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Abstract
On the one hand, processors for hearing aids are highly specialized for audio processing, on the other hand they have to
meet challenging hardware restrictions. This paper aims to provide an overview of the requirements, architectures, and
implementations of these processors. Special attention is given to the increasingly common application-specific instruction-
set processors (ASIPs). The main focus of this paper lies on hardware-related aspects such as the processor architecture,
the interfaces, the application specific integrated circuit (ASIC) technology, and the operating conditions. The different
hearing aid implementations are compared in terms of power consumption, silicon area, and computing performance for
the algorithms used. Challenges for the design of future hearing aid processors are discussed based on current trends and
developments.

Keywords Survey · Hearing aid · Processor · ASIP · ASIC

1 Introduction

Modernhearing aids, like the one shown in Fig. 1, have to
meeta variety of technical requirements. First of all, the
power consumption of hearing aids is limited. To achieve
an acceptable battery life, the average power consumption
of hearing aids should be in the range of a few milliwatts.
The reason for the low energy budget is the small physical
size of battery-powered hearing aids. At the same time, the
demand for more audio processing performance and memo-
ry capacity is steadily growing. There are newly developed
algorithms with more or improved features and increasing
demands on audio quality. In addition, it is required that
hearing aids can be individually fitted to the hearing aid user,
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adapt to constantly changing environmental conditions, and
connect wirelessly to other electronic devices. These requi-
rements and the high degree of flexibility and programma-
bility make the hardware design for hearing aid devices
challenging.

Figure 2 shows the system components and peripher-
als of a state-of-the-art hearing aid. Typically, hearing aids
contain a central processing unit that provides the functio-
nality and connects all other components such as the recei-
ver and microphones. The design and implementation of
the processor is challenging and involves numerous trade-
offs due to the wide range of requirements and the large
design space. The implementation alternatives in a multi-
dimensional design space are shown in Fig. 3. Various hear-
ing aid processor architectures and implementations were
introduced in the literature. There are analog, mixed-signal,
or purely digital hearing aids. Some use hard-wired pro-
cessing and control circuits, others use fully programmable
application-specific instruction-set processors (ASIPs) with
custom instructions and hardware accelerators. This survey
compares these hearing aids from a hardware perspective.

The main focus of related work, i.e., technical studies,
surveys or overview papers, addressing the hearing aid
signal processing, is on current and future hearing aid
algorithms. The first related study [26] presents state-
of-the-art signal processing in hearing aids. Among the
studied techniques and algorithms are feedback reduction,
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Figure 1 Components of a common behind the ear hearing aid
device [11].

directional microphones, environment recognition, and
noise and distortion reduction. Current limitations as well
as future trends like binaural and music processing are
addressed. Binaural processing as a future hearing aid
processing technique is also covered in the two surveys [21,
55] from 2005 and 2009. Both papers present state-of-
the-art, challenges and future trends of signal processing
in hearing aids. Physiological requirements due to hearing
impairment are described as well as the different audio
processing methods such as directional microphones, noise
reduction, acoustic feedback suppression, classification, and
compression. No related work focuses on the hardware
perspective. Little information is given about the hardware
architectures, circuit implementation, and the different
design methods. This survey covers these hardware-
related topics, including a review of the current processor
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Figure 3 Implementation alternatives in a multi-dimensional design
space.

architectures. A particular focus is on application-specific
instruction-set processors (ASIPs).

The structure of this survey is as follows: Section 2
provides a list of the algorithms that are implemented on
hearing aid processors, which are part of this survey. The
hearing aid processors are described in detail in Section 3.
The differences in the architecture of hard-wired and ASIP-
based hearing aid processors are discussed. The remaining
sections cover the ASIC technology and supply voltage
(Section 4), power consumption (Section 5), silicon area
(Section 6), operating clock frequency (Section 7), audio
datapath width (Section 8) and on-chip memory in ASIP-
based hearing aid systems (Section 9). Section 10 concludes
this paper and points out possible future trends.

2 Algorithms for Hearing Aid Devices

A typical high-end hearing aid processing is shown as
a block diagram in Fig. 4. Multiple microphones enable

Figure 2 System components and peripherals of a modern hearing aid device [9, 63].
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Figure 4 Block diagram of a typical hearing aid processing [22, 55].

directional filtering. Therefore, beamforming (BMF) and
adaptive directional microphone (ADM) algorithms are the
first in the chain and aim to increase the signal-to-noise ratio
(SNR) by performing directional filtering. Feedback is then
suppressed with a feedback cancellation (FBC) algorithm
by analyzing the output signal and detecting feedback loops.
The algorithms that process frequency domain data, such as
the noise reduction (NR) and dynamic range compression
(DRC) algorithms, require an analysis and synthesis filter
bank. Classification algorithms generally generate control
signals for the processing chain. A list of algorithms is
included in Table 1. This list contains exclusively algorithms
that are part of a processing chain in state-of-the-art hearing
aids. Publications with the implementation, optimization,
and application of these algorithms on the state-of-the-art
hearing aid processors are also included in Table 1. There is
a trend towards algorithms, that are computationally more
demanding. In recent years, algorithms for machine learning
and deep learning [40, 44, 52] and binaural processing
algorithms [46] are used. Recently proposed algorithms of
this kind [57, 67, 69], of which no implementation details on
a hearing aid processor are known, are not listed in Table 1.

3 Hearing Aid Processor Architectures

In recent decades, various hearing aid processors have been
proposed in the literature. All hearing aid processors are
subject to comparable strict requirements regarding lim-
ited energy budget, available chip area, and performance

requirements. However, a wide range of different archi-
tectures, algorithms, approaches, and technologies were
introduced to meet these stringent requirements. 30 research
and commercial processors published between 1996 and
2020 are listed in Table 2. This table provides a comparison
of the architecture, ASIC technology, supply voltage, aver-
age power consumption, silicon area, and operating clock
frequency of the various hearing aid systems.

The processor architectures are designed and optimized
to efficiently execute particular hearing aid algorithms listed
in Table 1. The architectures of these processors can be
divided into three main classes: hard-wired with dedi-
cated processing blocks, ASIPs, and ASIPs with hardware
accelerators.

3.1 Hard-Wired Architectures

In case of a hard-wired architecture, all parts of the hearing
aid processing chain are implemented by dedicated circuits.
Their fundamental function is fixed and can only be changed
before manufacturing. There are pure analog [45, 64, 70],
mixed-signal [12, 17, 30–32], or pure digital [3, 65, 71, 72,
74] hard-wired hearing aids.

A digital hard-wired hearing aid is highlighted in the fol-
lowing. This dedicated architecture, originally proposed
in [72] and published in 2014, is characterized by its flexi-
bility compared to related architectures. It includes a core-
based architecture consisting of a memory management unit
for data exchange, a control unit, and an arithmetic unit
for processing. Therefore, processing is easier to control
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compared to related architectures. Its block diagram, archi-
tecture, and die photo are shown in Fig. 5. The authors
of [72] propose a sample-based perceptual multiband noise
reduction algorithm as a basis for the design of a dedi-
cated digital hearing aid architecture. This noise reduction
algorithm is part of the hearing processing chain and is
represented as a block diagram in Fig. 5. An analysis and
synthesis filter bank (AFB and SFB), a noise reduction (NR)
algorithm [24, 42], an insertion gain (IG), and wide dynamic
range compression (WDRC) are integrated on the hearing
aid chip. The average power consumption is 83.7 μW. A 90
nm ASIC technology is used and the digital core voltage is
0.6V.

3.2 Application-Specific Instruction-Set Processors

Application-specific instruction-set processor (ASIP) archi-
tectures include a digital signal processor (DSP) for signal
processing [35, 47–50, 56]. The DSP architecture is opti-
mized for the typical hearing aid algorithms, therefore it is
here also denoted as an (ASIP). The target algorithms can
be modified or replaced by changing the program code. This
offers greater flexibility compared to hard-wired architec-
tures. However, due to the higher flexibility offered by the
processor architecture and the increased memory require-
ments, the power consumption and silicon area requirements
are generally higher compared to hard-wired architectures.
Instruction-level and data-level optimizations improve the
efficiency of signal processing. New custom instructions
increase processing performance.

A hearing aid with a DSP for signal processing is presen-
ted in [48] and its block diagram and photo are shown in
Fig. 6. This hearing aid publication is highlighted as the
authors propose an algorithm to silicon flow in addition to
the proposed hearing aid chip. This flow is integrated into
the chip design flow and supports accurate and fast simu-
lations, ASIC synthesis, optimization and verification [48].
These tools are useful for handling the overall complexity
and drastically decrease the design time, if the underlying
ASIC technology is changed. The DSP architecture consists
of a datapath with several general purpose execution units,
a complex-valued multiplier, and a controller with a pro-
gram read-only memory. The operating clock frequency of
the DSP is reduced by increased parallelism and reduced
memory accesses. A fast Fourier transform (FFT) algorithm
case study for the architecture shows how a radix-8 imple-
mentation can minimize memory accesses and increase the
number of parallel operations. Over 20 operations per cycle
are achieved. In addition to clock gating and low voltage
operation techniques, the authors propose to partition the
datapath and the read-only memory (ROM) of the com-
plete architecture. The underlying concept is that there are
different types of operations that do not require the same

Figure 5 Block diagram and die photo of a hard-wired hearing aid [72]
(Republished with permission of Institution of Engineering and
Technology (IET), from [72]; permission conveyed through Copyright
Clearance Center, Inc.).

hardware resources. This partitioning is implementedfor
reasons of power consumption optimization and depends
on the operation mode: FFT and non-FFT. Consequently,
one of the ROMs needs to be accessed in each clock cycle,
which reduces the power consumption of the DSP by about
40%. The DSP, the instruction read-only memorys (ROMs),
and the parameter static random-access memorys (SRAMs)
are integrated in one hearing aid chip. The final chip con-
sumes on average 0.66 mW at a core voltage of 1.05 V.
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Figure 6 Block diagram and die photo of an ASIP hearing aid [48] (©
2020 IEEE. Reprinted, with permission, from [48]).

The analog front end including a digital-to-analog converter
(DAC), programmable gain amplifier, and a serial interface
are integrated on a separate chip [34].

3.3 ASIPs with Hardware Accelerators

There are hearing aid processing architectures that com-
bine ASIPs with dedicated hard-wired accelerators. These

accelerators are used for frequent and computationally
intensive tasks. The flexibility and complexity of these
accelerators varies. A list of accelerators for hearing aids
can be found in Table 3. The hearing aid processing task is
mapped to either the ASIP or the accelerator. The goal is
to process the intensive computing tasks on the accelerator,
while the ASIP performs computations in parallel and
controls the accelerator processing [54].

The block diagram of a highlighted ASIP with accelera-
tors [19] is shown in Fig. 7. The corresponding layout view
is shown in Fig. 8. This research hearing system on chip
contains four ASIPs on one chip to test different processor
and algorithm configurations for processing performance
and power efficiency. The ten co-processors, which can be
used in parallel, accelerate the computation of the coor-
dinate rotation digital computer (CORDIC) algorithm for
hyperbolic and trigonometric functions such as sine, cosine,
square root, exponential, tangent, and division with an aver-
age speed-up of 28 compared to a software implementation
on the ASIP. The ASIP can configure several accelerators
with different operating modes to calculate different results
in parallel.

Using the same hardware accelerator for different audio
signal processing tasks is also applied in other related work.
In [40], an arithmetic unit with a dual MAC and butterfly
unit can operate either in FFT mode or in CNN mode. By
sharing hardware resources, 42% of hardware complexity
can be saved. In [54], a streaming DSP hardware accelerator
is introduced that can compute applications such as keyword
recognition or other algorithms for classifications. Any of
the co-processors in [19] can be disabled by clock gating,
however, these operations are elementary and are often used
in hearing aid applications. This also applies to the FIR
filter accelerators presented in [4, 51]. The accelerators
presented in [4–6, 9, 25, 33, 63] are more complex and
specific, because they implement complete algorithms, such
as noise reduction (NR), feedback cancellation (FBC) or

Table 3 List of hardware
accelerators for hearing aids. Work Accelerator

[4, 51, 63] Finite impulse response (FIR) filter accelerators

Lee et al. [40] Convolutional neural networks (CNN) and fast Fourier transform

(FFT) accelerators for speech enhancement

Pu et al. [54] Streaming DSP for voice code word detection

Gerlach et al. [19] Co-processors for hyperbolic and trigonometric functions

Lin et al. [41] Noise reduction (NR) accelerator

Lin et al. [41] Multiply-accumulate (MAC) unit accelerator

Lin et al. [41] Fast Fourier transform (FFT) accelerator

[4–6, 9, 25, 33, 63] Analysis filter bank (AFB) accelerator

[4–6, 9, 25, 33, 63] Noise reduction (NR) accelerator

[4–6, 9, 25, 33, 63] Feedback cancellation (FBC) accelerator

[4–6, 9, 25, 33, 63] Wide dynamic range compression (WDRC) accelerator
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Figure 7 Block diagram of a hearing aid including multiple ASIPs and hardware accelerators [19] (© 2020 IEEE. Reprinted, with permission,
from [19]).

others, in hardware. One advantage is the efficiency gained
by the hard-wired implementation. If an algorithm needs to
be changed, it is possible to use ASIP processing resources
instead of the accelerators.

4 ASIC Technology and Supply Voltage

The advantages of the steadily decreasing feature sizes of
CMOS semiconductor technology are exploited in com-
mercial and research hearing aids. The feature sizes of
modern hearing aids from 1996 to 2020 are shown in Fig. 9.

Figure 8 Layout view of an ASIP with hardware accelerators hearing
aid [19] (© 2020 IEEE. Reprinted, with permission, from [19]).

Hearing aids with an analog front end (AFE), including
analog-to-digital converters (ADCs), programmable gain
amplifiers (PGAs), or digital-to-analog converters (DACs),
are marked. These hearing aids are either mixed-signal or
analog hearing aid designs, which have on average larger
feature sizes due to more restrictive design rules and greater
sensitivity to noise [61]. To overcome these limitations, the
authors of [19, 34, 48, 53] propose a chip-level integration
with two separate chips. Each chip is integrated with a dif-
ferent ASIC technology, to independently utilize the more
appropriate feature size for both, the digital and the ana-
log components of the hearing aid. The rate, at which the
feature size shrinks, decreased significantly for hearing aid
implementations in recent years. This is due to the higher
costs for the design and manufacturing with smaller feature
sizes [61]. The supply voltages of hearing aid implementa-
tions are shown in Fig. 10. Since the feature size remained
almost constant over the last years (Fig. 9), the supply
voltage also remains almost constant (Fig. 10). This is espe-
cially noticeable for hearing aids with analog components.
The lowest supply voltages of 0.55 V to 0.8 V are used
in digital hearing aid designs. Those hearing aid imple-
mentations, that employ undervoltage techniques through
dynamic voltage scaling and use voltages close to the thres-
hold voltage, are listed in Table 4.

5 Power Consumption

The average power consumption determines the battery life of
the hearing aids. During normal operation, all components
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Figure 9 Feature sizes of
commercial and research
hearing aids.
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of the hearing aid processing system are usually constantly
active. The average power consumption for the hearing aid
implementations is shown in Fig. 11. The computational
complexity of the algorithms determines, among other
things, the power consumption. The lowest achieved aver-
age power consumption for the given implementations is
10 μW. The hearing aids [74] and [51] consume this power
for an adaptive signal-to-noise ratio (SNR) monitor based
on an envelope detection and adaptive FIR and IIR fil-
ter calculations. On the other hand, when targeting hear-
ables or smart headphones instead of hearing aid devices,
deep-learning based noise reduction techniques require an
average power consumption up to 4 mW [54]. Hard-wired
architectures offer a comparatively low-power consumption
compared to the ASIP architectures. The power distribution
for the hardware components of the mixed-signal hearing
aid [5] is 36% for the analog front end, 39% for the digital
signal processor (DSP), 11% for the power on reset circuit
and 13% for the remaining components. The digital signal
processor of the hearing aid presented in [9], on the other
hand, consumes up to 71%, while the analog parts consume
the remaining 29%.

6 Silicon Area

The silicon area for each hearing aid is shown in Fig. 12. The
analog front-end or wireless connection modules, which are
not part of every hearing aid, require additional silicon area,
which must be considered when comparing implementa-
tions. The area distribution for the mixed-signal hearing aid,
which is presented in [9, 25], is 30% for the analog and
70% for the digital part. The digital part consists of a 24 bit
application-specific instruction-set processor and five ded-
icated accelerators. The analog part consists of an audio
front end with a programmable gain amplifier (PGA), an
analogto- digital converter (ADC) and a class-D amplifier
for the pulse density modulation (PDM) output. The total
size is 9.50 mm2 and this is the maximum chip size since
2004. The analog hearing aid presented in [70], which is
manufactured using a 0.13 μm and a 0. 35 μm technology,
requires 66% of the area for the automatic gain control, 15%
for the driver and 20% for the filter circuit. The wireless con-
trol part of the analog hearing aid, which presented in [12],
is based on a dual tone multi frequency (DTMF) receiver,
occupies 1.16×4.6 mm2, which is 16% of the total chip size

Figure 10 Supply voltages of
commercial and research
hearing aids.
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Table 4 List of hearing aid implementations, which use dynamic
voltage scaling.

Operating Default ASIC

Work Voltage Voltage Technology

Qiao et al. [56] 0.80 V 1.00 V 65 nm CMOS

Lin et al. [41] 0.70 V 0.90 V 40 nm CMOS

Wei et al. [71] 0.60 V 1.00 V 90 nm CMOS

Wei et al. [72] 0.60 V 1.00 V 90 nm CMOS

Lee et al. [40] 0.60 V 0.90 V 40 nm CMOS

Pu et al. [54] 0.55 V 1.05 V 28 nm CMOS

of 5.7×4.9 mm2. The silicon area of a hearing aid may be
pad limited. As a result, the total area is larger than effec-
tively required for the digital or analog core parts. This is the
case for the second largest ASIP-based hearing aid system in
this study, which does not include an analog front-end [48].
Its size is 20 mm2.

7 Operating Clock Frequency

The required operating clock frequency depends on the com-
puting complexity of the hearing aid algorithms and the
architecture-dependent processing power of the digital signa
l processing system (Fig. 13). Most hard-wired hearing aids
operate at comparatively low operating clock frequencies
around 0.032 MHz to 8.000 MHz. The processing is sample-
based, i.e., each processing unit or component like a digital
filter or amplifier processes one sample per clock cycle.
In [71, 72], a more computationally intensive sample-based
processing is applied, using a noise reduction algorithm
based on multiband spectral subtraction and an enhanced
entropy voice activity detection. The audio samples are
stored in local ping-pong buffer and processed sequentially
for each sub-band at a clock frequency of 3MHz to 8MHz
for the various processing blocks. Digital hearing aids with

Figure 11 Power consumption
of commercial and research
hearing aids.
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an application-specific instruction-set processor as the cen-
tral processing unit require somewhere in the region of a
thousand instructions to process the algorithms. An imple-
mentation of a related noise reduction algorithms (mband)
on an ASIP with hardware accelerators [33] needs 2176
cycles for computation. Parallelism at data or instruction
level, or application-specific instructions [4, 5, 9, 19, 25, 33,
35, 47, 51, 56] can reduce the clock frequency requirement.
Accelerators are used for computing intensive tasks,
where the pure software implementation on an ASIP is not
feasible.

8 Audio DatapathWidth

All digital hearing aids presented in this survey use fixed-
point hardware architectures for signal processing, due to
lower hardware cost in terms of area and power require-
ments compared to floating-point hardware [35]. The audio
datapath width of the fixed-point data, i.e., the number
of bits per audio sample, is a crucial parameter for the
design and implementation of hearing aids, as it deter-
mines the maximum achievable signal-to-noise ratio (SNR).
A high SNR value is a strict requirement for hearing
aids [5, 31]. Each additional datapath bit increases the SNR
by about 6 dB. However, this parameter also affects the
area, power consumption, and processing performance of
all components in the processing chain, digital processing
blocks, memories, ADCs, and DACs [4, 19, 25, 56, 62].
The authors of [41] present a word length optimization to
reduce the area and power of their MAC unit accelerator.
They propose to optimize the number of bits based on the
results of short-time objective intelligibility (STOI) mea-
surements. Alternatively, signal-to-noise ratio (SNR) mea-
surements are used in [33]. In [56], a 16-bit processor is
extended with specific functional units that use 32-bit and
40-bit intermediate results to improve the fixed-point accu-
racy. Two separate processors are used in [62]. The 32-bit
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Figure 12 Silicon area of
commercial and research
hearing aids.
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Figure 13 Operating clock
frequency of commercial and
research hearing aids.
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Table 5 Fixed audio datapath
width architectures. Work Analog data path Digital data path Sampl. Freq. Processor Arch.

Wei et al. [71] — 16-bit 24 kHz hard-wired
[4, 40] — 16-bit — ASIP+acc.
Lee et al. [40] — 16-bit 16 kHz ASIP+acc.
Kim et al. [30] 16-bit 16-bit 16 kHz hard-wired
[47, 56] — 16-bit — ASIP
Wei et al. [71, 72] — 16-bit 24 kHz hard-wired
Ku et al. [35] — 16-bit 20 kHz ASIP
Mosch et al. [48] — 22-bit — ASIP
[5, 6, 9, 25, 62] 16-bit 24-bit 16 kHz ASIP+acc.

Table 6 Variable audio
datapath width architectures. Work Analog data path Digital data path Sampl. Freq. Processor Arch.

Neuteboom et al. [49, 50] 13-bit 13 to 24-bit 16 kHz ASIP

Paker et al. [51] — 12 to 25-bit 16 kHz ASIP+acc.

Lin et al. [41] 16-bit 6 to 32-bit 16 kHz ASIP+acc.

Kim et al. [33] 16-bit 24 to 32-bit 16 kHz ASIP+acc.

Qiao et al. [56] — 24 to 40-bit 16 kHz ASIP

Gerlach et al. [19] — 8 to 64-bit 16 kHz ASIP+acc.
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Table 7 Optional floating-point audio datapath.

Processor

Work Digital datapath Arch.

[47, 62, 63] block floating-point ASIP+acc.

Chang et al. [4] static floating-point ASIP+acc.

Gerlach et al. [18, 19] emulated floating-point ASIP+acc.

Arm Cortex M3 processor is used for debugging and wire-
less connectivity and the 24-bit ASIP processes the audio
samples. In Table 5, a comparison of architectures imple-
menting an audio datapath with fixed width is given. Most
designs have a datapath width of 16-bit, for the digital and
analog parts. The datapath width can be switched in some
ASIP based architectures, which are listed in Table 6. This
is possible by using different execution units with different
datapath width, microSIMD subword modes (single instruc-
tion multiple data) [39] or specialized accelerators. To take
advantage of the increased dynamic range of floating-point
data types, the architectures listed in Table 7 add hardware
support for floating-point processing. The approaches used
are block floating-point, static floating-point, or emulated
floating-point.

9Memory in Hearing Aid Systems

Due to strict power and area restrictions, on-chip memory is
the only implementation option for the hearing aids listed
in Table 8. On-chip area is limited and memory size is crit-
ical to the overall size of the chip. The area for the SRAM
macros for the mixed-signal hearing aid presented in [9] is
1.35 mm2. Compared to the logic size of 5.39 mm2 and

Table 8 On-chip memory sizes
for hearing aid processors. Work Total Details

Neuteboom et al. [49, 50] 0.85 kB 0.368 kB instruction RAM, 0.096 kB data RAM and
0.384 kB coefficient RAM

Paker et al. [51] 1.23 kB 0,62 kB data memory for mini-cores, 0,438 kB instruction
memory and 0,172 kB coefficient memory

Chang et al. [4] 5.00 kB 4 processing elements (PEs) with 512 B instruction memory,
512 B shared memory for inter-PE communication and
2.5 kB local memory

Jia et al. [25] 6.00 kB 6 kB data memory

Moller et al. [47] 22.50 kB 6,125 kB RAM and 16,375 kB ROM

Mosch et al. [48] 68.00 kB 4 kB instruction ROM and 64 kB DSP parameter RAM

[2, 62, 63] 110.00 kB 6 separate logical memory banks, 24-bit data memory,
32-bit DSP instruction memory

Gerlach et al. [19] 140.00 kB 28 SRAMs, 65 kB instruction memory, 57 kB data memory
and 16 kB audio interface memory

Lee et al. [40] 327.00 kB 4 processing cluster, each with 64 kB for the CNNs
and 2 kB for the FFT accelerators

the analog size of 2.77 mm2 the area of the SRAM is 14%
of the total chip size for a 130 nm ASIC technology. The
memory size depends on the complexity and type of the
audio processing algorithms. Algorithms with a comparably
high memory requirements are those based on trained mod-
els or data. Among those are localization algorithms [46,
60], deep learning based speech enhancement and speech
recognitionalgorithms [37, 40, 44, 52]. As an example, the
gaussian mixture model (GMM) of the localization algo-
rithm requires about 90% of the total memory requirement
of this algorithm [46, 60]. In this case 44,400 of 48,816
words are required only for the trained model. Another
example is the hearing aid with the highest amount of on-
chip memory, which is designed for computing intensive
task as neural networks for speech enhancement [40]. The
hearing aid with the least amount of on-chip memory is
designed for IIR filters [49, 50].

10 Conclusion and Future Trends

In this survey the state-of-the-art processor architectures
for hearing aids are presented. Among these architectures
are analog, mixed-signal, and digital processors. The main
focus is on application-specific instruction-set processors
(ASIPs), which are compared to dedicated hardware archi-
tectures and hearing aid systems with hardware accelerators.
Trends for the ASIC technologies, average power consump-
tion, silicon area, and operating clock frequencies are pre-
sented. There is a clear trend towards more flexibility and
growing complexity of the algorithms. Especially the deep
neural network based speech enhancement and binaural
processing algorithms for sound source localization are of
current interest. These algorithms with higher processing

1304



J Sign Process Syst (2022) 94:1293–1308

performance requirements have to be computed under the
same strict constraints as power consumption and chip area.
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Blume, H., van de Par, S. (2017). Real-time implementation of
a GMM-based binaural localization algorithm on a VLIW-SIMD
processor. https://doi.org/10.1109/ICME.2017.8019478.

61. Semiconductor Components Industries, LLC: Solving The hearing
aid platform puzzle. Tech Rep. (2014). https://www.onsemi.com/
pub/Collateral/TND6092-D.PDF.

62. Semiconductor Components Industries, LLC: EZAIRO 7111
HYBRID: Audio Processor for Digital Hearing Aids (2018).
https://www.onsemi.com/pub/Collateral/E7111-D.PDF.

63. Semiconductor Components Industries, LLC: Wireless-Enabled
Audio Processor for Hearing Aids (2018). https://www.onsemi.
com/pub/Collateral/E7150-D.PDF.

64. Serra-Graells, F., Gomez, L., Huertas, J.L. (2004). A True-1-
V 300-μw CMOS-subthreshold Log-Domain Hearing-Aid-On-
Chip. IEEE Journal of Solid-State Circuits, 39(8), 1271–1281.
https://doi.org/10.1109/JSSC.2004.831469.

65. Shaer, L., Nahlus, I., Merhi, J., Kayssi, A., Chehab, A. (2013).
Low-power digital signal processor design for a hearing aid.
In 2013 4Th annual international conference on energy aware
computing systems and applications (ICEAC) (pp. 40–44): IEEE.
https://doi.org/10.1109/ICEAC.2013.6737634.

66. Sjursen, W.P. Hearing aid digital filter (2001). US Patent
6,292,571.

67. Tammen, M., Fischer, D., Meyer, B.T., Doclo, S. (2020). DNN-
based speech presence probability estimation for multi-frame
single-microphone speech enhancement. In ICASSP 2020-2020
IEEE International conference on acoustics, speech and signal
processing (ICASSP) (pp. 191–195): IEEE. https://doi.org/10.
1109/ICASSP40776.2020.9054196.

68. Teutsch, H., & Elko, G.W. (2001). First-and second-order
adaptive differential microphone arrays. In Proc. IWAENC, vol. 1.
Citeseer.
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