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Abstract This study has evaluated the effects of improved, hedging-integrated reservoir rule
curves on the current and climate-change-perturbed future performances of the Pong reservoir,
India. The Pong reservoir was formed by impounding the snow- and glacial-dominated Beas
River in Himachal Pradesh. Simulated historic and climate-change runoff series by the
HYSIM rainfall-runoff model formed the basis of the analysis. The climate perturbations used
delta changes in temperature (from 0° to +2 °C) and rainfall (from −10 to +10 % of annual
rainfall). Reservoir simulations were then carried out, forced with the simulated runoff
scenarios, guided by rule curves derived by a coupled sequent peak algorithm and genetic
algorithms optimiser. Reservoir performance was summarised in terms of reliability, resilience,
vulnerability and sustainability. The results show that the historic vulnerability reduced from
61 % (no hedging) to 20 % (with hedging), i.e., better than the 25 % vulnerability often
assumed tolerable for most water consumers. Climate change perturbations in the rainfall
produced the expected outcomes for the runoff, with higher rainfall resulting in more runoff
inflow and vice-versa. Reduced runoff caused the vulnerability to worsen to 66 % without
hedging; this was improved to 26 % with hedging. The fact that improved operational practices
involving hedging can effectively eliminate the impacts of water shortage caused by climate
change is a significant outcome of this study.
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1 Introduction

Effective Reservoir operation is important to accommodate the inevitable differences between
the hydrology used for reservoir planning and the prevailing hydrology when operating the
reservoir. Climate change is predicted to affect the hydrology of most regions through its
influence on temperature, rainfall, evapotranspiration, etc., which may further the divergence
between the planning and operational hydrological situations (IPCC 2007).

Several studies have investigated the effects of climate change on reservoirs including
Fowler et al. (2003), Nawaz and Adeloye (2006), Burn and Simonovic (1996), and Li et al.
(2009); most of these have reported worsening reservoir performance as a consequence of
climatic change. Relatively more recently, Raje and Mujumdar (2010) investigated the effect
of hydrological uncertainty of climate change predictions on the performance of the Hirakud
reservoir on the Mahanadi River in Orissa, India and found worsening reliability and vulner-
ability situations in the future. Most of these studies used outputs of large scale GCMs that
were then downscaled to the catchment scale using either the statistical or dynamical (i.e.,
regional climate models) downscaling protocols. Fowler et al. (2007) discuss the pros and cons
of these two approaches but despite their popularity for water resources climate change impact
studies, there still remains a lot of uncertainties in both the broad-scale GCM predictions and
their corresponding catchment scale downscaled hydro-climatology as noted by Raje and
Mujumdar (2010). Vicuna et al. (2012) recommend the use of delta-perturbations as way of
avoiding these uncertainties while Adeloye et al. (2013) discuss the nature of these uncer-
tainties and the problems they pose for decision making. This study also adopted delta-
perturbations approach to eliminate such uncertainties and because it can readily identify
systems tipping points, e.g., when a reservoir fails catastrophically in meeting water demand.

The Pong reservoir on the Beas River, India (see Fig. 1) principally provides irrigation
water although, prior to its diversion to irrigation, the water first passes through turbines for
generating electricity (Jain et al. 2007). Consequently, the current study is focusing on the
irrigation function of the reservoir. The reservoir inflow is highly influenced by both the
Monsoon rainfall and the melting glacier and seasonal snow from the Himalayas; consequent-
ly, its ability to satisfactorily perform its functions is susceptible to possible climate-change
disturbances in these climatic attributes. For example, official data of the Central Electricity
Authority (CEA) show that the electricity generated per MW of installed generating capacity
on the Beas has dropped by 18 % between 1998–1999 and 2012–2013 (SANDRP 2013).
There is also evidence of increasing water scarcity for irrigation and, for a system that is
inextricably linked to the socio-economic well-being of its region (Jain et al. 2007), any
significant deterioration in performance or ability to meet demands will have far reaching
consequences.

The Pong reservoir, like most reservoirs, is operated using rule curves which guide the
operator’s decision on the quantity of water to release based on the total available water at the
beginning of each month. A schematic illustration of basic rule curves is shown in Fig. 2a, in
which the operator will attempt to meet the full monthly demand whenever the total amount of
water available (i.e., the starting storage level plus the expected inflow during the month) is in
the interval [LRCm, URCm] for the month m under consideration, where LRCm and URCm are,
respectively, the ordinates of the lower and upper rule curves for month m. No water is
supplied in a given month if the water available is below the LRCm. A fundamental assump-
tion here is that the anticipated inflow during the month is known at the start. However, while
various schemes for forecasting the future inflow are possible, this is still largely an uncertain
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aspect of reservoir operation. Thus, as a way of eliminating the uncertainty, reservoir inflow
will be assumed known at the start of each month, i.e., equal to the historic monthly flow.

However, much more problematic in the use of the basic rule curves illustrated in Fig. 2a
for guiding reservoir operation is that it saves no water for impending droughts and the
consequence is that the resulting shortage during such droughts can become very large. As
the drought intensifies and less water comes into the reservoir, the inability to meet the target
demand increases; the extreme situation is when the available water at the start of month m is
at the LRCm, implying that no water will be released from the reservoir for that month,
potentially resulting in a maximum shortfall (or vulnerability). For example, Chiamsathit et al.
(2014) reported vulnerabilities (or maximum single period shortages) of 67 and 88 %

Fig. 1 Beas river basin
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respectively for domestic and industrial water allocations at the Urbonratana reservoir in
northeast Thailand when operated with basic rule curves such as those illustrated in Fig. 2a.

To avert situations of catastrophic vulnerability in reservoir operation, water rationing or
hedging during normal operational periods is often carried out. The rationale for this is that it is
better to have many small water shortages to which water users can readily adapt than a few
large, crippling shortages (Tu et al. 2008; Eum et al. 2011). Fiering (1982) noted that water
shortages below 25 % of the target demand can generally be tolerated by users whereas
anything above this threshold can be problematic.

For hedging to be effective, however, it must be well-timed and the supply reduction must
be the right amount. Traditionally, hedging policy developments have employed the standard
operating policy (SOP) and optimization to arrive at the optimal timing for release reductions
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as a result of which there now exist single point (see Fig. 2b) and multi-point hedging policies
(Neelakantan and Pundarikanthan 1999; Hashimoto et al. 1982; Shih and ReVelle 1995;
Draper and Lund 2004; Dariane and Karami 2014; You and Cai 2008; Tu et al. 2008; Shiau
2003; Peng et al. 2015). However, as seen in Fig. 2b, the single-point hedging policy is
recommending supply cutback in the region of insufficient water availability, a situation that
will only exacerbate the water shortage problem.

For hedging to be effective, it should be restricted to regions beyond point B in Fig. 2b
where there is sufficient water to meet the demand, i.e., it is a region of normal operation.
Consequently, this study has radically departed from traditional approach by not using the SOP
as the basis for the development of the optimised hedging policy; rather, the basic (or
conventional) rule curves for the Pong formed the basis of the optimization for the develop-
ment of the hedging. Because rule curves for the Pong were not made available by the
operators of the reservoir, new ones were developed as part of this study using coupled
sequent-peak and genetic algorithms (SPA-GA). To trigger hedging, a critical rule curve
(CRC) that lies between the URC and LRC as illustrated in Fig. 2c was developed by a
second stage GA optimisation. Taghian et al. (2014) attempted a similar approach to develop
hedging policies for the Kosar and Chamshir reservoirs in Iran, which produced significant
improvements in vulnerability performance of the reservoirs when compared to the use of
conventional rule curves. They, however, had the benefit of existing rule curves for the
reservoirs and did not investigate the effect of hedging within the context of climatic change
or on other performance indices such as the resilience and sustainability.

Thus, the aim of this work is to develop optimised hedging policy for the Pong reservoir
and assess the effectiveness of the policy in modulating the effects of water shortages for both
the existing and climate change perturbed situations. The objectives are to:

& Calibrate, verify and validate a HYSIM rainfall-runoff model for the Pong catchment;
& Use the validated HYSIM model to simulate the historic runoff using the historic climate

data;
& Derive optimized basic rule curves for the Pong using coupled SPA-GA approach
& Derive optimized hedging (trigger and rationing ratio) policy using GA for integration with

the basic rule curves;
& Derive scenario-neutral future climate by applying reasonable delta perturbations to

the rainfall and temperature; hence simulate climate-change induced runoff using
HYSIM;

& Carry out reservoir behaviour simulations to assess the reliability, vulnerability, resilience
and sustainability indices for the Pong with the simulated historic and climate change
perturbed hydrology and make recommendations.

In the next section, further details about the methodology will be given. This is then
followed by the presentation of the Case study. Next the results are presented and discussed
and finally, the main conclusions are given.

2 Methodology

A flow chart of the adopted methodology is as illustrated in the schematic in Fig. 3; fuller
descriptions are provided in the following sub-sections.
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2.1 Derivation of Basic Rule Curves

The ordinates of the URC and LRC were derived in two stages:

i. initial estimates by the sequent peak algorithm (SPA); and
ii. a refined set of curves using the genetic algorithms optimisation.

2.1.1 Sequent Peak Algorithm (SPA) Generation of Basic Curves

The Sequent Peak Algorithm is a critical period technique for failure-free reservoir planning
analysis and estimates the time series of the sequential deficit, Kt, and reservoir capacity, Ka as
follows (McMahon and Adeloye 2005):

Ktþ1 ¼ max 0;Kt þ Dt−Qtð Þ; t∈N ð1Þ

Ka ¼ max Ktþ1ð Þ ð2Þ

where Ka is the estimated reservoir capacity, Kt+1 and Kt are respectively the sequential deficits
at the end and start of time period t,Dt is the demand during t, Qt is the inflow during t and N is
the total number of time periods (herein months) in the data record. The analysis assumes that
the reservoir is initially full, i.e., Ko=0. Where system failures and secondary processes such
as evaporation loss must be accommodated, the modified form of the SPA (see Adeloye et al.
2001; Adeloye 2012) can be used. These secondary processes were neglected in the current
analysis. The sequential deficits are thus the storage that must be maintained in the reservoir at
the different dates to maintain the supply and hence provide the means for setting the initial
ordinates of the rule curves. These initial estimates of the ordinates of the URC and LRC for
each month of the year were obtained using:

Weather Data

Rainfall: TRMM gridded (5kmx5km)
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Historical Pong Inflow,

Irrigation data
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Fig. 3 Methodology flow chart
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URCm ¼ max ky;m
� �

; y ¼ 1; n;m ¼ 1; 12 ð3Þ

LRCm ¼ min ky;m
� �

; y ¼ 1; n;m ¼ 1; 12 ð4Þ
where URCm and LRCm are, respectively, the upper and lower rule curves ordinates for month
m, and n (=N/12) is the number of years in the data record. The two dimensional storage
variable k in Eqs. (3 & 4) is related to the one-dimensional storage variable K in Eq. (1) by:

ky;m ¼ K12 y−1ð Þþm ð5aÞ
i.e.,

t ¼ 12 y−1ð Þ þ m ð5bÞ
To refine the SPA-derived rule curves, they were optimised using GA.

2.1.2 GA Optimisation of Rule Curves

GA are a random search optimization scheme inspired by biological evolution and provides a
robust method for searching for the optimum solution to complex problems. In a GA, the
solution set is represented by a population of strings, which comprises a number of blocks each
representing the individual decision variables of the problem. Strings are processed and
combined according to their fitness (objective function value evaluated using the components
in the string), in order to generate new strings that have the best features of two parent strings.
Three fundamental operations are involved in manipulating strings and moving to a new
generation: selection, crossover, and mutation. A detailed description of the GA is beyond the
scope of this paper and interested readers are referred to the excellent text by Michalewicz
(1992) for a comprehensive overview of the subject. Good examples of the application of GA
optimisation to reservoir operation and rule curves studies include Reddy and Kumar (2006)
and Wardlaw and Sharif (1999); Excellent reviews of the methodology are also provided by
Hossain and El-shafie 2013 and Rani and Moreira (2010).

In this study, the objective (or fitness) function adopted for the GA optimisation to develop
the basic rule curves was:

Minimise
XN

i¼1

Dt−D
0
t

� �2
; t∈N ð6Þ

The constraints are as follows:

Stþ1 ¼ St þ Qt−D
0
t−Et; LRCm≤Stþ1≤URCm ð7aÞ

WAt ¼ St þ Qt ð7bÞ

if WAt ≥URCm; D
0
t ¼ St þ Qt−Et−URCm&ERt ¼ D

0
t−Dt ð7cÞ

if URCm≥WAt > LRCm; D
0
t ¼ Dt&ERt ¼ 0 ð7dÞ

if WAt ≤LRCm; D
0
t ¼ 0 ð7eÞ
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where WAt is the water available at beginning of time period (month) t; ERt is excess release
during time period t, St is the storage at the beginning of t, D’t is the actual release, m is the
month of the year and is related to the year y and simulation period t through Eq. (5b), Et is net
evaporation (ignored), and all other symbols are as previously defined. The constraint on the
right hand side of Eq. (7a) limits the available water in any given month to the interval [LRCm,
URCm]. The decision variables for the optimisation are the URCm and LRCm; m=1..,12
ordinates for each month m of the year, giving a total of 24 variables, i.e., 12 values
representing the 12 monthly ordinates for URC and a further 12 values representing the
monthly ordinates for the LRC.

A real-value coding was used with the following parameters based on recommendations in
the literature (e.g., Wardlaw and Sharif 1999) and the MATLAB documentation (MATLAB
2004): crossover fraction=0.8; mutation rate=0.01; number of elite children=2. The genetic
operations were carried out over 500 generations; these were repeated 100 times to avoid any
bias that can result from the initial random sampling to populate the strings. The best of the
100 repetitions was finally selected as the solution.

The SPA curves formed the basis for the initial sampling of the GA solution. For this, each
ordinate of the curve was assumed to be uniformly distributed, with upper and lower limits
defined by:

URC ¼ U URCm SPAð Þ−σURC ;URCm SPAð Þ þ σURC

� �
; y ¼ 1; n;m ¼ 1; 12 ð8Þ

LRC ¼ U LRCm SPAð Þ−σLRC; LRCm SPAð Þ þ σLRC

� �
; y ¼ 1; n;m ¼ 1; 12 ð9Þ

where U[.] is the uniform density function with upper and lower bounds as specified,
URCm(SPA) is the SPA upper rule curve ordinate in month m, σURC is the standard deviation
calculated using all 12 SPA URC ordinates and σLRC is the corresponding standard
deviation for the LRC ordinates. To avoid negative values for the uniform distribution
limits, especially in the case of LRC, the limits in Eqs. (8) & (9) were constrained to a
minimum value of zero.

2.2 Hedging Policy

The optimised rule curves will still attempt to supply the full demand if the available water at
the start of the month is anywhere in the interval [LRCm, URCm], which will cause the
reservoir level to fall much more rapidly towards the LRC. If this happens in a low inflow
period, causing the water level to reach the LRC, the available water for release in subsequent
months will be limited to just the inflow during the affected months (because there is no
carryover water) and the resulting shortages may become very high, further exacerbating the
systems vulnerability. A way to improve the situation is to hedge or save some of the water
during normal operation, i.e., when the reservoir state is in the interval [LRCm, URCm], and
use the saved water to ameliorate some of the shortages during later dry periods.

The timing of the hedging and its amount are achieved in this study using a CRC that lies
between the LRC and URC as shown schematically in Fig. 2c. The CRC thus represents the
timing of hedging as follows:

if URCm≥WAt > CRCm; D
0
t ¼ Dt&ERt ¼ 0 ð10aÞ
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if CRCm≥WAt > LRCm; D
0
t ¼ αDt&ERt ¼ 0 ð10bÞ

if WAt ≤LRCm; D
0
t ¼ 0 ð10cÞ

1≥α > 0; URCm≥CRCm≥LRCm ð10dÞ

where, CRCm is the critical rule curve ordinate for month m (=1,2,…,12); α is the rationing
ratio and all other variables are as defined previously. The rationing ratio and the 12 ordinates
of the CRC were determined by further GA optimisation using the same objective function
used for optimising the main rule curves (see Eq. (6)) but with modified constraints given by
Eq. 10 (a-d).

2.3 Reservoir Behaviour Simulation and Performance Indices

Reservoir simulation uses the mass balance equation shown in Eq. (7a). Four performance
indicators of the reservoir, namely the reliability, resilience, vulnerability and sustainability
indices were evaluated as follows (Hashimoto et al. 1982; McMahon et al. 2006; Adeloye
2012):

Reliability: this can be expressed either in the time-domain, Rt (proportion of the total
time period during which a reservoir can meet the target demand) or volume domain, Rv
(proportion of the total demand (volume) actually supplied) as follows:

Rt ¼ Ns=N ð11Þ

Rv ¼
XN

t¼1

D
0
t=
XN

t¼1

Dt ð12Þ

where Ns is the total number of intervals (months) out of N (months) that the demand was
met.
Resilience: Resilience is a measure of the reservoir’s ability to recover from failure and
the most widely used definition of resilience is due to Hashimoto et al. (1982):

φ ¼ 1= f d= f sð Þ ¼ f s= f d ; 0 < φ≤1 ð13Þ

whereφ is resilience, fs is number of continuous sequences of failure periods and fd is the
total duration of the failures, i.e., fd = N - Ns.
Vulnerability: The definition of vulnerability used here is due to Sandoval-Soils et al.
(2011) and is the average period shortfall as a ratio of the average period demand, i.e.,:

η ¼
X
t¼1

f d

Dt−D
0
t

� �
=Dt

h i
= f d ; t∈ f d ð14Þ

where η is vulnerability (dimensionless) and all other terms are as defined previously.
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Sustainability: A sustainability index that integrates the three earlier defined indices was
used (Sandoval-Soils et al. 2011):

λ1 ¼ Rtφ 1−ηð Þð Þ1=3 ð15Þ
where λ1 is the sustainability. Because Rv, unlike Rt, is less likely to be dramatically
affected by water scarcity, an alternative definition of sustainability index (λ2) using Rv
instead of Rt was also explored, i.e.,:

λ2 ¼ Rvφ 1−ηð Þð Þ1=3 ð16Þ

2.4 HYSIM Rainfall-Runoff Modelling

HYSIM is a time-continuous, conceptual rainfall-runoff model. The HYSIM model has two
sub-routines simulating respectively river basin hydrology and the channel hydraulics to drive
the model. The hydrology is simulated with help of seven stores representative of land use and
soil type while the hydraulic sub-routine is conducted using kinematic routing of flows. The
full structure of the model is schematically illustrated in Fig. 4.

The seven natural stores into which the hydrology routine has been conceptualised
comprise interception storage, upper soil horizon, lower soil horizon, transitional ground-
water store, groundwater store, snow storage and minor channel storage, all with associated
hydrological parameters as detailed by Pilling and Jones (1999). Initial values of some of
the panoply of model parameters (see Pilling and Jones 1999) are usually estimated from
land use and soil type of the region while others are often extracted from the literature.
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Some of these parameters are later refined by calibration including: rooting depth (mm)
[RD], permeability—horizon boundary (mm/h) [PHB], permeability—base lower horizon,
mm/h [PBLH], interflow—upper (mm/h) [IU],interflow—lower (mm/h) [IL], snow
Threshold [ST], and snow melt rate [SM] (mm/°C). The RD depends on the type of
vegetation but usually ranges between 800 and 5000 mm, with lower value associated
with grassland and higher value for woodland. For other parameters like PHB, PBLH, IU
and IL, a universal default initial value of 10 mm/h is assumed in the model. The snow melt
related parameters, i.e., ST and SM, control respectively the temperature below which the
precipitation falls as snow and the melt rate in mm for each degree of temperature above the
threshold.

The hydraulics routine routes the flow down the channel using a simple kinematic wave
approach, also with associated parameters (Manley and WRA 2006). As will be shown later,
the Beas at the Pong catchment was modelled as three sub-catchments in series to account for
the spatial variability in the catchment. The relevant channel hydraulics parameters for the
three sub-basins in the Beas basin are shown in the Table 1. None of these were optimised
during the runs carried out in this study.

HYSIM takes precipitation, temperature and potential evaporation as inputs. The temper-
ature is required for the modelling of snow-melt and accumulation based on the empirical
degree-day approach. HYSIM has been extensively used in several research studies including
snowy catchments of the United Kingdom to address climate change impacts issues e.g.,
Pilling and Jones 1999; Arnell 2003.

3 Case Study & Data

The Beas River, on which the Pong dam and its reservoir are located, is one of the five
major rivers of the Indus basin, India. The reservoir, located at longitude 76° 05E and
latitude 32° 01N, drains a catchment area of 12,561 km2, out of which the permanent snow
catchment is 780 km2 (Jain et al. 2007). Active storage capacity of the reservoir is
7290 Mm3. The Pong is primarily used for meeting irrigation water demands for which
a total of 7913 Mm3 is released annually to irrigate 1.6 Mha of land. Hydropower
generation is achieved by releasing the water through turbines before it is diverted to the
irrigation fields.

The major crops cultivated in the area are rice, wheat and cotton. The seasonal
distribution of the irrigation releases is shown in Fig. 5 which reveals rises during the
Kharif (June–October) cultivation season to cater for the water-intensive paddy rice
cultivation during this season. Less water is released during the Rabi cultivation season
(November–April); indeed, as Fig. 5 reveals, the irrigation release is least in April at the

Table 1 HYSIM hydraulic
parameters Parameters Sub-catchment

Upper Middle Lower

Channel roughness 0.03 0.03 0.03

Reach gradient 0.035 0.007 0.0025

Flood plain roughness 0.10 0.10 0.10
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end of the Rabi when only minor vegetables are cultivated. Monsoon rainfall between June
and September is a major source of water inflow into the reservoir, apart from snow and
glacier melt. Snow and glacier melt runoff in Beas catchment was studied from 1990 to
2004 by Kumar et al. (2007) and its contribution is about 35 % of the annual flow at Pandoh
Dam (upstream of Pong dam).

Monthly reservoir inflow and release data from January 2000 to December 2008 (9 years)
were available for the study. The historic mean annual runoff (MAR) at dam site is 8485 Mm3

(annual coefficient of variation is 0.225) and the seasonal distribution of the annual runoff is
also shown in Fig. 5 which, when compared with the irrigation releases (shown on the same
plot), clearly demonstrates that apart from the brief Monsoon interregnum during June–
August/September, the natural river flow in the Beas cannot sustain the irrigation water
demands without a reservoir. The discrepancy between the river flow and irrigation demand
accentuates during the post-Monsoon (September–November) period which also coincides
with the major Rabi growing season in the region.

Gridded TRMM (TRRM 3B42 V7) daily rainfall data that span the runoff period were used
for the study. The TRMM data have a fine spatial resolution (0.25° * 0.25°), covering the
latitudinal band of 50° N-S. Since potential evapotranspiration (ETo) measurements were
unavailable, estimates were obtained using the Penman-Monteith (P-M) formulation forced
with meteorological variables from the NCEP Climate Forecast System Reanalysis (CFSR)
data from January 1999–December 2008.

As a way of accommodating the spatial variability within the catchment, the Beas
catchment was divided into three sub-basins as shown in Fig. 1, based on consideration
of altitude, spatial difference and available meteorological data. The upper, middle and
lower sub-catchment areas are respectively 5720, 3440 and 3350 km2. Because the
horizontal resolution available for precipitation and temperature were different, the
number of grids used to average precipitation, snowmelt and evapotranspiration were
also different. As explained earlier in Section 2.4, HYSIM hydrological parameters were
initialised with the help of the Harmonized World Soil Database (HWSD) analysis: the
area of each soil type of the catchment was taken into account to get an average value of
hydrological parameters. These parameters were then modified during the calibration of
the model.

The summary of the rainfall, temperature and the estimated P-M ETo data for the three sub-
catchments are shown in Table 2.

Fig. 5 Average monthly inflows
and releases from Pong dam
(2000–2008)
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4 Results and Discussion

4.1 1Hysim Calibration

The available flow record (1998–2008) was split into three: 1998–1999 (2 years) period was
used for model warm-up, January 2000–December 2004 period was used for model calibration
and January 2005–December 2008 period was used for model validation.

The performance of the model during calibration and validation is shown in Fig. 6a and b
respectively. These relate to the entire catchment and show that the model has performed
reasonably well in reproducing the measured runoff, with R2 of 0.92 and 0.83 during
calibration and validation, respectively. The estimated Nash-Sutcliffe efficiency indices during
the calibration and validation were respectively 0.88 and 0.78, both of which lend further
credence to the modelling skill of the calibrated HYSIM. Although the magnitudes of the high
flows were not well simulated, their timing was perfectly synchronised with the observed.
More re-assuring, however, is the relatively better performance of the model in simulating the
low runoff sequence in the data, which is more important for water resources planning than the
high flows periods.

4.2 Rule Curves and Hedging Policy

The optimized rule curves obtained via GA are shown in Fig. 7, together with the approximate
rule curves developed using the SPA. In general, the interval [URCm, LRCm] for GA
optimized curves is everywhere wider than that of the SPA, implying that more water will
be available for supply using the former, with implications for the overall performance of the
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reservoir. The GA optimized URC is compatible with the inflow pattern (se Fig. 5) at the Pong
because when the inflow is increasing rapidly from June to August in response to the
Monsoon, the rule curve ordinates are falling to accommodate the increasing inflows within
the reservoir. The maximum ordinate of the URC occurs around May just before the onset of
the Monsoon and falls throughout June–August to accommodate the large runoff generated by
the Monsoon. In this way, the rule curves will be helping to protect against any flooding
potential in the basin during the Monsoon season.

The GA-optimised rule curves with the hedging curve superimposed are shown in Fig. 8.
The CRC effectively partitions the previous zone of normal operation [LRCm, URCm] into
two: an upper part in which meeting the full demand will be attempted and a lower part in
which the supply will be curtailed to 0.827 of the full demand. As seen in Fig. 8, while
reductions are recommended throughout the annual supply cycle, the situation is much more
prevalent in the winter months where very few occasions of full supply can be seen. The
Monsoon season, June–September is a period of high reservoir inflows and as seen in Fig. 8,
there is a generous scope for meeting the full demand during this period and the period
immediately preceding the Monsoon, the latter in anticipation of the high inflow expected
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during the Monsoon. As the post-Monsoon season approaches, however, the possibility of
meeting the full demand diminishes and near-universal rationing or hedging occurs. Although
the effect of the rationing on the performance of the reservoir will be discussed later, the
rationing ratio of 0.827, i.e., a reduction of a mere 17 % in the amount demanded, is quite
modest and not expected to cause too much disruption in terms of the total volume of water
supplied, i.e., the volumetric reliability.

4.3 Simulated Performance for the Pong Reservoir Under Current Conditions

The results of the performance simulations for the different rule curves are summarised in
Table 3 for the simulated historic runoff scenario. For convenience, the basic, no-hedging policy
is denoted by H0, while the hedging-integrated policy has been denoted by H1. A quick
comparison of Rt and Rv values will reveal that Rv > Rt for both H0 and H1, as expected. In
terms of the total amount of water released over the 108 months of the simulation, H0 was
marginally better than H1 (Rv of 93.6 % for H0 versus 90.0 % for H1); however, this has
masked the fact that with H0, the reservoir suffered large single period shortages (maximum=
607Mm3 or 23.4% of the correspondingmonth demand), whereas the corresponding value was
392Mm3 (or 7.4 % of the demand) for H1. Such single period large shortages are unacceptable
for a water supply system because of its effect on water users. The vulnerability (η) for H0
(=0.61) is almost three times as high as that for H1 (=0.20). This situation highlights the benefit
of water saving during normal reservoir operation because, as clearly demonstrated in this study,
it can bring about a significant reduction in the impacts (or vulnerability) of water shortage.

The reductions in the number and amount of large single-period shortages often come at the
expense of larger number of periods of moderate and small water shortages and this is no
exception in the current study. For example as seen in Table 3, while the number of occasions
in which demand was unmet (fd) was only 13 for H0, this has grown to 58 months for H1. This
has in turn affected the systems Rt, which deteriorated from about 88 % for H0 to 46 % for H1.
However, as noted by Adeloye (2012), this should not be a source of concern since in terms of
water availability as characterised by the Rv, the systems performance is still largely acceptable.

The resilience of the reservoir,φ, is better for H0 when compared to H1. Although both H0
and H1 recorded comparable number of independent failure sequences (fs), the resilience with
H1 was worse than that with H0 because of the longer number of failure durations for the
former (fd=58 months compared to fd=13 months for H0). The sustainability, λ, is shown in
the last two columns of Table 3. On the basis of this sustainability, H0 would be regarded as a
better policy than H1, if the Rtwas used in computing the λ1 (see Eq. (15)). However, when the
Rv was used in calculating the sustainability (see Eq. (16)), the λ2 was indistinguishable
between H0 and H1 (0.52 as against the 0.5 for H1).

4.4 Climate Change Effects on Runoff and Reservoir Performance

4.4.1 Effects on Runoff

Delta perturbations in annual rainfall considered were −10 to +10 % with an increment of 5 %;
corresponding temperature changes were 0 to 2 °C, step of unity. The mean values of the
simulated annual and seasonal runoff are shown in Fig. 9. In general, reducing the rainfall
causes the resulting runoff to reduce irrespective of the temperature situation. However, the
simulation has also revealed a large influence of the melting glacier and seasonal snow on the
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runoff, where on an annual scale, changing the temperature by 2 °C is causing the runoff to
increase by about a third. The simulations also reveal the dominance of the Monsoon effect on
the runoff of the Pong. For example, of the simulated maximum mean annual runoff of about
8200Mm3, almost 88 % of this (~7300Mm3) was contributed during the Monsoon and post-
monsoon periods, with both the winter (December–February) and pre-monsoon (March–May)
periods contributing the remaining 12 %. This further reinforces the importance of the
Monsoon in ensuring the water security of the Beas and indeed the whole of India.

Table 4 summarises the percentage change in annual and seasonal runoff from simulated
historic. As expected, increasing the rainfall causes the annual runoff to increase and vice
versa, for temperature change from 0 to 2 °C. However, while increasing or decreasing the
rainfall by the same amount has resulted in similar absolute change in the runoff for no change

Fig. 9 Simulated mean annual and seasonal runoff at the Pong (Mm3)
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in temperature, the situation is quite different when temperature increases also considered. For
example, as shown in Table 4, an increase in annual rainfall of 5 % produced a 10.21 %
increase in the annual runoff if the temperature increased by 1 °C; however, a similar decrease
in rainfall with the 1 °C temperature increase only resulted in a decrease of only 1.6 % in the
annual runoff. As noted previously, the Beas hydrology is heavily influenced by the melting
snow from the Himalayas and what these results show is that runoff contributed by the melting
snow partially compensates for the reduction in direct runoff caused by the combined effects of
lower rainfall and higher (temperature-induced) evapotranspiration. Indeed, as the assumed
temperature increase becomes higher, the effect of any reduction in the annual rainfall fully
disappears, resulting in a net increase in the annual runoff. Consequently, increasing the
temperature by 2 °C has resulted in a net increase in the annual runoff of 12.4 and 7 % for
5 and 10 % reductions respectively in the annual rainfall.

The annual runoff situation presented above masks the significant seasonal differences in
the simulated runoff response of the Beas. As Table 4 clearly shows, both the post-Monsoon
and winter seasons that do not benefit from the melting snow and its associated runoff tended
to be well-behaved in terms of the response, with reductions in the rainfall producing
significant reductions in the generated runoff. Indeed, for these two seasons, increasing the
temperature can worsen the runoff situation even for situations in which the rainfall has
increased, as clearly revealed by the 2.4 % reduction in the winter runoff with 1 °C and 5 %
rises, respectively in the temperature and rainfall. These situations must be resulting from the

Table 4 Change (%) in mean annual and seasonal runoff under climate change

Temperature change, °C Annual rainfall change, %

−10 −5 0 +5 +10

Annual

0 −12.11 −6.25 0.00 6.70 13.77

1 −7.08 −1.63 4.17 10.21 16.44

2 6.98 12.41 18.19 24.27 30.51

Season: winter (December–February)

0 −13.25 −6.82 0.00 7.77 16.40

1 −18.32 −13.55 −8.19 −2.36 3.81

2 −5.90 −1.23 4.00 9.75 15.83

Season: post-monsoon (September to November)

0 −10.80 −5.54 0.00 5.83 11.93

1 −7.60 −2.80 2.30 7.54 12.81

2 6.88 11.63 16.71 21.99 27.29

Season: monsoon (June to August)

0 −12.29 −6.35 0.00 6.76 13.85

1 −4.74 1.03 7.13 13.48 20.03

2 9.25 15.01 21.07 27.42 33.96

Season: pre-monsoon (March–May)

0 −15.09 −7.92 0.00 8.89 18.82

1 −17.76 −12.05 −5.72 1.09 8.29

2 −2.96 3.03 9.70 16.94 24.58
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dominance of the evapotranspiration loss, which in the absence of additional water from
melting snow will make the runoff to decrease.

4.4.2 Effects on Reservoir Performance

The complete array of the evaluated performance measures when the reservoir was operated
with the historic basic rule curves (H0) and hedging integrated rule curves (H1) for the
investigated climate change conditions is shown in Table 5. All the performance indices
examined for the current conditions (see Table 3) were also evaluated for the climate change
conditions but given the direct relevance of the vulnerability to the water shortage/stress
situation, the following discussion will focus on the vulnerability.

As Table 5 shows, as the rainfall decreases, the vulnerability of the system is heightened
(e.g., from 0.61 to 0.66 for a 10 % fall in rainfall and no temperature change) with H0. The
corresponding change with H1 is from 0.20 to 0.26 which unlike the 0.66 with H0 would still
be deemed acceptable for any major water resources system (see Fiering 1982). The implica-
tion of this is that, although the Pong has benefitted by being in a catchment that receives
snow, the current study has ramifications much wider than the Beas and its Pong reservoir
because the hedging still produced significant improvement in vulnerability without such
additional runoff from melting snow. This is a significant outcome because, although the
effectiveness of hedging in tempering vulnerability has been widely acknowledged, the fact
that hedging can also be used for reducing the impact of water shortages associated with
climate change is a new thing as far as the authors are aware.

As the catchment becomes wetter, occurrences of water shortage reduce with H1 and as
Table 5 shows, increasing the rainfall by 10 % has reduced the vulnerability to 18 % if the
temperature remains unchanged.

The effect of changes in temperature on the runoff was carried through to the estimated
performances for the Pong as shown in Table 5. Thus, in the case of the vulnerability,
increasing the temperature for no increase in rainfall caused the vulnerability to reduce for
both H0 and H1. Thus, a 2 °C rise in temperature caused the vulnerability to change from 0.61
to 0.47 for H0 while the corresponding values are 0.2 to 0.18 for H1. The influence of
additional rainfall on this vulnerability situation was, however, not so significant. For example,
combining 10 % increase in the rainfall and 2 °C increase in temperature has only resulted in a
marginal change in the vulnerability, i.e., 0.17 versus 0.18 for H1 and 0.472 versus 0.474 for
H0. This may be explained by the fact that the rainfall increase is likely to be during the
Monsoon period when the reservoir is likely to be full and hence any additional water is likely
to be spilled over the spillway. This additional water may therefore not be contributing much in
reducing the vulnerability during the dry periods. In any case as noted previously with the rule
curves, the tendency is to always meet the full demand during the Monsoon period with very
limited hedging prescribed by the critical rule curve during this period.

The above results would imply that the Pong is not performing satisfactorily in meeting the
demand because of the high vulnerability or average maximum single period water shortage of
over 61 %. The simulation results have also shown that without a system of hedging, the
vulnerability will worsen to almost 66 % if the rainfall decreases by 10 %. Increasing the
rainfall by 10 % produces the opposite effect on the runoff but the resulting vulnerability is still
almost 50 %. Both of these situations are tempered if the temperature also increases because of
the additional runoff generated by the melting glacier and seasonal snow; however, even with
this, the vulnerability will still be as high as 47 % for H0. As noted by Fiering (1982), most
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water users are able to cope with water shortage of up to 25 % of that required but significant
consequences can result at shortages above this critical threshold. The hedging-integrated rule
curves H1 developed in this work has shown that significant reduction in the vulnerability is
possible with moderate hedging.

Figure 10a–c compare H0 and H1 in terms of three of the performance indices for the Pong:
Rt, Rv and η. As expected, Rt (see Fig. 10a) is significantly affected by hedging in H1 which
has caused it to significantly decrease (relative to the H0 situation) because of the increased
number of failures arising from the deliberate withholding of almost 17 % of the full demand
even where there is sufficient water to meet the demand. On the contrary, Rv for H1 is almost
indistinguishable from its H0 counterpart and is further proof that hedging does not necessarily
cause any significant deterioration in the overall quantity of water supplied (see Fig. 10b).

The main influence of hedging is on the vulnerability which, as the two plots in the Fig. 10c
have shown, has significantly benefitted through hedging. The target vulnerability of 0.25
suggested by Fiering (1982) has been drawn as the horizontal line in Fig. 10c from where it is
clear that the vulnerability will always be higher than 0.25 for H0, both for existing (i.e.,
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historic) and the climate change situations. The situation is, however, completely different with
H1 where, except when the rainfall decreases by 10 %, the vulnerability is always below 25 %.
Several studies have demonstrated that hedging can reduce the vulnerability by ensuring that
shortages are spread evenly instead of a mixture of large and crippling shortages that can result
if there was no hedging and the results obtained in this study have confirmed that.

5 Conclusions

This study has assessed the impact of plausible changes in the climate on both the inflows and
performance of the Pong reservoir in India. The impact simulations with HYSIM showed that
increasing the rainfall will cause the runoff (and hence reservoir inflow) to increasewhile decreasing
it will result in the opposite effect. However, if the changes in rainfall are accompanied by increases
in the temperature, the effect of decreases in rainfall on the runoff is somewhat tempered due to that
additional runoff generated by melting snow with the rise in temperature. This shows the buffering
effect of the snow on this catchment which may be lost if projected climate change results in the
depletion of the snow cap in the Himalayas where the catchment is situated.

As far as reservoir performance is concerned, the most significant effect of the hedging
policy was on the reservoir vulnerability which reduced from 61 to 20 % when hedging was
implemented. Even with climate change causing significant reductions in reservoir inflow,
hedging was still able to improve the vulnerability from 66 % to a mere 26 %. These are
moderate water shortages that most water users can tolerate and have been brought about by a
modest cut back of 17 % in the amount of water supplied during normal operational periods.

This study has thus demonstrated the effectiveness of improved operational practices in mitigat-
ing climate change impacts on water resources infrastructures that removes the need for new builds
or physical capacity expansion. In particular for the Pong reservoir, incorporating a hedging policy
with operational rule curves can help reduce the system vulnerability significantly without any
adverse effect on the total volume of water supplied. No doubt, the Pong reservoir has benefitted by
being in a catchment that receives snow but evenwhen this factor is not taken into consideration, the
effect of water hedging is still very considerable, with implications for catchments without
snow/glaciers. With regard to the contributions of the snow and glacier, their predicted gradual
disappearance due to climate change could be significant and deserves further investigation.
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