance over a given planning horizon and analyse the associated timing of
interventions. The limitation of the current Future Flow projections is their utilization of only a
medium global emission scenario; however, once resampled multiple times, the Future Flow
projections provide an adequate range of uncertainty for this specific metric evaluation. Resam-
pling of the flow projections (as outlined in Roach et al. (2016)) eliminates any bias in the selection
of adaptation strategies due to the timing and duration of future drought conditions exhibited, and
enables a sufficient investigation into the role of climate variability on the region’s resources.

The 11 Future Flow projections from the nearest gauging site to the Mendip region
(Midford Brook) are each imposed on 30 resampled flow sequences (derived for each of the
three input components to the combined reservoir system detailed in section 3.1) to create 330
discrete future supply scenarios. Using transient sequences of flows differs to the standard
engineering practice (the EBSD method), which utilises a singular linear interpolation of future
available supply projected from the baseline to the 2030s (Environment Agency et al. 2012).

The demand scenarios for the BW resource zone have been generated using the Office for
National Statistics (ONS) population projections (ONS 2014). These consist of 3 scenarios of
Low, Principal and High population growth used to perturb historic demand values that are
then calculated subject to 3 alternative levels of population/urbanization uncertainty; based on
the 80%, 90% and 100% risk and uncertainty calculations (Bristol Water 2014). This forms 9
discrete scenarios of demand, which combined with the 330 supply scenarios, creates 2970
potential future supply and demand scenario combinations to model.

3.3 Adaptation Strategies

An investigation into potential new intervention options for the BW region was carried
out in Roach et al. (2015) using the BW WRMP 2014 data surveys (Bristol Water 2014).
This created a list (or pool) of 31 potential new small to large water supply resources and
options to reduce water consumption or losses. From this list a range of different
adaptation strategies can then be formed by implementing different combinations of the
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new options, sequenced over the 25-year strategic planning horizon (2015–2039) in
varying arrangements. The total Present Value (PV) costs of strategies are then calculated
using the approach shown in Eq. (2), with an assigned annual discount rate of 4.5%, as
utilised by Bristol Water (2014). Table 2 shows the 19 intervention options, out of the
total 31, that feature in the final results (section 4).

3.4 The Resilience and Robustness of the Water System

As detailed in section 2.2, the resilience of an adaptation strategy under a given discrete future
scenario of supply and demand is calculated as the maximum recorded duration (in months)
that the system remains in a water deficit period (Eq. (1)), due to the remaining water volume
in the combined reservoir network falling below a threshold level. The threshold levels vary
depending on the month in the year as specified in BW’s drought plan (Bristol Water 2012). As
there are 2970 scenario combinations examined, this results in 2970 resilience result for each
adaptation strategy tested. A discrete target level of robustness is selected, and the maximum
resilience level maintained by each adaptation strategy at or above this selected target
robustness is recorded; or alternatively for the ‘current practice’ methodology under which a
target level of reliability is maintained.

3.5 Current Practice Methodology Application

The target level of reliability for Bristol Water is currently set to maintain a 1 in 15 year
maximum occurrence of temporary restrictions being put in place (Bristol Water 2014). Using

Table 2 List of intervention options available for the Bristol Water region (Bristol Water 2014; Roach et al.
2015)

Option code Intervention option Capital / Operational
cost (£M / £M/year)

Deployable
output (ML/d)

OPTIONS TO REDUCE WATER CONSUMPTION
C1 Smart metering rollout 11.5/0.1 2.6
C2 Compulsory metering of domestic customers 32.3/2.4 8.0
C3 Selective metering of high users 6.0/0.3 3.2
C4 Change of ownership metering 32.5/1.5 11.6
C5 Business water use audits 0.0/0.3 1.0

OPTIONS TO REDUCE WATER LOSSES
D1 Pressure reduction 2.5/0.1 2.8
D4 Communication and supply pipe replacement 3.5/0.0 2.2
D5 Leakstop enhanced 1.8/0.0 0.2
D6 Active leakage control increase 0.0/0.9 4.4
D7 Zonally targeted infrastructure renewal 165.1/0.1 13.4

OPTIONS TO PROVIDE ADDITIONALWATER RESOURCES
R3 Desalination plant and distribution scheme 179.4/1.9 30.0
R4 Cheddar second reservoir 99.7/0.2 16.3
R7 Upgrade of disused southern sources 8.3/0.3 2.4
R11 Reduction of bulk transfer agreements 0.0/0.3 4.0
R12 Bulk supply from: (Wessex Water Bridgewater) 26.4/2.3 10.0
R14 Huntspill Axbridge transfer (traded licence) 10.2/0.2 3.0
R15 Honeyhurst well pumped transfer to Cheddar 5.1/0.1 2.4
R16 Gurney Slade well development 10.7/0.3 1.5
R18 Chew Stoke Stream reservoir 54.8/0.1 8.0
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reliability Eq. (4) the relative frequency/probability of a system not being in deficit is
calculated (Kjeldsen and Rosbjerg 2004):

Relxu ¼ 1−
∑H

h¼1 jh
H

� �
*100 ð4Þ

where jh = a value equal to 1 if a year contains a water deficit period, otherwise equal to 0; h =
the year index and H = the total number of years in the planning horizon. For BW to meet its
target ‘level of service’, this translates as maintaining approximately 93% reliability. Over the
selected 25-year planning horizon this corresponds to a maximum allowable frequency of 2
water deficit periods occurring over the planning horizon. This ‘level of service’ must also be
maintained over a specified level of a system’s supply/demand balance uncertainty known as
target headroom (Environment Agency et al. 2012).

BW has selected to maintain a target headroom level of 90% over the next 25 year planning
horizon to significantly reduce the risk of failing to maintain their agreed ‘level of service’ (Bristol
Water 2014). The headroom percentage distributions are calculated either side of the median
supply-demand balance forecasts and encompass the plausible range of uncertainty. It should be
noted that BW’s headroom value is applied to an aggregate supply-demand balance, not directly
within a simulation model, and includes factors that are not considered in this study (e.g. risk of
outage events of assets). However, these are typically smaller components and this study considers
a wider range of uncertainty in the supply and demand scenarios which are directly simulated.
Therefore, BW’s target headroom level, reflecting an attitude to risk, is used by selecting a 90%
target robustness of the supply/demand scenarios considered in the resilience-based methodology.

3.6 Application of Optimization Model

The dynamic, monthly-time step water resources supply and demand simulation model linked to
the NSGA-II optimization method (as described in sections 2.4 and 2.5) has been used here. The
NSGA-II parameters (derived as optimal from the testing of numerous parameter combinations)
are as follows: population size: 400; number of generations: 2000; selection bit tournament size:
2; mutation probability (per gene): 0.2; crossover probability (single point): 0.7.

The generation of adaptation strategies, subsequent testing, ranking, crossover/mutation and
ultimate Pareto optimal strategy set identification is automatically carried out by the NSGA-II
algorithm during the optimization process after 2000 generation assessments. Ten separate runs
(with different random seeds, i.e. randomly generated initial populations of solutions) are carried
out to ensure that the true Pareto optimal strategies are being identified by the optimisation process.

A range of target levels of robustness are selected and input to the optimization model as
constraints to derive a Pareto set of results. The Pareto sets obtained from multiple optimization
model runs are then combined to produce a 3D–surface of Pareto optimal solutions. The discrete
target levels of robustness selected for the optimization analysis are 50, 60, 70, 80, 90 and 100%.
A ‘current practice’ (CP) problem was also solved to derive a single optimal solution under the
constraints listed in section 3.5.

4 Results

The optimal solution derived by the ‘current practice’ (CP) methodology is presented first,
including calculations of the respective resilience exhibited by this strategy over varying target
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levels of robustness. The resilience-based methodology results are presented afterwards.
Selected Pareto optimal adaptation strategies from the resilience driven optimization method-
ology are then compared with the CP derived solution and engineering aspects discussed.

The CP methodology derives a single optimal adaptation strategy following low-cost optimi-
zation to a target reliability of ≥92% and target robustness of 90% (see section 3.5). The
adaptation strategy derived has a PV of total cost of £199 M and consists of several low-cost
options to reduce water consumption and water losses and several water transfer schemes
scheduled from 2015 to 2017, before construction of a large reservoir at Chew Stoke (option
R18 in Table 2) in 2021. Only few options are scheduled for post 2021. The full strategy details
are shown in Fig. 6.

The strategy solution derived by the CP methodology is compared with the resilience driven
optimization model by calculating the resilience of this strategy solution for the same target
levels of robustness applied in the resilience-based methodology. Fig. 3 displays the maximum
resilience maintained by the strategy under target levels of robustness of 50, 60, 70, 80, 90 and
100% respectively. It shows that this ‘reliability’ driven strategy solution can maintain a
resilience as high as 3 months for at least 80% of future supply and demand scenarios, but this
resilience worsens to 10 and 22months respectively for 90% and 100% robustness respectively.

Pareto adaptation strategies were identified by the resilience driven methodology optimized
by maximizing the system resilience and minimizing the PV of the total cost of adaptation
strategies. Six separate optimization runs were conducted for the following target system
robustness’s: 50, 60, 70, 80, 90 and 100%. Fig. 4 presents the 3D Pareto set derived from these
optimizations runs as three 2D graphs displaying: (a) resilience vs cost for varying target levels
of robustness, (b) robustness vs cost for varying levels of resilience and (c) resilience vs
robustness for varying strategy cost groups, before being combined as a 3D–surface in Fig. 5.

The selection of a preferable adaptation strategy can be made from Fig. 4; however, the 3D–
surface provides a clearer overview of the various trade-off options and affords a decision
maker more perspective about how best to satisfy the various performance criteria. An ideally
located individual strategy can then be selected or a specific, more desirable, region of the
surface selected for further examination of individual strategies. More specifically, the decision
makers can select exactly how robust and resilient they want their system to be as well as being

Fig. 3 Resilience exhibited by the ‘current practice’ (CP) optimal solution at varying target levels of robustness
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able to discern how moderate increases or decreases in expenditure will alter the performance
of the water system. Optimization to individual target levels of performance, as is undertaken
in current UK engineering practice using a cost only optimization (the EBSD approach (NERA
2002)), does not allow these observations to be made. Typically, only singular optimal
solutions are derived (equivalent to identifying a single point in Fig. 4(a-c)).

The CP derived optimal strategy is compared with selected strategy solutions derived by the
resilience-based methodology that exhibit similar levels of resilience / total costs in order to
contrast and compare the solutions derived by each method. The strategies selected are shown
on Fig. 5. They consist of: strategies R1-R6, which are selected as they exhibit the same
resilience to target levels of robustness as the CP solution (i.e., from Fig. 3), and strategies A1-
A4 and B1-B3 as they offer increased resilience at a high level of robustness (90% for
strategies A1-A4 and 80% for strategies B1-B3) for a similar PV of total cost as the CP
solution. Table 3 lists the PVof total cost of each strategy examined as well as the resilience
and reliability exhibited, the respective levels of robustness and the average resilience and
average reliability recorded across all future scenarios examined.

Comparing the CP optimal strategy with the R1-R6 strategies in Table 3 shows that, for a
lower PVof total cost, solutions are generated with the same resilience as the CP strategy for
the varying target levels of robustness. For example, strategy R3 has the matching resilience of
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3 months over 80% of future scenarios whilst costing approximately £25 M less than the CP
strategy. The trade-off is a slight decrease in reliability of water supply, with strategy R3
maintaining a reliability of 88% over 90% of future supply/demand scenarios as opposed to
92% in the case of the CP strategy. Strategy A1, the solution of most similar total cost to the
CP solution produced a more resilient system, with 90% of future scenarios now maintaining a
resilience of 6 months, in contrast to the 10 months exhibited by the CP solution. The trade-off
again is a moderate reduction in reliability, with a reliability of 92% being maintained over
81% of future scenarios, which falls to 88% over the remaining 9% of future scenarios within
the 90% target robustness region. This demonstrates that the resilience driven methodology
has identified an adaptation strategy that provides a much more resilient, but marginally less
reliable system. Strategy solutions A2, A3 and B1 can further increase the resilience of the
system for around 5% increase in overall total costs. Strategy solutions A4, B2 and B3 increase
both the resilience and reliability of the system but for increased overall costs. These trade-offs
can only be identified from the resilience-based methodology as opposed to current practice,
whereby singular optimal solutions to fewer objectives are derived. If the priority design
criterion for a water supply system is to maintain high reliability then this could be set as a
constraint and still maintained at a high robustness. However, the benefit of the resilience-
based methodology is it allows a more resilient system to then be identified in addition to high
reliability, albeit at a potentially increased PV of total cost.

Fig. 6 lists the individual intervention components for each analysed strategy and their time
of implementation within the 25-year planning horizon (codes for individual intervention
options located in Table 2). It shows that the CP reliability driven strategy solution includes
a greater number of low cost intervention options early in the planning horizon (2015) with the
costliest intervention option (R18 – a new reservoir at Chew stoke) not implemented until
2021. This strategy also includes no interventions later in the planning horizon (2029–2039),
implying that a number of interventions selected early on in the horizon greatly improves
system reliability. Opposite of this, the alternative strategies derived by the resilience driven
methodology recommend a high cost intervention early in the planning horizon (either R4 – a
reservoir at Cheddar, R18 or, for the most resilient strategy (B3), R3 – a small desalination
plant), before distributing a number of lower cost interventions over the remaining planning
horizon, right up to 2039. This suggests larger investment early in the planning horizon as well
as regular smaller water resource additions to the system increases overall system resilience, as
the duration as well as frequency of severe drought periods are projected to increase over time
due to climate change.

Table 3 Cost, resilience, reliability and robustness exhibited by the selected strategies

100% 90% 80% 70% 60% 50%

R1 165.1 80 64 22 4.4 91.2
R2 175.7 84 71 10 3.1 92.8
R3 173.6 88 76 3 3.0 93.2
R4 191.1 88 80 2 2.8 94.0
R5 195.2 88 86 1 2.7 94.8
R6 163.2 84 78 1 2.4 94.8
A1 198.3 88 81 6 2.4 95.6
A2 209.6 88 87 5 2.2 96.0
A3 214.8 88 87 4 2.1 96.0
A4 231.3 92 93 3 1.8 96.8
B1 214.0 88 87 2 2.1 95.6
B2 261.6 92 96 1 1.6 97.6
B3 349.1 96 99 0 0.9 98.8

Strategies derived from resilience driven methodology

Strategy 
ID

CP

Of similar PV of total 
cost to CP strategy

1 1

Strategy informa�on

Of matching resilience 
(R) to CP strategy

95.6

Highest relibaility 
maintained over 90% 

of scenarios (%)

Total cost - 
PV (£M)

Avg. 
resilience 
(months)

Avg. 
reliability 

(%)

90

Scenarios 
maintained at 

reliability of 92% 
(%)

Resilience maintained over varying % target levels of 
robustness (months)

Strategy derived by 
Current Prac�ce (CP)

199.0 92 2.422 10 3 2
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Fig. 7 demonstrates the system capacity increases (water supply capacity added to the system)
provided by the CP strategy and two similarly priced strategies A1 and B1, over the 25-year
planning horizon. It highlights how the outputs from the ‘levels of service’method and the resilience
driven method differ considerably in the size and timing of intervention options recommended.

5 Discussion

The results obtained here demonstrate how simplifying a planning approach to optimize to a
single criterion (i.e., reliability of supply) does not provide solutions that perform optimally
across alternative criteria. The methodology proposed here produced a wide range of Pareto

Strategy code CP R1 R2 R3 R4 R5 R6 A1 A2 A3 A4 B1 B2 B3

Year of option implementation
C1 D4 D1 R4 C3 C1 R11 C4 C4 C4 C1 C4 D1
C3 D6 R15 R15 D1 D1 R15 D1 D4 D6 R4 R4 R3
C4 R18 D4 D4 R11 R11 R11 R11
D1 R4 R11
D4 R12
D6
R14

D1 C3 C3 R11 R15 R15 C3 D4 C3 C1 C3 D1 R4
D1 C4 D1 D1 R4 D1 D4 C4 D4
R4 D4 D6 R4 R4 R11 R18
R11 R11 R4 R11

R14
R11 C3 R15 C3 R11 D6 C1 R14 R14 C3 D1 C3 D4
R15 C4 C4 R7 D4 R15 R15 D4 R15

D4
R14 C3 C1 D1 R15

R15
2019

D6
R11

2021 R18
2022 C4
2023 C1
2024 C3
2025 D5
2026 C5 R12 D4 R12 R14 R15
2027 C2 D6
2028 R7 D5
2029 R14

C1
D6

C4 C1 C4 C3 C4 D6 R12 D6 R14
R12 R14

2032
R7 R14 D6 R12
R14

R12 R12 D6
R14

2035
2036

R12 R12 D6 C4
C5

2038 R16 C5 R12 R12
2039 D5 C5 C5

PV of total cost (£M) 199 165 176 174 191 195 163 198 210 215 231 214 262 349
Very high cost intervention options > £150 M capital cost
High cost intervention options > £100 M capital cost
Medium cost intervention options > £50 M capital cost
Low cost intervention options < £50 M capital cost

2037

Figure key

2017

2018

2030

2031

2015

2020

2033

2016

2034

Fig. 6 Table of intervention option components and their year of implementation for selected strategies (option
codes listed in Table 2)
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optimal strategies to the performance indicators of resilience, robustness and cost and allows a
decision maker to select a strategy based on their final preferred trade-off across these criteria.

The variation in strategy solutions derived in this study highlights that resilience
and reliability lead to differently designed systems and therefore by considering both
performance indicators it may be possible to derive a solution that performs well
across both metrics (see Fig. 7). Assessing resilience also increases the capability to
attach economic value to the cost of water restriction periods, as a duration of deficit
is more easily quantifiable than a frequency-based approach. Water planners and
policy makers can more easily attach specific social, environmental and economic
costs/risks, to a known duration of time rather than to a more abstract frequency of
unknown events.

The detailed analysis into the sequencing of intervention options over the planning
horizon and the direct effect the sequencing has on the resilience/reliability of the
water system was only possible due to the utilization of the dynamic model developed
in this study to simulate the monthly supply-demand balance. This highlights the
additional information provided by a simulation-based approach to water resources
adaptation assessments and adds further research fuel to the growing international
support to move to more simulation-based assessments when dealing with deep
uncertainties in water resources management.

6 Conclusions

This paper has presented a comparative assessment of a new resilience-based methodology for
WRM planning that optimizes for resilience and cost for a given target level of robustness,
with that of a more conventional engineering approach used in the UK.

The results obtained in the Bristol Water case study demonstrate that the new
resilience-based approach for WRM planning improves on current key UK industry
planning issues by: (a) increasing the transparency of adaptation strategy assessment
processes and (b) improving the output information available to decision makers. The
resilience-based methodology generated a 3D surface of Pareto-optimal strategies
providing decision makers with a more complete trade-off picture of what different
planning strategies can achieve in terms of system performance benefits and related
costs thus enabling them to make better informed decisions.
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In addition to above observations, a comparison of the new methodology with the current
UK planning practice on the same case study resulted in further observations as follows:

1. Trade-off exists between the measured resilience and reliability of the system, with
optimisation to the one metric not necessarily optimising the system to the other.

2. Analysing the time sequencing of interventions in the optimal strategies suggests that, at least
in the case study analysed here, more low-cost interventions early in the planning horizon
achieve higher system reliability whereas regular intervention options spread over the
planning horizon achieve higher system resilience when planning to an uncertain future.

3. Optimizing for a single objective in the current practice methodology yields only a single
solution that is highly dependent on the initial target robustness (defined by headroom)
and target reliability selected and does not provide alternative solutions that may achieve
benefits for small trade-offs.
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