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Abstract Water resource managers are required to develop comprehensive water resources
plans based on severely uncertain information of the effects of climate change on local
hydrology and future socio-economic changes on localised demand. In England and Wales,
current water resources planning methodologies include a headroom estimation process
separate from water resource simulation modelling. This process quantifies uncertainty
based on only one point of an assumed range of deviations from the expected climate and
projected demand 25 years into the future. This paper utilises an integrated method based on
Information-Gap decision theory to quantitatively assess the robustness of various supply
side and demand side management options over a broad range of plausible futures. Findings
show that beyond the uncertainty range explored with the headroom method, a preference
reversal can occur, i.e. some management options that underperform at lower uncertainties,
outperform at higher levels of uncertainty. This study also shows that when 50 % or more of
the population adopts demand side management, efficiency related measures and innovative
options such as rainwater collection can perform equally well or better than some supply side
options The additional use of Multi-Criteria Decision Analysis shifts the focus away from
reservoir expansion options, that perform best in regards to water availability, to combined
strategies that include innovative demand side management actions of rainwater collection
and greywater reuse as well efficiency measures and additional regional transfers. This paper
illustrates how an Information-Gap based approach can offer a comprehensive picture of
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potential supply/demand futures and a rich variety of information to support adaptive
management of water systems under severe uncertainty.

Keywords Water resources . Uncertainty . Climate change . Planning . Demand
management . Info-Gap

1 Introduction

This paper introduces a new water resources planning methodology based on Information-
Gap (shortened to Info-Gap) decision theory. This approach includes the benefits of an
integrated modelling framework (Collins and Ray 2009; Mayer and Muñoz-Hernandez
2009) and address the complexity of decision-making under severe uncertainty (Bates et
al. 2008; Lempert and Schlesinger 2000; NRC 2009; US Climate Change Science Program
2009). The potential for severely different weather patterns associated with climate change
coupled with uncertain socio-economic futures forces water managers to be prepared for not
only challenging supply/demand situations that have occurred in the past, but also the
potential for far worse conditions in the future. With climate change there is agreement on
a general warming trend; but the extent of warming and when, and the resulting effects on
localised systems that require adaptation decisions are not clear. This lack of knowledge can
be considered a gap in the information required to make suitable decisions. Info-Gap
decision theory (Ben-Haim 2001) offers a method to sample a wider range of uncertainty
than with traditional methods, and as a result, evaluate the performance of various water
resource management options under conditions of severe uncertainty.

This information on how different management interventions succeed over a range of
futures makes it possible to be prepared to adapt should circumstance change from what is
expected. Adaptive management is a decision making process that facilitates the prioritisa-
tion of management interventions based on level of necessity, along with the freedom to
change these priorities over time (Lempert and Groves 2010; Ranger et al. 2010). When
preparing an adaptive management plan, it’s important to have a portfolio of different
management actions that can respond to different system conditions. To place heavy
investment in management options for a severe future without full evidence of its actuality
would not be prudent and likewise, to not be prepared to shift management direction towards
options that safeguard for severe conditions would not be responsible. The management
options explored in this paper are not designed as adaptive portfolios, but are investigated as
different options that could become part of an adaptive management plan.

Uncertainties are commonly explored with Monte Carlo simulations or other methods
(see, e.g., Dessai and van der Sluijs 2011). However, there are many situations where there is
not enough knowledge to be able to estimate a representative probability of occurrence, or to
be confident that the tails of an assumed probability distribution will not exhibit unexpected
skewness, or that the kurtosis of a distribution differs from the norm. These situations can be
considered severely uncertain. In water resources management the tails of a distribution are
important as they can represent unexpected droughts or increases in demand.

Current planning methodologies in England and Wales do not evaluate or compare how
management options perform under severe uncertainty. The current approach of the basic
and intermediate modelling framework for long-term water resources planning, as outlined
in the Economics of Balancing Supply and Demand (EBSD) report (NERA 2002), assesses
the ability of water resources management options to satisfy the supply/demand balance and
the associated uncertainty within a defined ranged of uncertainty and in separate analytic
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operations in a non-integrated fashion. The water resources planning process is based on the
concepts of level of service (defined as target service failure frequency) and headroom
(safety margin between water supply available and the demand required). The uncertainties
in supply and demand forecasts, represented by probability density functions (PDFs), are
ultimately propagated to the headroom PDF. The selection of the optimal set of water
resources management options (for a chosen level of service) is then driven by a cost
minimisation optimisation subject to target headroom defined as a fixed percentile of the
estimated headroom PDF. As a consequence, the target headroom uncertainty is bounded,
i.e. the full range of possible futures is not explored. Other important aspects such as the
environmental impact and carbon emissions of various management interventions are
considered but not with as much emphasis as cost and level of service and again, only for
a limited range of uncertainty. Adaptive management is not specifically made reference to as
the standard approach is to select one optimum management regime to deal with one
expected future and its accompanying expected range of headroom uncertainty.

This paper describes how an Info-Gap based approach evaluates the performance of
management options under conditions of severe uncertainty in five sections. The back-
ground section (2) reviews the literature of uncertainty in water resources planning and
briefly critiques the current approach. The methodology section (3) describes how uncer-
tainty is characterised and quantified using an Info-Gap approach. The specifics of this
application of Info-Gap decision theory are introduced in the case study section (4). An
example of robustness and opportuness curves and the results of an additional Multi-Criteria
Decision Analysis step are discussed in the results at the end of section 4. A conclusion
section (5) emphasises the main benefits and limitations of using Info-Gap and future
research directions.

2 Background

2.1 Sources of Uncertainty in Water Resources Planning

The practice of water resources planning has always recognised variable weather patterns
and their accompanying change in hydrology and influence on dry season water demand.
Previously these factors could be considered in terms of probabilities of return; a 1:40 year
drought or a 1:10 winter storm, etc. However, since climate change has begun to show its
effects on weather patterns and as a result, influenced a ‘more than normal’ change in local
hydrology, the previously thought ‘normal’ frequency of events can no longer be taken for
granted (Milly et al. 2008; Kiang et al. 2011). The accumulated knowledge of seasonal and
yearly hydrological changes as expressed in probability distributions is a helpful background
but an uncertain guide for the future.

In England and Wales, water resources management requires looking to the future for at
least 25 years (Environment Agency 2008). Most water companies rely on stream gauge
information to assess their available supply in terms of inflow from streams or rivers and
recharge rates for groundwater aquifers to assess the pump-able yield for which they have
abstraction rights. The effect of climate change necessitates a re-evaluation of historical data
and a method to simulate future river flows and recharge rates, etc. as perturbed by new
weather regimes. There is a cascade of modelled information to consider before a future
value for daily inflow or groundwater yield can be ascertained (Jones 2000; New et al. 2007;
Ranger et al. 2010; Wilby and Dessai 2010). The effects of future emission scenarios drive
future global weather patterns represented by different Global Climate Models (GCMs);
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GCMs are downscaled by Regional Climate Models (RCMs); from RCM variables the
effects on local hydrology are assessed by a variety of impact models. Each of these steps
and the final assessment of different adaptive policy responses to address these impacts
contain associated uncertainties (Wilby 2010). The current practice of the water industry in
England and Wales to optimise under a set of expected circumstances is no longer enough to
plan for a variable future (Hall et al. 2011).

The assignment of probabilities to climate change projections may offer a view of the future
that is more approachable for probabilistic risk analysis and more easily interpreted through the
lens of risk management (cf. McIntyre et al. 2003). This probabilistic presentation can easily
become a misrepresentation, as these probability distributions are heavily influenced by choice
of GCM (New et al. 2007) and the post-processing techniques employed to downscale to the
local level (New et al. 2007; Lopez et al. 2006). There are also more subtle uncertain influences
arising from the emission scenarios and impact model parameters (Wilby and Harris 2006;
Dessai et al. 2009). To some extent the bias of GCM choice can be addressed by taking an
ensemble approach (Lopez et al. 2009; Manning et al. 2009), but a proper representation of the
probability of impacts can only be achieved by a thorough end-to-end analysis (New et al.
2007), and an understanding of the downscaling techniques used, specific to the impact that
needs to be explored (Lopez et al. 2006). The UKClimate Projections 2009 (UKCP09;Murphy
et al. 2009) provide a probabilistic range of expected climate futures, but their applicability to
water resources planning is still being explored and debated (e.g., UKWIR 2009; Darch et al.
2011; Arnell 2011; HM Government 2012).

The future supply of water is not the only aspect of water resources planning in question.
Future demand is also difficult to predict. The call for sustainability, new building require-
ments and more efficient water use, has motivated water companies to develop different
initiatives to lessen consumption, but how much less people are willing and able to live with,
and the success of different demand management initiatives is still in question (Arnell 1998;
Arnell and Delaney 2006; Environment Agency 2001, 2004). For example, in the South
West Water (SW Water) Water Resources Plan 2009, the cumulative range of uncertainty
that results from all the uncertainties related to demand including demand-side meters,
demand forecast, the effect of climate change on demand and the effect of demand side
management is almost double the range attributed to an aggregation of the uncertainties
associated with the supply side parameters (SW Water 2009).

2.2 Characterising and Quantifying Uncertainty with the EBSD Approach

Current long term water resources planning in the UK defines the expected future as the
water supply generated with the mean climate change projections coupled with the mean
increase in demand (Environment Agency 2008). AWater Available for Use (WAFU), which
is deployable output (DO) minus outages (time periods when the system cannot supply
water), is calculated by an evaluation of how much water a system could deliver to meet a
certain level of service. For example, if the level of service to be met is to require a hosepipe
ban less than once every 20 years, then the conditions of an historic dry climate year or
sequence of years perturbed by mean climate change coupled with a future demand regime
would need to be met by a management plan that would allow for a hosepipe ban only once
in 20 years. In order to accommodate uncertainty, a safety factor for headroom is added.
Headroom is calculated based on the likelihood that the uncertain parameters which feed into
the water resources model will appear as expected or as some other value from their probable
distribution. This headroom value is added to projected demand and the management plan is
revised to satisfy the balance between supply and a combination of demand plus headroom.
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The current water resources planning context provides one view of the future that
summarises the relationship between WAFU, demand, and headroom based on the manage-
ment option that is chosen. As an example, Fig. 1 illustrates the results of the management
option for 15 % Increase in Efficiency in the relationship between WAFU, demand and
target headroom.

There are challenges with the EBSD approach for evaluating uncertainty in terms of
analytical process and probabilistic methods. First, a level of service is decided upon often as
a precursor to planning, rather than as a result of a system’s ability to achieve such service
based on an analysis of future conditions, and the ability to pay for the management actions
required. Second, the headroom value is calculated independent of the water resources
simulation. Third, the generation of a headroom value includes the assignment of probability
distributions to each of the uncertain parameters and the combination of the standard
deviations and means of these individual PDFs into a combined PDF for all uncertain
parameters. Fourth, a Monte Carlo simulation of this combined distribution is completed,
and an assumed, pre-specified percentile of this distribution is used as an overall headroom
value. Finally, this obtained headroom value is then added to the demand forecast to
formalise a margin of security. This final step often initiates further manual adjustments in
practice. This selection routine does not account for severe uncertainty.

Severe uncertainty is a distribution of outcomes that cannot be characterized from known
distribution patterns or may exhibit unpredictable behaviour in its tail ends. When dealing
with severe uncertainty, such as that from climate change and variable socio-economic
circumstances, it is challenging to (a) choose an accurate probability distribution for each
parameter separately and especially all parameters jointly and (b) choose an appropriate
percentile value from this combined distribution to represent headroom. It is also a compli-
cated analytical sequence to quantify future conditions in a separate analytical process. The
recombination of projected demand and headroom and re-evaluation of the ability of
management options to achieve levels of service for both is a complex process.
Management adjustments may be needed to accommodate demand plus headroom and these
adjustments may change WAFU and/or demand. A change in WAFU and/or demand can
influence headroom values since the calculation of headroom is intrinsically related to

Fig. 1 Example of supply/demand balance over a 25 year planning horizon for 15 % water use efficiency
reductions for 75 % of residential use and 100 % of commercial and industrial use
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WAFU and demand. The inter-relationship of these processes can create an iterative
analytical back and forth that is infeasible to bring to conclusion. In addition, the measure-
ment values that this planning process is based on, WAFU and headroom, are not directly
observable, and although they are derived from reservoir levels, some measurement of the
frequency of low reservoir levels based on the range of possible supply/demand combina-
tions would offer a less complicated assessment of a management plan’s ability to handle
uncertainty (cf. Hall et al. 2011).

3 Info-Gap Based Water Resources Planning Methodology

3.1 Uncertainty Characterisation and Quantification

Info-Gap decision theory provides an approach to compare the ability of different
management options to satisfy system performance criteria over an unbounded range
of uncertainty and has been used for decision support in many fields from engineering
to conservation science (Ben-Haim 2001; Regan et al. 2005; McCarthy and
Lindenmayer 2007) with one previous application related to water resources, (Hipel
and Ben-Haim 1999) and one to flood risk (Hine and Hall 2010). The prospect of
dealing with severe uncertainty forces preference away from what is optimum for a
defined set of circumstance (to optimise) towards what is good enough over a wide
range of possible circumstance (to satisfice). The simplicity of being reliant only on
the central tendency of parameters to begin an assessment that addresses uncertainty is
advantageous. An investigation of climate change sensitivity in terms of future
temperature change (Hall et al. 2007), and an expert elicitation of the probability of
tipping points occurring for different temperature rise profiles (Kriegler et al. 2009),
both reveal general agreement with central tendencies but show a wide spectrum of
opinions in the associated ranges.

Info-Gap decision theory offers the ability to evaluate management decisions continu-
ously at many points in the calculation sequence as uncertain parameters increase outwards
from their central tendency in an unbounded fashion. There is no requirement to take a
position on how wide a range of variation should be considered. Figure 2 graphically depicts
the unbounded nature of an Info-Gap assessment of a system equation with two uncertain
parameters (u1 and u2). The potential result of this system equation deviates from its
expected result (represented by “ct”) that would arise from the central tendency of both
parameters, by an uncertain amount (represented by α), dependent on how much each
parameter deviates from its expected value. Although this figure uses a simple example
with two parameters, an Info-Gap characterization of uncertainty behaves similarly with
multiple parameters.

Although the uncertain space is unbounded, Info-Gap takes a targeted approach to
explore this space. Other Robust Decision Making approaches (Lempert and Groves 2010;
Matrosov et al. 2011) would consider multiple possible futures, but the mathematical
arrangements of Info-Gap organizes the trends of all uncertain variables (no matter how
many), to either increase or decrease simultaneously in two patterns: the direction of
expansion into uncertainty that pushes the system in question (1) most quickly towards
failure (in basic terms for water resources management, if demand increases and/or supply
decreases) when considering robustness or (2) most quickly towards windfall success (in
basic terms for water resources management, if demand decreases and/or supply increases)
when considering opportuness.
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In this Info-Gap based approach, risk of water shortage is the performance criteria used in
Eq. (1) to evaluate the robustness of water management options. A robust water management
option has a risk of water shortage (R) that is as large as possible, but still less than or equal
to a critical risk value as defined by a promised level of service (rc). South West Water’s
promised level of service is that there will be a hosepipe ban not more often than once in
20 years. The most robust (ba ) option (q) is one that protects water supplies at the same level
of risk as all the other options at the highest level of uncertainty (α). To quantify uncertainty
and evaluate robustness, each one of the supply and demand parameters (u) changes
unfavourably with increasing uncertainty (α).

ba q; rcð Þ ¼ max a : max
u2U a;euð Þ

R q; uð Þ � rc

( )
ð1Þ

The performance criteria used to evaluate opportuness is slightly different because the risk of
water shortage quickly disappears as all uncertain parameters trend towards favourable con-
ditions. Therefore, the extent of a safety margin before a risk of shortage would occur is the
performance criteria used to evaluate opportuness with Eq. 2. This safety margin is defined as
the volume of water between the operational management curve (which signifies the optimum
reservoir volume at different times of the year), and the drought management curve (which
signifies the minimum acceptable reservoir volume at different times of the year). Over the
course of a year, this safety margin can be in deficit (R) by a large amount but must be less than
or equal to a minimum volume of water (rw) which defines the minimum opportuness criteria.

The most opportune (bb ) option (q) is one that offers the same safety margin (R) as other
management options at the lowest level of uncertainty (α). To quantify uncertainty and evaluate
higher levels of opportuness, each one of the supply and demand parameters (u) changes
favourably with increasing uncertainty (α).

bb q; rwð Þ ¼ min a : max
u2U a;euð Þ

R q; uð Þ � rw

( )
ð2Þ

Fig. 2 An Info-Gap exploration
of uncertainty (Hine and Hall
2010)
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Graphs of robustness and opportuness are used to compare the performance of water
management options as one or more parameters trend away from their central tendency into
the range of uncertainty.

Info-Gap decision theory offers a method to characterise uncertainty that works in
conjunction with the simulations of a water resources model as part of an integrated dynamic
analysis. There is no need to predefine levels of service and iteratively evaluate a WAFU
value that satisfies these levels of service with headroom depending on the management
option that is explored. Within an Info-Gap based dynamic modelling framework, the
assessment of how each management option deals with uncertainty occurs through succes-
sive runs of the water resources simulation model as parameter values stray from their
central tendency into greater levels of uncertainty.

The Info-Gap approach explored in this paper is similar to the Blue-Sky Stochastic
Approach discussed in the Economics of Balancing Supply and Demand (NERA 2002) in
that both approaches run simulations on a water resources model for a range of possible
future supply and demand scenarios. The Info-Gap approach differs due to its efficient
nature. It does not randomly run a plethora of possible futures, but instead evaluates all the
uncertain parameters with the two trajectories that quantify robustness and opportuness. The
approach introduced in this paper relies mostly on robustness curves to assess the ability of
each portfolio to achieve a critical performance reward at higher levels of uncertainty as
parameters trend for the worse. It also refers to opportuness curves to help qualify the
relative security of a water resources system when parameters trend for the better. The
knowledge of which management options fair better at higher levels of uncertainty help to
inform adaptive management. Long term planning can be organised to prepare for the need
to implement management options that satisfy performance needs at higher levels of
uncertainty. A monitoring system can also be developed to signal when system conditions
are moving towards situations that require more substantial intervention.

The major steps of the Info-Gap water resource planning methodology are:

A. Build and calibrate the simulation model of the system analysed

B. Characterise the uncertainty

C. Define the performance criteria

D. Quantify the uncertainty

E. Identify robust management strategies using MCDA

A. Build and calibrate the simulation model of the system analysed.

A time series mass balance equation, Eq. 3; storage equals the minimum of reservoir
capacity or reservoir volume, plus inflow, minus the environmental flow and minus the
demand.

storaget ¼ min reservoircapacity;max 0; reservoirt þ inflowt � envflowt � demandtð Þ�� ð3Þ

This step is already achieved within most water resources modelling software.

B. Characterise the uncertainty.

The range of uncertainty for each parameter and the direction in terms of increase or
decrease in value that pushes the system towards failure is already defined in the character-
isation of headroom. The main difference in the characterisation of this uncertain space is
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that an Info-Gap approach starts at the central tendency estimate and continues to evaluate an
unbounded range of values and the EBSD headroom estimation process selects one value
associated with an arbitrary level of confidence from an arbitrarily assigned probability
distribution. Table 1 lists all the parameters that are evaluated for uncertainty in this paper: 3
related to supply, 5 related to demand and 1 related to cost for electricity.

C. Define the system performance criteria.

The authors define a reservoir risk measure (RRM) as a comprehensive metric to
quantify the risk of water shortage and compare the robustness of management
options. The RRM is the product of the probability of the reservoir storage level
(St) falling below a point on a drought management curve (DCCt) and the average
volume (Ml) of water deficit below this curve. This water deficit is referred to as
drought deficit (DD) in this paper. A drought management curve indicates minimum
acceptable reservoir volumes for different times of the year. If a reservoir volume falls
below a point on this curve, then some management action may be necessary to
safeguard supplies. We have created a reservoir ratio (RR) as defined in Eq. 4 to
evaluate this relationship.

RR ¼ St � Dcct
Dcct

ð4Þ

If RR>0, the reservoir level is above the drought management curve; if RR00, the
reservoir level is the same as the drought management curve; if −1<RR<0, the
reservoir level is less than the drought management curve and if RR0−1, the reservoir
is empty. The influence of uncertainty on the RR is quantified in a similar fashion as
for the mass balance of the water resources simulation model explained in step D
below. The RR is calculated for each stepwise exploration into the uncertain space as
characterised by the Info-Gap approach. The RR value changes in response to
changing reservoir storage levels.

Operational failure occurs when the reservoir is empty (RR0−1) and management
decisions are guided by the frequency, duration and magnitude of water shortages
when −1<RR<0 in order that RR never equals −1. If the reservoir levels stay below
a point on the drought management curve for a prolonged period, some form of water
use restriction will be invoked. A reoccurring prolonged negative RR value would
result in failure from a customer’s viewpoint if it precipitated a hosepipe ban more
often than the promised level of service, (i.e. once every 20 years). If the RR value
remained negative for a very long period, a request for emergency water abstraction
or relaxation of environmental requirements could be made in order to satisfy human
needs at the detriment of resident wildlife and the local ecosystem. The DD provides
more information than the RR to guide how soon a water use restriction should be
put into place and how long it should last because the magnitude of the deficit is
taken into account. The RRM provides a comprehensive indicator with which to
compare management plans because it combines the quantification of how often a
restriction may occur in the future with the magnitude of such a restriction.

The authors define a safety margin deficit (SMD) as a comprehensive metric to
compare the opportuness of management options. We consider the safety margin to be
the volume of water between the operational management curve, which signifies the
optimum reservoir volume at different times of the year, and the drought management
curve, which signifies the minimum acceptable reservoir volume at different times of
the year.
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The reservoir ratio, the drought deficit and the safety margin deficit are all depicted in
Fig. 3.

Other metrics are tracked as part of the MCDA analysis. Environmental impact is
measured by the amount of post-reservoir stream flow. Local self-sufficiency of the system
is measured by the amount of additional water requested from the regional system. Cost is
measured as the sum of energy costs for the movement and treatment of water in the larger
system and in the household rainwater collection and greywater reuse systems plus the costs
customers must pay for the water they receive from the larger system. Carbon emissions are
calculated based on the emissions related to the movement and treatment of water.

D. Quantify the uncertainty.

The water resources model simulates the mass balance of a reservoir(s) based on a
sequence of historic inflow data to explore hydrologic variability over a 25-year planning
horizon. During the 25-year planning horizon domestic, agricultural and commercial/indus-
trial demand can increase or decrease depending on circumstance. Management interven-
tions occur at specified times over the 25-year planning horizon and adoption rates for
demand side management options gradually increase over time.

To quantify uncertainty, the 25-year planning horizon is repeated multiple times;
once for the baseline values of the uncertain parameters and then multiple times for
further iterations to incrementally sample the range of uncertainty associated with each
uncertain parameter. The exploration of uncertainty is continued beyond the expected
uncertain range for the four parameters shaded blue in Table 1 or until the operational
failure of an empty reservoir occurs. A summary of how each management option
performs over each step into increasing uncertainty provides the data to generate the
robustness and opportuness curves.

Equations 5, 6 and 7 define the evaluation of the uncertain space around supply (S),
demand (D) and cost (C). In each equation the real value for supply (S), demand (D) or cost
(C) lies somewhere in between the nominal value minus or plus the associated incremental
changes in parameter values at varying levels of uncertainty level as represented by an
increasing (α).

Us a;eS� �
¼ eS � a* eScc dryð Þ þ eSmeter þ eScatchment� �

� S � eS þ a* eScc wetð Þ þ eSmeter þ eScatchment� �n o
ð5Þ

Fig. 3 Relationship of reservoir level, operational and drought management curve showing derivation of
reservoir ratio (RR), safety margin deficit (SMD) and drought deficit (DD)
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Figure 4 is a plot of robustness and opportuness curves superimposed with performance
results from a random combination of parameter values as defined in Eqs. 5, 6 and 7. The
resulting performance criteria (minimum reservoir level), is plotted using the maximum
uncertainty level of all parameters for each random combination as the y-value. The
robustness curve is generated from model results when all uncertain variables trend in the
direction that decreases the minimum reservoir level. The opportuness curve is generated
from model results when all uncertain variables trend in the direction that increases the
minimum reservoir level. This exercise confirms an appropriate formulation of the robust-
ness and opportuness functions as all possible future results lie between the robustness and
opportuness graphs.

E. Identify Robust Management Strategies Using MCDA

The most robust management plan is the one that delivers the same performance, (equal
or better than the critical reward criteria), as other plans at higher levels of uncertainty. The
most opportune management plan is the one that delivers the same performance, (equal or
better than the minimum windfall reward criteria), as other plans at lower levels of uncer-
tainty. Robustness curves are generated by plotting a change in RRM values, (defined in step
3) on the x-axis against stepwise increases in uncertainty plotted on the y-axis. Opportuness
curves are generated by plotting a change in SMD values on the x-axis against stepwise
increases in uncertainty plotted on the y-axis.

The decision of which water management option or combination of options is preferred,
entails more than an assessment of water availability. Cost is important (cf. HM Treasury

Fig. 4 Results from random parameter combinations for a management plan that promotes a 15 % increase in
efficiency for 50 % of residences
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2011). Environmental impacts and the production of carbon emissions also need to be
addressed. In this study of a local system, the draw on regional supplies is an important
consideration, mainly because if weather is dry for one reservoir in a system, chances are the
other reservoirs are experiencing less inflow as well and overall system resilience may
depend on highly self-sufficient localised systems. Social acceptance is necessary to get a
proposed management option accepted. To account for all these criteria, a variety of metrics,
as listed below, are combined and evaluated with a Multi-Criteria Decision Analysis
(MCDA) approach. The Info-Gap approach allows for an individual evaluation of each of
the multiple criteria values.

A compromise programming MCDA method (US Army Corps 2010; Janssen 2001;
Kiker et al. 2005; DCLG 2009) is used to combine the results for multiple criteria over
multiple-steps of increasing uncertainty. The Info-Gap approach allows for an individual
evaluation of multiple criteria. This paper aggregates multiple criteria to explore the effects
of various weightings. A basic MCDA approach is used to offer maximum transparency to
the weighting and resulting performance criteria (Steele et al. 2009), and because it is not
designed for an optimal solution, but to offer a comparable distance to the ideal solution. A
scale factor of p02 is used to weight criteria proportional to their magnitude. The weighting
factor, applied as in Eq. 8, is 3 for the criteria receiving the weighting factor and 1 for the
remaining criteria.

DistanceðjÞ ¼
X

wðiÞp � f i*ð Þ � f ðiÞ
f i*ð Þ � f i�ð Þ

� �p	 
1 p=

ð8Þ

The variables used in Eq. 8 are w(i) for the weight of each criteria, f(i*) for the optimal
value, f(i−) for the least optimal value, f(i) for the criteria being evaluated and p for the
scaling factor, (in this case 2), (US Army Corps 2010). For the MCDA analysis in this paper,
the minimum value is the optimal value and the maximum value is the least optimal value.
The metric for environmental impact is inverted in order that the previously optimum
maximum value for post reservoir streamflow is portrayed as an optimum minimum value
in similar fashion to all the other metrics.

The six criteria evaluated using this MCDA approach are:

1. Risk of water shortage. Evaluated as a combination of robustness with the reservoir risk
measure and opportuness with the safety margin deficit.

2. Environmental impact. Based on the total yearly amount of outflow from the reservoir.
This study considers the environmental flow and any other outflow whether it is flow
through or spillage as contributing to the total outflow from the reservoir.

3. Local self-sufficiency. Based on the additional amount of water requested from the larger
regional water system

4. Cost. Based on the (1) operating costs to treat and move the water, (2) individual
consumer costs for those who opted for the demand side management (DSM) actions
when those management options exist and standard costs when there are no DSM
management actions and (3) the total consumer cost for all residential water. An
emphasis is placed on residential water use because most of the DSM options are
focussed on residential use and in this case study the commercial/industrial use is a
small component of total system demand. Customer costs include sewage treatment
based on figures originating from SouthWestWater 2010. The pricing is adjusted to create
a tiered tariff that increases costs 10 % for water use above 130 l pcc and another 10 % for
use above 150 l pcc. This tiered tariff approach is created for the sake of research and does
not originate from SouthWestWater. Costs for system operations are sourced from average
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yearly cost per unit data from SW Water. Costs for rainwater and greywater processing
originate from the Urban Water Optioneering Tool (UWOT) (Makropoulous et al. 2008)
model technical library and from the University of Exeter’s rainwater harvesting installa-
tion at the Innovation Centre (Ward 2010). Energy and Carbon conversion factors are
sourced from SW Water’s Water Resource Plan (SW Water 2009), UWOT and the
University of Exeter’s rainwater harvesting installation.

5. Carbon footprint. Calculated from emissions in the generation of electricity related to
the treatment and movement of water. The emission conversion factor is reduced over
the chronological running of the model in a linear fashion to incorporate the national
grid’s stated climate change goals to reduce grid emissions 45 % by 2020 and 80 % by
2050.

6. Social acceptability. To include social acceptability, each management option is
assigned a value between 1 and 10. Reservoir expansion is considered less acceptable
(assigned a value of 8), efficiency options are considered more acceptable (assigned a
value of 3), innovative options such as rainwater harvesting and greywater use are
considered to be in between these two (assigned a value of 5), and combination options
are assigned a value of 4.

4 Case Study

4.1 Description

This study uses a simple semi-real water resources system based on the Drift reservoir and
Penzance demand node, located in southwest Cornwall, UK as shown in Fig. 5. The
reservoir has a 1,200 Megalitre (Ml) capacity which satisfies roughly 89 % of the local
demand. The remaining 11 % is supplied from the regional Water Resource Zone which
encompasses approximately the county of Cornwall. Demand is roughly 70 % residential,

Fig. 5 Study area location

1162 B. Korteling et al.



20 % commercial/industrial and 10 % agricultural. If the required demand is greater than the
local abstraction limits of 10.91 Megaliters per day (Ml/d), the remaining demand is sourced
from regional supply. There is an additional 0.5 Ml/d supplied by the regional system if the
Drift reservoir falls below its operational curve and an additional 2.0 Ml/d supplied by the
regional system if the Drift reservoir falls below a point on a point on its drought manage-
ment curve. This curve defines the optimal reservoir volume for the time of year based on
historic weather patterns. Due to gardening needs and an influx of tourists, summer demands
can be as much as 35 % higher than winter demands, all at a time when summer flows are
low. Although, it may be more common for environmental requirements to vary between
summer and winter, in the Drift catchment there is a required base environmental flow of
1.36 Ml/d at all times throughout the year.

The daily time step water resources model used in this research is constructed in
MATLAB. Look-up tables hold time series values to serve the parameter needs of the water
reservoir mass balance Eq. 1. These parameters include: daily inflow and rainfall values over
a 25 year period from 1962 to 1986 inclusive, average weekly demand factors that show an
increase in use during the summer months and a slight reduction in the winter, and UKWIR
climate change flow factors to quantify the effects of climate change on future river flows.
These flow factor values are sourced from SWWater and guided by the final UKWIR CL04
Method 1methodology of December 2008 (UKWIR 2009). In the MATLAB code are
baseline values for per capita demand, population in terms of the number of houses,
commercial and industrial combined demand, and agricultural demand. Growth factors for
each of these three demand components project an expected increase of 10 % in population,
a drop of 10 % in commercial and industrial demand and an increase of 5 % in agricultural
demand.

4.2 Uncertainty Sources

As mentioned in section 3 of the Info-Gap based water resources planning method-
ology sequence, uncertainty is explored for three supply-side parameters, five demand-
side parameters and cost (see Table 1). With the EBSD headroom estimation approach
most of these parameters are assigned a probability distribution based on a percent
variation from the expected value. With normal distributions the range of variation is
centred on zero and the percent deviation equates roughly to two standard deviations.
With triangular distributions the mean value is the expected forecast and the best and
worst cases are either percent deviations or defined values as is the case with the
uncertainty of climate change impact on source yield. The climate change impact
parameter is considered a triangular distribution guided by values predicted for the
wet, mid and dry scenario inflows. Other parameters include: accuracy of supply-side
meters (normal distribution with 5 % variation), climate change impact on catchment
process (normal distribution with 10 % variation), accuracy of demand-side meters
(normal distribution with 2.5 % variation), demand forecast variation (triangular
distribution with 10 % variation), impact of climate change on demand (triangular
distribution centred on a 1.4 % increase with a range of 20 % variation either side of
this increase), and adoption of efficiency measure (triangular distribution with a
potential increase in adoption rate of 10 % and drop in adoption rate of 20 %).

This Info-Gap approach uses the same central tendency values as the headroom approach,
(for example, inflow values associated the climate change mid scenario or the expected
population growth), but instead of selecting a percentile value from each parameter’s
assumed distribution as with the headroom approach, the Info-Gap calculation sequence
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samples the full range of this uncertainty and beyond for the four parameters shaded in blue
in Table 1 or until the system fails.

4.3 Water Resource management options

This study explores the relative performance of 81 different management options: 8 different
supply side options, 9 different efficiency related options, 60 different domestic rainwater
and greywater options and 4 different combination strategies. Such a large number of
options are explored to assess the extent of intervention needed to achieve significant
management results. For instance, is an increase in reservoir volumes from 1,200 Ml to
1,400 Ml enough or is 1,600 Ml or 1,800 Ml needed? Would efficiency reductions of 10 % in
50 % of households suffice or would the reductions need to be 15 % in 75 % of households
to make an impact, and how many homes would need to incorporate greywater and/or
rainwater use to help the overall system achieve a positive supply/demand balance?

The range of 81 options explored includes:

1. Increase reservoir volume from 1,200 Ml to 1,400 Ml, 1,600 Ml or 1,800 Ml at the end
of the third periodic review of the planning horizon, on the 15th year (4 options).

2. Immediate increase of transfers from regional system when reservoir falls below
operating curve from 1 Ml/d to 1.5, 2 and 2.5 Ml/d (3 options).

3. Immediate increase of water treatment capabilities from 11 Ml/d to 13 Ml/d and increase
yearly abstraction limit to allow for an increase in abstraction of 1.364 Ml/d (1 option).

4. An increase in efficiency of 5 %, 7.5 %, 10 %, 12.5 % and 15 % for a third of residential
homes. Efficiency reductions of 15 % were also modelled for 50 %, 66 %, 75 % and
90 % of residential homes. Efficiency reductions start gradually and make their maxi-
mum impact by the midpoint of the planning horizon, before the 15th year. Efficiency
reductions include commercial and industrial use with the assumption that reductions
would be achieved with all commercial and industrial operations (9 options).

5. Domestic rainwater collection for (R1) toilets only, (R2) toilets and outside use, (R3)
with the addition of clothes washers and (R4) with the addition of bathing water for
33 %, 50 %, 66 %, 75 % and 90 % of residential homes. The adoption of rainwater
collection practices increases incrementally with a third of all adoptees starting the
practice in the first 5 years, followed by two-thirds in the next 5 years and the final third
before the 15th year. The assumed cistern size ranged initially from 500 to 7,500 l. Final
simulations concentrated on cistern sizes of 2,400 l as this size showed significant gains
for each rainwater use scenario. The assumed roof size is 50 m2. It is important to have a
rainwater cistern at least as large as 2,400 l to show significant reductions in water
demand from the mains (25 options).

6. Domestic greywater use for (G1) toilets only, (G2) toilets and outside use for 33 %,
50 %, 66 %, 75 % and 90 % of residential homes. The adoption of domestic greywater
practices increases incrementally with a third of all adoptees starting the practice in the
first 5 years, followed by two-thirds in the next 5 years and the final third before the
15th year. For higher adoption rates of 50–90 %, the increases during each 5 year period
are proportionately higher (10 options).

7. Rainwater collection for bathing and clothes washing and greywater for toilets and
outside use (R/G) for 33 %, 50 %, 66 %, 75 % and 90 % of residential homes. The
adoption of combined greywater use and rainwater collection increases incrementally
with a third of all adoptees starting the practice in the first 5 years, followed by two-
thirds in the next 5 years and the final third before the 15th year (25 options).
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8. Other management option combinations include: greywater use for toilets with a 50 %
adoption rate and an additional 1Ml regional transfer; increased efficiency with a 50 %
adoption rate and an additional 1Ml regional transfer; greywater for toilets and increased
efficiency each with a 50 % adoption rate; and rainwater for bathing and clothes washing,
greywater for toilets and outside use and increased efficiency—each with an adoption rate
of 1/3 of all homes. These combination strategies follow a similar pattern to the individual
interventions of slowly ramping up adoption rates over a 15 year period (four options).

4.4 Results and Discussion

As mentioned in the methodology section, the Info-Gap approach characterises the uncertainty of
parameters that are input into a water resources model. The quantification of uncertainty requires
repeated simulations of the model as uncertain parameters stray from their central tendency
through the uncertainty range of each uncertain parameter 10 % of this range at a time, and
beyond for four parameters; climate change effect on (1) source yield, (2) catchment change and
(3) domestic demand and (4) growth in terms of population, commercial/industrial and agricul-
tural activity. A summary of how each metric performs during each of these simulation steps into
increasing uncertainty provides the base data to generate the robustness and opportuness curves.

Figure 6 shows the robustness curves for a selection of the management options explored in
terms of their performance relative to the reservoir risk measurement (RRM). This figure shows
that valuable information can be gathered from the performance of management options beyond
the range of uncertainty explored with the EBSD headroom estimation process (depicted by the
dark blue dashed box). This dark blue dashed box shows the range of performance values that
result from an interplay of the parameter values found in the probabilistic range between
confidence levels 75 % and 85 %. At the edge of this confidence level range, three strategies
fail; two options with rainwater collection only and the efficiency only option. Many other
strategies fail before level 10 of increasing uncertainty on the y-axis, which marks the edge of
the uncertainty range as defined in the EBSD approach; reservoir expansion of 200Ml, an increase

Fig. 6 Robustness of different management strategies as assessed by a reservoir risk measure (RRM); the
product of the probability of the reservoir falling below the drought management curve and the average
volume (Ml) of water deficit below this curve
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in regional transfer of 1Ml, greywater only adopted by 50 % of homes, rainwater and greywater
reuse adopted by 50%of homes and the combined demand sidemanagement option of rainwater,
grey water and efficiency at an adoption rate of 33 % of homes each. Only the combinations of
increased efficiency or greywater reuse in 50 % of homes plus additional regional transfer,
rainwater and greywater reuse adopted by 75 % of homes and the reservoir expansion of
300 Ml or 400Ml are robust enough to make it past level 10 of increasing uncertainty.

Just before level 10, there is preference reversal between the reservoir expansion of 200 Ml
and rainwater and greywater combined option with 75% adoption rate. This preference reversal
is manifested as a crossing of the corresponding robustness curves: solid purple for reservoir
expansion and dash—blue for rainwater/gerywater. At lower values of the RRM (below approx.
60 Ml), the rainwater and greywater combined option is more robust, but beyond this RRM
value, the reservoir expansion of 200 Ml is more robust (for a short period), meaning it can
provide the same level of performance at higher levels of uncertainty. The reservoir expansion
of 200 Ml option trends in a direction to be more robust than the efficiency and greywater
options with additional regional transfer, but fails before it can. In the long term, preference
returns for the rainwater and greywater combined option with 75 % adoption rate as it proves
more robust than the reservoir expansion of 200 Ml option. The robustness curves show that a
substantial increase in reservoir volume is needed for a significantly robust option. It is
interesting to note that the efficiency and greywater options with additional regional transfer
are the most robust demand side management (DSM) option while they last, but at approxi-
mately level 12 and 14 respectively both these options fail. Although the rainwater and
greywater combined option with 75 % adoption rate is less robust than these two DSM options
at lower levels of uncertainty, it is more robust in the long term because it eludes failure until
uncertainty level 14. Evaluating the robustness of management options past the range assessed
with the EBSD headroom approach provides more information to differentiate the value of
different options. Within the dashed blue line box, most options perform reasonably well.
Which options fail first is only revealed outside of this box at higher uncertainties

Figure 7 shows the opportuness curves for a selection of the management options
explored in terms of their relative success based on the safety margin deficit (SMD). The
management options that are successful enough to survive failure beyond level 6 of
increasing uncertainty (the extent of the range of uncertainty evaluated as part of the

Fig. 7 Opportuness of different management strategies as assessed by safety margin deficit (SMD)
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EBSD headroom estimation), are included in these opportuness curves to see if their
performance under auspicious conditions provides further insight into their merit. This
graph shows that the reservoir expansion options are the quickest to lessen the SMD,
followed by the combined demand side management option of greywater use for toilets
and increased efficiency each in 50 % of homes. At lower efficiencies, a close third and
fourth to lessen the SMD are the demand side management options of greywater for toilets
and increased efficiency both with additional regional water transfer. At higher efficiencies
however, these two options are outperformed by the rainwater and greywater combinations
at 75 % and 50 % adoption rates, respectively. These preference reversals highlight the fact
that rainwater harvesting lessens the demand for water from reservoirs, and contributes to a
quicker return to a positive water balance with a greater safety margin.

Figure 8 shows the probability that the reservoir level will fall below the drought control
curve for 13 of the best performing management options and the no intervention option for
comparison. The probability curves show erratic behaviour with the probability increasing and
decreasing with increasing uncertainty due to the fact that reservoir levels can move up and
down in relation to points on the drought management curve more than once each year. This
behaviour creates a mess of crossing lines. The use of the RRM in Fig. 6 creates cleaner plots
and shows a consistent trend for the security of a reservoir because it takes into account the
combination of frequency and magnitude in an overall measure. The RRM as a performance
indicator offers a much clearer view of the relative merit of management options.

The only options that ensure a reservoir volume will not drop below a point on a drought
management curve more than once in 20 years (termed below as the ‘once in 20 years test’)are
the reservoir expansion options,. Awillingness to endure the reservoir volume dropping below a
point on the drought management curve more often, up to once in 10 years (termed below the
‘once in 10 years test’), allows for the consideration of a variety of other management options.
Taking into account the fact that the probability of an occurrence is not as important as its
magnitude, the robustness curves based on the RRM show that manyDSM options that pass the
‘once in 10 years test’ but not the ‘once in 20 years test’ perform relatively well. In fact, three of
these DSM options avoid operational failure at much higher levels of uncertainty than the
reservoir expansion option of 200Ml, which passes the ‘once in 20 years test’.

Table 2 lists the ranking of management options as a result of an MCDA performance
evaluation based on different weightings for each of the six criteria listed in section 3.2. For

Fig. 8 Probability that reservoir levels will fall below the drought control curve
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simplicity’s sake, the rankings for each criteria grouping are presented for only two levels of
uncertainty that represent low and high uncertainty instead of a ranking for each of the 20
steps of increasing robustness. Low uncertainty refers to level 5 of increasing uncertainty in

Table 2 Multi-Criteria Decision Analysis performance evaluation with different weightings. The far right
column of the table provides a key to the colour coding that is designed to help easy identification of which
type of management intervention performed well over the most criteria and also where preference reversal
occurred at higher uncertainties that might not have been noticed within the range assessed with the current
headroom calculation
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Figs. 4, 6, 7 and 8. Level 5 is range of uncertainty used to generate the headroom value in the
EBSD headroom estimation approach. High uncertainty refers to level 10 of increasing
uncertainty in the same figures. Level 10 is the range of uncertainty associated with the outer
boundary of the uncertainty range as defined in the EBSD headroom estimation approach. A
rank of 1 indicates a management option that performs the best over multiple criteria.

At lower uncertainties the highest ranked four options are the same with some change in
order for all weightings except emphasis on water availability, carbon and social acceptability.
These top four DSM options; Rainwater/Greywater/Efficiency (R/G/E in light pink coloured
cells), Greywater/Efficiency (G(t)/E in brick red coloured cells) and Rainwater/Greywater
adoption rates of 75 % and 50 % (R/G in darker blue coloured cells) perform well because
they offer a balance of benefits that satisfy a wide range of criteria and the DSMmeasures have
high adoption rates. Most of these DSM options are outperformed in the water availability
weighting at lower uncertainties because the reservoir expansion options perform so well in
terms of robustness and opportuness for water availability. Management options that include
efficiency rise in the rankings to the top four with the carbon and social acceptability weightings
because efficiency saves on carbon created during the treatment and distribution of water and
because efficiency is classified as one of the most socially acceptable options. The reservoir
expansion options rank low in all cases except for low and high uncertainty for water
availability because the ability of these options to alleviate a risk of water shortage is not
significant enough to counteract lower performance in other criteria.

Only five management options succeed at higher uncertainties. The preference for including
efficiency measures at lower uncertainties with the Rainwater/Greywater/Efficiency (R/G/E in
light pink coloured cells) and Greywater/Efficiency (G(t)/E in brick red coloured cells) options is
replaced by a preference for increased supply with additional regional transfers and significantly
high adoption rates with the rainwater and greywater use occurring each in 75 % of homes. At
higher uncertainties the need for more water exerts such a significant influence to overbalance
the carbon and socially acceptable weightings. For these weightings, one would expect the
Efficiency plus additional regional transfer option to rate high because increased efficiency
means decreased carbon use and efficiency is also more socially acceptable. However, the top
three ranked options at higher uncertainties for the carbon and socially acceptable weightings
outperform the efficiency option with regional transfer because, on balance, they either supply
more water or reduce water use more effectively at higher uncertainties.

It is interesting to note that the combined volume of all the cisterns in any management
option that includes rainwater collection ranges from 14 Ml to 18 Ml at the beginning and
end of the planning horizon for adoption rates in 50 % of homes; and 31 Ml to 40 Ml for
adoption rates in 75 % of homes. This volume is significantly smaller than the volumes that
are added to the reservoir in the reservoir expansion options. The reason such a small volume
can have such a large impact is because use over the year lessens the requirement for more
water from the reservoir, thus making it easier to keep reservoir levels higher. Also, the
frequent use of a small-scale system means there is little chance of spill over and wasted
water. Whereas with a reservoir, there is lots of water that spills over without ever contrib-
uting to the system’s needs, unless of course there is a large enough reservoir, like the one
expanded by 400 Ml, with enough space to keep more of this water for the summer season.

5 Conclusion

The results of this study show that an Info-Gap based water resources planning methodology
offers a broader understanding of how different management options perform over a wider
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range of plausible futures than is explored with traditional water resource planning methods
such as the EBSD headroom estimation process used in England and Wales. The discussion
in section 4.4 highlights the fact that many management options that perform well within the
EBSD ‘headroom range of uncertainty’ fail just beyond this range, while others continue to
perform at much higher levels of uncertainty. This study also shows that preference reversals
can occur at higher uncertainties. This is important because an approach focused on robust
decision-making is less likely to be constrained by epistemological limits and therefore more
likely to succeed than an approach focused on optimal decision-making predicated on the
predictive accuracy of climate models (Dessai et al. 2009).

The inclusion of MCDA facilitates the assessment of each management option over
multiple metrics in order to highlight differently weighted performance results that might
influence adaptive management choices. A balanced assessment of the performance of
management options over a range of criteria shifts the focus away from reservoir expansion
options that perform best in regards to water availability at lower uncertainties. This is also
important because when responding to climate change, there is a danger of maladaptation if
not all metrics or water resource issues are taken into account. (Barnett and O’Neill 2009)

This Info-Gap based approach offers the technical platform to address some of the needed
improvements to the current water resources planning process as noted by Hall et al. (2011).
These Info-Gap based improvements include: the ability to directly evaluate levels of service in
terms of more observable outcomes than deployable output (DO) as exemplified by the
reservoir ratio (RR), the reservoir risk measure (RRM) and the safety margin deficit (SMD);
the integration of uncertainty analysis within the water resource system simulation process; and
the ability to evaluate and compare management options over a wide range of plausible futures.

The Info-Gap tact to combine all the trends of uncertain parameters into a worst case
future trajectory is appealing in terms of its efficiency. However, it is not certain that
management options that are preferred when all parameters push system towards failure
will also be preferred when the uncertainty related to supply and demand increases or
decreases in different patterns.

Future research is currently underway to use an Info-Gap based water resources man-
agement approach to evaluate a more complex regional water supply system, to use
UKCP09 probabilistic climate change projections to drive future changes in water resources
availability and to test if variable trends of uncertainty related to supply and demand reveal a
preference in management options different than that chosen with the robustness curves.
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