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Abstract Many digital systems for telecommunications are
implemented via the Software Defined Radio technique today.
In such systems, digitally implemented modules to interface
analog-to-digital converters with the rest of the system working
at a different clock rate can be required. When implementing
these modules, generated spurious harmonics and limited hard-
ware resource problems can be critical factors in embedded
applications. The article describes a Field-Programmable Gate
Array (FPGA) circuit for arbitrary-ratio re-sampling of signals
in the Low Frequency to Very High Frequency bands, intended
for Software Defined Radio applications. The proposed
resampler allows to control Spurious Free Dynamic Range
while providing a simple, practical interface between the input
and output clock domains that requires no additional clock, thus
making it appropriate for FPGA clock-limited designs. Both up-
sampling and down-sampling variants are presented. Resource
utilization for FPGA implementations is also discussed.
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1 Introduction

It is often the case in radio communication systems and
Software Defined Radio (SDR). that the initial sampling fre-
quency is not convenient in some subsequent processing stage.
Re-sampling, or sample rate conversion, SRC, is the operation
of changing the sampling rate of a given digital signal. In most

cases, the required rate modification is not an integer multiple;
this is what we refer to as arbitrary ratio re-sampling. Field-
Programmable Gate Arrays (FPGAs) are often the technology
of choice in such systems, however, FPGAs suffer from certain
limitations such as the range of frequencies (<500 MHz) and
circuit complexity which can practically be exploited. In the
design of such systems, Spurious Free Dynamic Range, or
SFDR, defined as the ratio of a signal to its largest spurious
harmonic, is a natural quality criterion, as spurious harmonics
may negatively influence the output of a processing chain and
thus must be handled carefully.

The paper describes an FPGA-based, arbitrary ratio re-
sampler for SDR applications that allows the designer to
control SFDR while providing a simple solution requiring
no additional clock, thus making it appropriate for FPGA
clock-limited designs. The proposed SFDR-based approach
provides estimates of resource utilization that reliably match
actual resource utilization figures obtained after the FPGA
circuit has been implemented, thus making it a valuable tool
for design prototyping.

2 Related Work

In this section, we present a state of the art of existing re-
sampling methods related to our work. Since the first polyno-
mial interpolation structures proposed by Farrow in 1988 [1],
the past decades have seen the arrival of numerous SRC archi-
tectures suitable for SDR that are amenable to an FPGA imple-
mentation. These may be grouped into four classes: Farrow
structures-based architectures [2, 3]; Cascaded Integrator–
Comb, or CIC-based [4–9]; polyphase FIR filters-based
[10–13]; and hybrid methods [14–16]. Table 1 summarizes
the methods listed above with their characteristics.

Unfortunately, none of these methods proposes a clear way
of avoiding the use of a third clock with a frequency that is
usually a multiple of the input or the output clock frequency,
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as it is often proposed tomanage the interface between the two
clocks domains. This creates a problem in the context of VHF
applications; indeed, the frequency of such a clock could
quickly reach the limits of what the FPGA can support, or
what a standard quartz oscillator can generate. By using a re-
sampling structure similar to that of Barker [12], however,
while at the same time properly interfacing the two clock
domains, the classical FIR filter technique should in fact be
able to provide practical re-sampler designs that do not include
a third clock.

In this paper, we present the detailed implementation of
such a structure, a re-sampler that is similar to the Barker
structure, but which is based on a classical rather than
polyphased FIR implementation, and which is distinct from
the other re-sampling structures studied in the fact that it
conveniently interfaces the two clock domains without the
use of a third clock.

3 The Proposed Method

3.1 Theoretical Consideration

Let H(n ) be the discrete impulse response of the digital recon-
struction filter to be used in our re-sampling process. There is an
equivalent continuous impulse response HC(t) such that if we
sample HC(t), we obtain H(n). Indeed, from the value of the
ratio FIN/FOUT, it is possible to precisely calculate the time
position of each output sample from the input samples time
positions. In other words, it is possible to calculate the output
time instants from the fractional interval μk, the fraction of one
input sampling period between an output sample k and the
input sample mk that immediately precedes it (Fig. 1). Using
this time instant, along with HC(t ), we can determine the
impulse response coefficients which must weight the input

samples (Fig. 1). In this way, the filtering process can generate
an output sample at any desired output instant.

In what follows, let B be the one-sided bandwidth of the
input signal and β be the ratio 2.B /FIN. Two questions now
remain, namely:

– Which type of filter shall we choose, and with which
parameters?

– How shall we determine the weighting coefficients at
each output instant?

As for the first question, the user can of course implement
any type of lowpass FIR, such as sine cardinal (Sinc) filters
windowed with different window types [17–22]; frequency
sampling-based filters [23]; or filters designed with optimiza-
tion methods [24–26]. The SFDR value obtained with our re-
sampling process may be derived from the spectral width of

Table 1 Classification of some existing re-sampling methods.

Class References Characteristics Third clock needed?

Farrow structure-based [1–3] Can be implemented without using memory resources ([3]) Yes

CIC-based [4–9] Don’t need multiplication Yes

Polyphase FIR filter-based Dick and Harris [10] -Can perform high SFDRs Yes
-More complex implementation

-Support drift of the output clock average frequency

Jorgovanovic et al. [11] -Can perform high SFDRs Yes (To perform high SFDRs)
-Support deviations of the input and the output clocks

average frequencies

Barker [12] -should perform high SFDRs No
-FPGA implementation not treated

Barker modified [13] -should perform high SFDRs Yes
-FPGA implementation not treated

Hybrid types [14–16] Perform better SFDR than the Farrow and CIC classes Yes

Figure 1 H(n) and HC(t). The weighting coefficients at the output
instant are obtained after HC(t) is delayed by μkTIN.
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the continuous-time version of the filter’s impulse response,
HC(t ). To approximate SFDR, we may up-sample H(n ) by a
large factor I to obtain a new discrete response, HI(n ) that
better approximates HC(t). (The necessary interpolation can
be easily made with mathematical software package, with I of
the order of 10,000.) An approximate value of the SFDR is
then given by the maximal amplitude of HI(n ) above a fre-
quency of 2π(1-β )/I (see Fig. 2). Thus, a filter can be consid-
ered to fulfill the SFDR requirement for a given application
when, for a given order, the estimated SFDR is superior or
equal to the minimum required SFDR, where we shall include
plus a 10 dB margin for practical considerations.

For the second question, we first recall thatHI(n ) is used to
calculate the filter weighting coefficients at each output instant
by the nearest neighbor technique. Each coefficient chosen
will be the HI(n ) sample value nearest to the ideal value
that we would have fromHC(t -μ kTIN). Indeed, we must keep
the stair-step error noise below the required SFDR, so that
I >0.5×10SFDR/20 is satisfied.

As the signal is quantized with a limited number of bits b , it
is sometimes necessary that the SFDR be kept below the noise

related to the dynamic range of the b -bit coded signal. This
consideration leads to:

I > 2b−1 10½ � ð1Þ

Since the coefficient calculation is made offline, there is no
restriction on the duration of the processing. We can thus
achieve the needed interpolation factor with a mathematical
software package. Then, from HI(n ), we obtain the samples
corresponding to the output sampling instants.

As we wished to ensure that the theoretical SFDRs would
correspond well to those obtained after implementation, we
determined a set of SFDR values using the theoretical approach
described above, and then confirmed these using actual exper-
iments. Figure 3 shows the SFDR that we estimated with the
process illustrated in Fig. 2 for β =0.5 for some popular filters
as a function of A . The dynamic range (i.e., quantization) noise
is represented on the figure by the horizontal line, which indi-
cates the limit above which the spurious harmonics are lower
than the dynamic range noise, as shown in Fig. 4. Above this
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Figure 2 Approximate SFDR value. The curve represents the spectrum
of the filter’s impulse response in dB.
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Figure 3 Estimated SFDR given by different popular filters. A<21. ○
Rectangular, Parks-McClellan, □ Hann, ▽ Least-Square, Blackman
Harris. The horizontal line “Dynamic Range Noise” indicates the upper
limit due to the precision of the signal and the coefficients. The line, of
which the level depends on that precision, acts as a maximum SFDR that
the implemented re-samplers can reach. The 10 dB of margin mentioned
above are not reported in this figure.

Figure 4 Illustration of the SFDR measured after implementation. The
four largest arrows represent the 4 carriers that compose the signal. The
other arrows represent the spurious harmonics. The grey represents the
dynamic range noise. SFDR 1 is the SFDRmeasuredwhen the harmonics
are above the dynamic range noise. So, it is indeed the difference between
the signal and the harmonics. SFDR 2 is the SFDR measured when the
harmonics are inferior to and merged with the noise floor. It is the
difference between the signal and the noise floor.

Figure 5 Arbitrary down-sampler architecture.
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line, the SFDR measured after implementation is the difference
between the signal and the dynamic range noise.

3.2 Hardware Architecture

Let Q and N be respectively the numerator and denominator
of the simplified version of the fractionFIN/FOUT. Let A be an
integer so that (2A +1) is the reconstruction filter order.

3.2.1 Down – Sampler

The down-sampler system is summarized in Fig. 5. The coef-
ficient values are stored in (2A +1) Read Only Memories,
ROMs, each of which has N memory locations. We recall from
Fig. 1 that each μk is associated with one output sample; we
thus know precisely where output samples are located with
regard to the input samples during one period of μk. Thus, each
ROM stage contains a coefficient value that weights an input
sample at a given output time instant within this period, in order
to calculate an output sample. Stated another way, at the ith

instant in a period, the ith location of ROMs 1 to (A +1) weights
the (A +1) input samples to the left of the output sample being
calculated, and the ith stage of ROMs (A +2) to (2A +1) weights

theA input samples to the right. Theweighted input samples are
then summed with a parallel adder to give the output sample.

We note that the output sample calculation is entirely syn-
chronized to FIN. The “dual clock” FIFO makes the output
samples formerly calculated at FIN pass to the FOUT clock
domain. We call DEP the depth of this FIFO. In order to tackle
the arbitrary ratio problem, the “Master Control” block, which
is the core of the structure, precisely controls the incrementation
of the ROM indices when a new output sample is to be
calculated using the input samples that arrive in the registers.

Master Control also avoids FIFO overflow. Indeed Fig. 5
shows that if a data word is stored in the FIFO on every rising
edge of the FIN clock, the FIFO will overflow because FIN>
FOUT. To avoid the overflow, Master Control ensures that only
valid output samples enter the FIFO via the “FIFO Write
Request” signal. To fulfill these two roles, Master Control
keeps in memory a simplified “down-sampling map” of the
output samples with regard to the inputs samples. This map is a
binary vector of lengthQ . A map element is 1 if the input time
immediately precedes an output time; otherwise, it is 0. Master
Control uses the map to increment the ROM indices at the
appropriate time and assign the “FIFO Write Request” signal.
Thus, even though the write of the FIFO is clocked on FIN,

Figure 6 Arbitrary up-sampler
architecture.

Table 2 Resource estimation.

Memory in bits for
down-sampling

(2A+1)×b ×N +Q+(2b +x)×DEP(*)

Memory in bits for
up-sampling

((2A+1)×b +1)×N +b×DEP

Multipliers b ×b bits 2A+1

Adders 1 parallel adder (2A+1)×2b bits

* 2x–1 <2A<2x

Table 3 FPGA–based Down–sampler resources.

ALUTs 298/143.520 (<1 %)

Dedicated logic Registers 560/143.520 (<1 %)

Total Registers 560

Memory bits 54.707/9.383.040 (<1 %)

DSP block 9 bit 26/768 (3 %)

Maximal FIN 120.83 MHz

Maximal FOUT 146.09 MHz
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actually it is written at a rate equivalent to it FOUT. We can
easily determine the appropriate map configuration with a
mathematical software package such as Matlab.

3.2.2 Up-Sampler

The structure of the up-sampler is similar to that of the down-
sampler (Fig. 6). The FIFO retains its role of interface between
the two clock domains. Master Control manages the reading of
the FIFO in order to avoid underflow. Indeed, using an “up-
sampling map”, Master Control ensures that the ROM indices
are incremented and the FIFO read at the correct instants.

The binarymap for up-sampling is of course not identical to
the one for down-sampling. Whereas for down-sampling the
map is synchronized on the input times, for up-sampling it is
synchronized on the output times. When a map element is set
to 1, for up-sampling we must increment ROM indices. Master
Control also enables registers “REG e” which are registers
with an “enable” input. When “enable” is set low, the “REG
e” output keeps its previous value. Otherwise, it works like a
simple D Flip-Flop register; this is useful when we calculate
two or more output samples from the same input samples.

3.2.3 Pre-Implementation Resource Estimation

To summarize, the resampler uses (2A +1)×N +1+DEP mem-
ory locations, namely (2A +1)×N for the filter’s coefficients,
1 for the map and DEP for the dual clock FIFO. It is easy to

estimate the resource utilization before the implementation
phase of the design flow. Indeed, DEP can take on any value
set by the designer. Now, once A is chosen from Fig. 3, DEP

set, and N and Q determined, an estimation of the required
resources can be obtained using Table 2 where input samples
and filter coefficients are b–bit words.

Before concluding this section, we stress that in Table 2, the
“down-sampling” or “up-sampling” map is considered as a
single memory element. Also, multipliers of b ×b–bit size and
parallel adders can of course be implemented in many differ-
ent ways (DSP blocks or logic elements), depending on the
FPGA type and the implementation chosen by the designer.

4 Case Study

This section details the experimental tests made on our re-
sampling system as well as the comparison of the obtained
results to the theoretical expectations.

4.1 Down-Sampler

We propose to implement a down-sampler to process the VHF
Band II generally used for FM broadcasting, which extends
over the range 87.5–108 MHz, by re-sampling the band 87–
108.75MHz. For this example we choose to down-sample from
87 MHz to 51.2 MHz. The input samples are 12-bit words. As
the input signal bandwidth is 21.75 MHz, we have FIN=4 . B

Table 4 Comparison between theory and experimental results: Down-
sampler.

Memory in bits ((2×6+1)×12)×256+435+(2×12+4)×
512=54707

Multipliers 12x12 bits 13

Parallel adder 13x24 bits 1
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Figure 7 Experimental SFDR results for down-sampling when A ≤20. ○
Rectangular, Parks-McClellan, □ Hann, ▽ Least Square, Blackman
Harris. The 19-bit noise floor, 116 dB, explains why the obtained results
are upper limited.

Table 5 Down-sampler tests.

Carrier frequencies
(MHz)

FIN

(MHz)
FOUT

(MHz)
FOUT/FIN

Signal 1 1+C×2.2 (*) 87 51.2 0.588506

Signal 2 1.95+C ×2.2 (*) 87 51.2 0.588506

Signal 3 0.8+ C ×2.3 (*) 86 74 0.860465

Signal 4 0.3+ C ×2.3 (*) 86 74 0.860465

* C ={0, 1…,9}
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Figure 8 Experimental and theoretical SFDR results for a Parks-Mc-
Clellan filter, and for down-sampling whenA ≤20. □ Experimental FPGA
results, theoretical SFDR, ● simulation results. The 19-bit noise floor,
116 dB, explains why the obtained results are upper limited by that level.
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(where B is the one-sided bandwidth of the input signal) so β=
0 .5 . As β=0 .5 , this test example is in the same conditions as
the predictions of Fig. 3. We choose to set the SFDR below the
noise floor: SFDR≥72 dB for 12 bits. Thus, expression (1) leads
to I2>2,048. According to Fig. 3, we choose A =6 with a
Blackman-Harris window. Clearly N =256, and we also choose
to set DEP to 512, for this example.

4.1.1 FPGA Implementation

The design is implemented on an Altera Stratix II EP2S180F
1020C5 FPGA chip using a Stratix II DSP development
board. Complete hardware design is done in Altera Quartus
II v9.1, with synthesis and implementation. Table 3 summa-
rizes the hardware resources used.

4.1.2 Comparison Between Theory and Experimental Results

The comparison will be based upon two points: the SFDR and
the amount of resources used. Concerning the former, the
measured SFDR is 73.5 dB, and spurious harmonics are kept
below the noise floor, as expected. Then, according to Table 2,
the down-sampler resources are given in Table 4.

According to the FPGA type and the design chosen by the
user, the multipliers are implemented differently. In our case,
we implemented the multipliers using DSP blocks only. In
Quartus 18×18 element DSP blocks are synthesized to replace
12×12 element DSP blocks, which are not available in the
Stratix II. One 18×18 DSP block is made from two 9×9
blocks. So, the 13 predicted element DSP blocks of Table 4
should be synthesized as 26 9×9 blocks. Furthermore,
Quartus implements parallel adders on Stratix II using
ALUTs and logic registers. Taking in account these consider-
ations, if we compare Table 4 to the implementation results
given in Table 3, we see that implemented down-sampler uses
the memory and multipliers resources as expected. The re-
sources used by the parallel adder and any other part of
the down-sampler are reported in Table 3 in the boxes
ALUTs and registers.

Two series of tests were performed on the down-sampling
system to confirm the theoretically predicted SFDR results of
Fig. 3 for the case A ≤20. The first series consisted in mea-
suring the SFDR generated by an input test signal (which is
the sum of 4 sine signals) for different FPGA re-sampler
implementations (i.e., different filter types, with A ≤20).
Fig. 7 shows the results.

These experimental results may then be compared to the
theoretical predictions. Before doing this, however, in order to
assure ourselves that the results of Fig. 7 are not the result of a
fortuitous choice of carrier frequencies of FIN and FOUT, in
our second series of tests, we built a Matlab test bench that
simulates precisely our down-sampler and thus gives results
identical to what the hardware down-sampler would give.

This test bench determined the SFDR produced by our
down-sampler for 4 different choices of input signals, and
for 2 differentFOUT/FIN ratio values, with β =0 .5 . Each input
signal here is a sum of ten sine signals with carrier frequencies
chosen so that FIN=4B . The input signal and the weighting
values are 19-bits words and I2 is set according to (1). Table 5
summarizes the tests carried out.

The second series of tests were also performed for
different filter types. In Fig. 8, the results of the two series
of tests in the case of the Parks-McClellan filter are sum-
marized, where each set of curves presents is compared to
the corresponding theoretical result that we saw in Fig. 3.
As it is explained at the end of Section 3.1, this theoretical
result is upper bounded by an SFDR value imposed by the
noise floor, which is approximately 116 dB for 19-bit. For
each tested filter, the errors between the SFDRs results
and the theoretical SFDRs were calculated too. Fig. 9
shows these errors for the Parks-McClellan filter. For the
other filter types, as the case of Fig. 9, the calculated
errors reveal that the results given by the down-sampling
system are globally positive as these errors rarely go down
below -10 dB. Also, it justifies the choice of a 10 dB-
margin, as mentioned in Section 3.1. The hardware exper-
imental results are thus in reasonable accord with theory.

4.2 Up-Sampler

Similar tests as those performed in Section 4.1 on a down-
sampler were performed on an up-sampler. The results, which
for space reasons are not included here, demonstrate that the
proposed system is applicable for up-sampling as well.

5 Conclusion

We have presented a practical FPGA re-sampling architecture
suitable for SDR implementations, which takes as its starting
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Figure 9 Errors between the SFDRs results reported in Fig. 8 and the
theoretical SFDRs reported in Fig. 3, for a Parks-McClellan filter. X error
of the experimental FPGA results,—— error of the simulation results.
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point the Barker structure [12]. Compared to other SRC
systems suitable for FPGA designs, ours does not require a
third clock at a multiple of FIN or FOUT, as is the case with the
majority of the methods cited in Section 2, and is thus suitable
even for very high sampling frequencies. The SFDR require-
ment of the targeted application is incorporated directly into
the design process via a simple calculational procedure. It is
furthermore shown in Table 4 that the expected resource
utilization estimated in the design phase closely matches
actual resource utilization after hardware implementation.
Although not intended for applications in which input and
output clocks are completely decoupled (see for example [10,
11]), the proposed structure provides a simple, practical alter-
native to other techniques of re-sampling, for the use cases
treated.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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