
Int J Comput Vis (2017) 124:115–131
DOI 10.1007/s11263-017-1006-x

DeepProposals: Hunting Objects and Actions by Cascading Deep
Convolutional Layers

Amir Ghodrati1 · Ali Diba2 · Marco Pedersoli3 ·
Tinne Tuytelaars2 · Luc Van Gool2

Received: 3 May 2016 / Accepted: 6 March 2017 / Published online: 15 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract In this paper, a new method for generating object
and action proposals in images and videos is proposed. It
builds on activations of different convolutional layers of a
pretrained CNN, combining the localization accuracy of the
early layers with the high informativeness (and hence recall)
of the later layers. To this end, we build an inverse cascade
that, going backward from the later to the earlier convolu-
tional layers of theCNN, selects themost promising locations
and refines them in a coarse-to-fine manner. The method is
efficient, because (i) it re-uses the same features extracted for
detection, (ii) it aggregates features using integral images,
and (iii) it avoids a dense evaluation of the proposals thanks
to the use of the inverse coarse-to-fine cascade. The method
is also accurate. We show that DeepProposals outperform
most of the previous object proposal and action proposal
approaches and, when plugged into a CNN-based object
detector, produce state-of-the-art detection performance.

Keywords Object Proposals · Action proposals · Object
detection · Action localization

1 Introduction

In recent years, the paradigm of generating a reduced set of
window candidates to be evaluated with a powerful classifier

Communicated by Antonio Torralba.

B Amir Ghodrati
a.ghodrati@uva.nl

1 QUVA Lab, University of Amsterdam, Amsterdam,
Netherlands

2 ESAT-PSI, iMinds, KU Leuven, Leuven, Belgium

3 École de technologie supérieure, Montreal, Canada

has become very popular in object detection. Indeed, most
of the recent state-of-the-art detection methods (Cinbis et al.
2013; Ren et al. 2015; He et al. 2015; Wang et al. 2013)
are based on such proposals. Furthermore, generating a lim-
ited number of proposals also helps weakly supervised object
detection, which consists of learning to localize objects with-
out any bounding box annotations (Deselaers et al. 2010;
Song et al. 2014; Bilen et al. 2015).

Detection methods based on proposals can be seen as
a two-stage cascade: first, a reduced set of promising and
class-independent hypotheses, the proposals, are selected;
and second, each hypothesis is classified in a class-specific
manner. Similarly to sliding windows, this pipeline casts the
detection problem to a classification problem. However, in
contrast to sliding windows, more powerful and time con-
suming detectors can be employed at the class-specific stage,
as the number of candidate windows is reduced.

Methods proposed in the literature for the generation of
window candidates are based on two different approaches.
The first approach uses bottom-up cues like image segmen-
tation (Arbelaez et al. 2014; Van de Sande et al. 2011), object
edges and contours (Zitnick and Dollár 2014) for window
generation. The second approach is based on top-down cues
which learn to separate correct object hypotheses from other
possible window locations (Alexe et al. 2010; Cheng et al.
2014). So far, the latter strategy seems to have inferior perfor-
mance. In this paper we show that, with the proper features,
accurate and fast top-down window proposals can be gener-
ated.

We consider for this task the convolutional neural network
(CNN) “featuremaps” extracted from the intermediate layers
of pretrainedAlexnet-like (Krizhevsky et al. 2012) networks.
We observe that classifiers trained on deeper convolutional
layers, which form a more semantic representation, per-
form very well in recalling the objects with a reduced set

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-017-1006-x&domain=pdf
http://orcid.org/0000-0002-8320-9269

116 Int J Comput Vis (2017) 124:115–131

Fig. 1 DeepProposals pipeline. Our method uses the activation layers
of a deep convolutional neural network in a coarse-to-fine inverse cas-
cading to obtain proposals for object detection. Starting from a dense
proposal sampling in the last convolutional layer, we gradually filter out

irrelevant boxes until reaching the initial layers of the net. In the last
stage we use contours extracted from an earlier layer with fine feature
maps, to refine the proposals. Finally the generated boxes can be used
within an object detection pipeline

of hypotheses. Unfortunately, as noticed also for other tasks
(Hariharan et al. 2014), these layers provide a poor local-
ization of the object due to their coarseness. In contrast,
earlier layers are better in accurately localizing the object
of interest, but their recall is reduced as they do not contain
strong object cues. Here we propose a method for generat-
ing object proposals based itself on a cascade, starting from
the last convolutional layer and going down with subsequent
refinements to the initial layers of the net. As the flow of
the cascade is inverse to the flow of the feature computa-
tion we call this an inverse cascade. Also, as we start from a
coarse spatial window resolution, and throughout the layers
we select and spatially refine thewindowhypotheses until we
obtain a reduced and spatially well localized set of hypothe-
ses, it is a coarse-to-fine inverse cascade. An overview of our
approach, which we coined DeepProposals, is illustrated in
Fig. 1.

More specifically, similarly to BING (Cheng et al. 2014),
we select a reduced set of window sizes and aspect ratios
and slide them on each possible location of the feature map
generated by the last convolutional layer of a CNN. The rel-
evance (or objectness) of the windows is evaluated using a
linear classifier. As the proposal generation procedure should
be fast, we base the feature aggregation for each candidate
window on average pooling, which can be computed in con-
stant time using integral images (Viola and Jones 2004). We
filter out boxes that are less likely to contain an object and
propagate the remaining ones to the next stage. In the second
stage, we move to an earlier convolutional layer—in partic-
ular, the earliest layer that has the same feature map size as
used in the first stage, and further filter the set of candidate
boxes. As the number of boxes to evaluate has been reduced,
we can afford adding more geometry in the representation by

encoding eachwindowwith a pyramid representation.We re-
rank the boxes and select the best N of them to pass to the
last stage. Finally, in the third stage, we refine the localiza-
tion obtained from the previous stage of the cascade, using
an edgemap obtained from the second layer of the CNN.

We use the above framework not just for static images,
but extend it to video, generating action proposals. To this
end, we first apply the coarse-to-fine inverse cascade on each
frame of a video. Then, we group the proposals into tubes, by
imposing time continuity constraints, based on the assump-
tion that the object of interest has a limited speed. We show
that such proposals can provide excellent results for action
localization.

We evaluate the performance of the DeepProposals in
terms of recall versus number of proposals as well as in
terms of recall versus object (action) overlap. We show that
in both evaluations the method is better than the current state
of the art, and computationally very efficient. However, the
biggest gains are achieved when using the method as part
of a CNN-based detector like the Fast R-CNN proposed by
Girshick (2015). The features extracted from the generation
of proposals will then be also the same features to be used
for object detection. Thus, we can execute the full detection
pipeline at a very low computational cost.

This paper is an extension of our earlier work (Ghodrati
et al. 2015). In this versionwe include some additional related
work; we apply the same framework to deeper network
architectures; we evaluate it on more data sets and com-
pare the method against some recent approaches. In addition,
we extend DeepProposals for generating action proposals in
videos and compare it with other state-of-the-art methods on
two action datasets.

123

Int J Comput Vis (2017) 124:115–131 117

In the next section, we describe the most related work.
Next, in Sect. 3, we describe our proposed inverse coarse-
to-fine cascade, followed by an detailed description of its
components in Sect. 4. In Sect. 5, the extension of our
method to action proposals is explained. Section 6 covers
experiments for object proposals. It consists of an in-depth
analysis of different components of the cascade and quantita-
tive as well as qualitative comparison of our method with the
state-of-the-art. In Sect. 7, experiments for action proposal
generation are described. Section 8 concludes the paper.

2 Related Work

2.1 Object Proposal Methods

Object proposal generators aim at obtaining an accurate
object localization with few object window hypotheses.
These proposals can help object detection in two ways:
searching objects in fewer locations to reduce the detector
running time and/or using more sophisticated and expensive
models to achieve better performance.

A first set of approaches measures the objectness of
densely sampled windows (i.e. how likely is it for an image
window to represent an object) (Alexe et al. 2010; Cheng
et al. 2014; Zitnick and Dollár 2014). Alexe et al. (2010)
propose a measure based on image saliency and other cues
like color and edges to discriminate object windows from
background. BING (Cheng et al. 2014) is a very fast proposal
generator, obtained by training a classifier on edge features,
but it suffers from low localization accuracy.Moreover, Zhao
et al. (2014) have shown that the BING classifier has min-
imal impact on locating objects and without looking at the
actual image a similar performance can be obtained. Edge-
boxes (Zitnick and Dollár 2014) uses the structural edges of
(Dollár and Zitnick 2013), a state-of-the-art contour detec-
tor, to compute proposal scores in a sliding window fashion
without any parameter learning. For a better localization they
use a final window refinement step. Like these methods, our
approach densely samples hypotheses in a sliding window
fashion. However, in contrast to them, we use a hierarchy of
high-to-low level features extracted from a deep CNNwhich
has proven to be effective for object detection (Girshick et al.
2014; Wang et al. 2013).

An alternative approach to sliding-window methods are
the segmentation-based algorithms. This approach extracts
from the image multiple levels of bottom-up segmentation
and then merges the generated segments in order to generate
object proposals (Arbelaez et al. 2014; Carreira and Smin-
chisescu 2012; Manen et al. 2013; Van de Sande et al. 2011).
Thefirst andmostwidely used segmentation-based algorithm
is selective search (Van de Sande et al. 2011). It hierarchically
aggregates multiple segmentations in a bottom-up greedy

manner without involving any learning procedure, but based
on low level cues, such as color and texture. Multiscale com-
binatorial grouping (MCG) (Arbelaez et al. 2014) extracts
multiscale segmentations andmerges them by using the edge
strength in order to generate object hypotheses. Carreira and
Sminchisescu (2012) propose to segment the object of inter-
est based on graph-cut. It produces segments from randomly
generated seeds. As in selective search, each segment repre-
sents a proposal bounding box. Randomized Prim’s (Manen
et al. 2013) uses the same segmentation strategy as selec-
tive search. However, instead of merging the segments in a
greedy manner it learns the probabilities for merging, and
uses those to speed up the procedure. Geodesic object pro-
posals (Krähenbühl andKoltun 2014) are based on classifiers
that place seeds for a geodesic distance transform on an over-
segmented image.

Recently, following the great success of CNN in differ-
ent computer vision tasks, CNN-based methods have been
used to either generate proposals or directly regress the
coordinates of the object bounding box. MultiBox (Erhan
et al. 2014) proposes a network which directly regresses the
coordinates of all object bounding boxes (without a sliding
window fashion approach) and assigns a confidence score
for each of them in the image. However, MultiBox is not
translation invariant and it does not share features between
the proposal and detection networks i.e. it dedicates a net-
work just for generating proposals. DeepMask (Pinheiro
et al. 2015) and its next generation, SharpMask (Pinheiro
et al. 2016), learn segmentation proposals by training a net-
work to predict a class-agnostic mask for each image patch
and an associated score. Similar to us, SharpMask uses a
top-down refinement approach, utilizing features at lower
layers to refine and generate segmentationmaskswith double
the spatial resolution. But again, they do not share features
between the proposal generation and detection. Moreover,
they need segmentation annotations to train their network.
OverFeat (Sermanet et al. 2013) is a method where pro-
posal generation and detection are combined in one-stage.
In OverFeat, region-wise features are extracted from a slid-
ing window and are used to simultaneously determine the
location and category of the objects. In contrast to it, our
goal is to predict class-agnostic proposals which can be used
in a second stage for class-specific detections.

Probably, the most similar to our work is the concurrent
work of region proposal networks (RPN) proposed by Ren
et al. (2015). RPN is a convolutional network that simulta-
neously predicts object bounds and objectness scores at each
position. To generate region proposals, they slide a small
network over the convolutional feature map. At each sliding-
window location, they define k reference boxes (anchors) at
different scales and aspect ratios and predict multiple region
proposals parameterized relative to the anchors. Similarly
to us, RPN builds on the convolutional features of a detec-

123

118 Int J Comput Vis (2017) 124:115–131

tion network. However, we leverage low-level features in
early layers of the network to improve the localization qual-
ity of proposals. Both methods are based on a strategy to
avoid a dense and expensive scan of all imagewindows. RPN
regresses boxes from a pre-defined set of achor boxes. In our
case instead, we avoid computation by using a cascade on
some of the network convolutional layers.

2.2 Action Proposal Methods

Action proposals are 3D boxes or temporal tubes extracted
from videos that can be used for action localization, i.e. pre-
dicting the action label in a video and spatially localizing it.
Also in this case, the main advantage of using proposals is to
reduce the computational cost of the task and therefore make
the method faster or allow for the use of more powerful clas-
sification approaches. The action proposalmethods proposed
in the literature to date mainly extend ideas originally devel-
oped for 2D object proposals in static images to 3D space.
(Jain et al. 2014) is an extension of selective search (Van de
Sande et al. 2011) to video. It extracts super-voxels instead of
super-pixels from a video and by hierarchical grouping it pro-
duces spatio-temporal tubes. Bergh et al. (2013) is an action
proposal method inspired by the objectness method (Alexe
et al. 2010), while a spatio-temporal variant of randomized
Prim’s (Manen et al. 2013) is proposed in Oneata et al.
(2014). Since most of those methods are based on a super-
pixel segmentation approach as a pre-processing step, they
are computationally very expensive. To avoid such computa-
tionally demanding pre-processing, van Gemert et al. (2015)
proposed action localization proposals (APT) which use the
same features used in detection to generate action proposals.

Several action localization methods use 2D proposals in
each frame without generating intermediate action proposals
at video-level. Typically, they leverage 2D object proposals
that are generated separately for each frame in order to find
the most probable path of bounding boxes across time for
each action class separately (Gkioxari and Malik 2015; Tran
et al. 2014; Weinzaepfel et al. 2015; Yu and Yuan 2015).
Our method is similar to these works in spirit. However,
thesemethods use class-specific detectors for action localiza-
tion while we propose a class-agnostic method to generate
a reduced set of action proposals. The idea of using class-
agnostic proposals allows us to filter out many negative tubes
with a reduced computational time which enables the use of
more powerful classifiers in the final stage.

3 Overview of the Method

An overview of our inverse coarse-to-fine cascade is illus-
trated in Fig. 1.We first explain our method for static images,
then later extend it to video in Sect. 5.

We start the search for object proposals in the top con-
volutional layer of the net. The feature maps at this layer
have features well adapted to recognize high-level concepts
like objects and actions, but have limited resolution. This
coarseness leads to an efficient sliding window, yet results
in poor localization results. We then gradually move to the
lower layers, that use simpler features but have a much finer
spatial representation of the image. As we go from a coarse
to a fine representation of the image and we follow a flow
that is exactly the opposite of how those features are com-
puted we call this approach coarse-to-fine inverse cascade.
We found that a cascade with 3 layers is an optimal trade-off
between complexity of the method and gain obtained from
the cascading strategy. In the rest of this section we describe
in detail the three stages of the cascade.

3.1 Stage 1: Dense Sliding Window on a Coarse Layer

The first stage of the cascade uses the activation map of a one
of the last convolutional layers of the network. This implies
a high semantic representation, but also coarseness due to
the multiple max pooling steps used in the network. As the
feature representation is coarse, we can afford a dense sliding
window approach with 50 different window sizes that best
cover the training data in terms of size and aspect ratio. For
details, see Sect. 4 (sliding window). The base descriptor of a
given window is the sum pooling of the map activations that
fall inside the window in the spatial dimension. We augment
this descriptor with some information about the size and the
aspect ratio of the window as detailed in Sect. 4 (bias on size
and aspect ratio). The computation of the descriptor is carried
out in a fast and size-independentwayusing an integral image
representation. For details, see Sect. 4 (pooling). The scores
of each window are the dot product of the window descriptor
and the learned weights of a linear SVM classifier trained for
discriminating between object and background, see Sect. 4
(classifier). We linearly re-scale the window scores to [0, 1]
such that the lowest and highest scores are mapped to 0 and 1
respectively. Afterwards we select the best N1 = 4000 win-
dows obtained from a non-maximum suppression algorithm
[see Sect. 4 (non-maximum suppression)] before propagat-
ing them to the next stage.

3.2 Stage 2: Re-scoring Windows on an Intermediate
Layer

At this stage, as we use a reduced set of windows, we can
afford to spend more computation time per window. There-
forewe addmore geometry in the representation by encoding
eachwindowwith a pyramid representation composed of two
levels: 1× 1 and 2× 2, as described in Sect. 4 (pyramid). As
in the first stage, we train a linear classifier with the aim to
classify object versus background. The proposal scores from

123

Int J Comput Vis (2017) 124:115–131 119

this layer are again mapped to [0, 1]. The final score for each
proposal is obtained bymultiplying the scores of both stages.
Afterwardswe apply a non-maximum suppressionwith over-
lap threshold β + 0.05 and select the 3000 best candidates.
At the end of this stage, we aggregate the boxes from differ-
ent scales using non-maximum suppression with threshold β

and select the Ndesired = 1000 best for refinement.

3.3 Stage 3: Local Refinement on a Fine Layer

The main objective of this final stage is to refine the local-
ization obtained from the previous stage of the cascade.
For this stage we need higher resolution convolutional fea-
tures in order to grasp the low-level information which is
suitable for the refinement task. Specifically, we refine the
Ndesired windows received from the previous stage using
the procedure explained in Zitnick and Dollár (2014) [see
Sect. 4 (refinement)]. To this end, we train a structured ran-
dom forest (Dollár and Zitnick 2013) on the second layer
of the convolutional features to estimate contours similarly
to DeepContour (Xinggang et al. 2015). After computing
the edge map, a greedy iterative search tries to maximize
the score of a proposal over different locations and aspect
ratios. It is worth mentioning that since our contour detector
is based on the CNN-features, we again do not need to extract
any extra features for this step.

4 Components of the Inverse Coarse-To-Fine
Cascade

4.1 Sliding Window

Computing all possible boxes in a feature map of size N ×
N is in the order of O(N 4) and therefore computationally
unfeasible. Hence, similarly to Cheng et al. (2014), we select
a set of window sizes that best cover the training data in terms
of size and aspect ratio and use them in a sliding window
fashion over the selected CNN layer. This approach is much
faster than evaluating all possible windows and avoids to
select windows with sizes or aspect ratios different from the
training data and therefore probably false positives.

For the selection of the window sizes, we start with a pool
ofwindowsW in different sizes and aspect ratiosW : {w|w ∈
Z
2,Z = [1 . . . 20]}. It is important to select a set of window

sizes that gives high recall and at the same time produces
well localized proposals. To this end, for each window size
w, we compute its recall, Rw

α with different Intersection over
Union (IoU) thresholds α and greedily pick onewindow size
at a time. Specifically, we first compute recall of each win-
dow size w on multiple IoU of {0.5, 0.6, 0.7, 0.8, 0.9} on
300 randomly selected images from the training set and then
select the best N window sizes using the method described

Algorithm 1Window size selection
Input: Rw

α recall of window size w over all objects at threshold α,
and N number of best selected window sizes (set to 50), and W all
possible window sizes.
Output: S∗ best selected window sizes.
initialize: S∗ = {}
w∗ ← argmaxw

∑
α Rw

α

S∗ = {w∗}
W ← W \ {w∗}
for i = 2 · · · N do
for each w j ∈ W do

Lw j = ∑
α R

S∗∪w j
α

end for
w∗ ← argmaxw Lw

S∗ ← S∗ ∪ w∗
W ← W \ {w∗}

end for

in Algorithm 1. Using this procedure, N = 50 window sizes
are selected for the slidingwindow procedure. In Fig. 4 (mid-
dle) we show the maximum recall that can be obtained with
the selected window sizes, which is an upper bound of the
achievable recall of our method.

4.2 Multiple Scales

Even though it is possible to cover all possible objects using
a sliding window at a single scale of a feature map, it is
inefficient since by using a single scale the stride is fixed
and defined by the feature map resolution. For an efficient
sliding window, the window stride should be proportional
to the window size. Therefore, in all the experiments we
evaluate our set ofwindows atmultiple scales. For each scale,
we resize the image such that min(w, h) = s where s ∈
{227, 300, 400, 600}. Note that the first scale is the network
original input size.

4.3 Pooling

As the approach should be very fastwe represent awindowby
average pooling of the convolutional features that are inside
the window. As averaging is a linear operation, after comput-
ing the integral image, the features of any proposal window
can be extracted in a constant time. Let f (x, y) be the spe-
cific channel of the feature map from a certain CNN layer
and F(x, y) its integral image. Then, average pooling Avg
of a box defined by the top left corner a = (ax , ay) and the
bottom right corner b = (bx , by) is obtained as:

Avg(a, b) = F(bx , by)−F(ax , by) − F(bx , ay) + F(ax , ay)

(bx − ax)(by − ay)
.

(1)

Thus, after computing the integral image, the average
pooling of any box is obtained in a constant time that cor-

123

120 Int J Comput Vis (2017) 124:115–131

Fig. 2 A spatial pyramid representation used for the second stage of
our method

responds to summing 4 integral values and dividing by the
area of the box. We compute integral images for all feature
maps of a particular layer, therefore the dimensionality of the
feature vector of a window is equal to the number of channels
(feature maps).

4.4 Pyramid

One of the main cues used to detect general objects is the
object boundaries. Using an approach based on average
pooling can dilute the importance of the object bound-
aries because it discards any geometrical information among
features. Therefore, to introduce more geometry into the
description of a windowwe consider a spatial pyramid repre-
sentation (Lazebnik et al. 2006). An illustration is shown in
Fig. 2. It consists of one full proposalwindowand a set of sub-
windows. The sub-windows are generated by dividing the
proposal window into a number of same size sub-windows
(e.g. 2 × 2). Finally, each of them is represented and l2 nor-
malized separately.

4.5 Bias on Size and Aspect Ratio

Objects tend to appear at specific sizes and aspect ratios.
Therefore, we add to the feature representation three addi-
tional elements: (w, h, w × h), where w and h are the width
and height of a window. This can be considered as an explicit
kernel which lets the SVM learn which object sizes can be
covered at a specific scale. For the final descriptor, we nor-
malize each pooled feature and size-related feature separately
with the l2 norm.

4.6 Classifier

We train linear classifiers shared between all window sizes
but for each scale and for each layer separately. For a specific
scale and layer, we randomly select at most 10 windows per

object that overlap the annotation bounding boxes more than
70%, as positive training data and 50 windows per image that
overlap less than 30% with ground-truth objects as negative
data. In all experiments we use a linear SVM (Fan et al.
2008) because of its simplicity and fast training. We did not
test non-linear classifiers since they would be too slow for
our approach.

4.7 Non-maximum Suppression

The ranked window proposals at each scale are finally
reduced through a non-maximum suppression step. A win-
dow is removed if its IoU with a higher scored window is
more than a threshold α, which defines the trade-off between
recall and accurate localization. So, this threshold is directly
related to the IoU criteria that is used for evaluation (see
Sect. 6.2). By tuning α, it is possible tomaximize the recall at
an arbitraryIoU ofβ. Particularly, in thisworkwe define two
variants of ourDeepProposals, namelyDeepProposals50 and
DeepProposals70, that maximize recall at IoU of β = 0.5
and β = 0.7 respectively. To this end, we fix α to β + 0.05,
as suggested in Zitnick and Dollár (2014). In addition, to
aggregate boxes from different scales, we use another non-
maximum suppression, fixing α = β.

4.8 Refinement

The refinement is based on an edge-based scoring function
introduced in Zitnick and Dollár (2014). The score is com-
puted as difference between the contours wholly enclosed in
a candidate bounding box and those that are not. A contour
is wholly enclosed by a box if all edge pixels belonging to
the contour lie within the interior of the box. Therefore, to
compute the scoring function, we need to compute an edge
response for each pixel in a given image. Edge responses are
found by training 6 trees using a structured learning frame-
work applied to random decision forests (Dollár and Zitnick
2013). As features, featuremaps extracted from the fine layer
of the CNN are fed to the structural random forest, consid-
ering each feature map as a channel for the algorithm. Given
the edge map, the refinement is performed using a greedy
iterative search to maximize the scoring function over posi-
tion, scale and aspect ratio. At each iteration, the search step
is reduced by half and the scores for new boxes are calcu-
lated. The search is halted once the translational step size is
less than 2 pixels. Once the search is finished, the refined
proposals are considered as our final proposals.

5 Proposals in Videos

Given a video sequence of length T , the goal is to gener-
ate a set of action proposals (tubes). Each proposal P =

123

Int J Comput Vis (2017) 124:115–131 121

Fig. 3 Two sample action proposals start from the first frame and end
in the last frame. The green one is a correctly recalled action proposal
while the red one is a false positive (Color figure online)

{R1, . . . , Rt , . . . , RT } corresponds to a path from the box
R1 in the first frame to the box RT in the last frame, and it
spatially localizes the action (see Fig. 3). When the goal is to
find proposals in videos, we need (a) to capture the motion
information that a video naturally provides, and (b) to satisfy
time continuity constraints.

One advantage of DeepProposals is that it can be set up
on top of any fine-to-coarse convolutional network regardless
of its input/output (and possibly its architecture). To benefit
from both appearance and motion cues in a given video, we
use two networks for the task of action proposal generation.
The first network takes as input the RGB frames of a video,
and is based on an Alexnet-like architecture, fine-tuned on
VOC2007 for the task of object detection. The second net-
work takes as input the optical flow of each frame extracted
from the video.We use themotion-CNNnetwork ofGkioxari
and Malik (2015) trained on UCF101 (split1) (Soomro et al.
2012). The architecture of this network is identical to that of
the first network.

To generate a set of proposals in each frame, in the first
and second stage of DeepProposals, we use an early fusion
strategy, concatenating the feature maps generated by both
networks and treating them as a single set of feature maps.
For the last stage, since it is an alignment process, we only
use the feature map of the appearance network.

So far the output is a set of proposals in each frame. In
order to make the proposals temporally coherent, we follow
the procedure of Gkioxari and Malik (2015) and link the
proposals of each single frameover time into tubes.Wedefine
the linking scoring function between every two consecutive
boxes Rt and Rt+1 as follows:

S(Rt , Rt+1) = C(Rt) + C(Rt+1) + O(Rt , Rt + 1)

where C(·) is the confidence score for a box and O(·) is
the intersection over union value if the overlap of the two
boxes is more than 0.5, otherwise it is −I n f . Intuitively, the
scoring function gives a high score if the two boxes Rt and
Rt+1 overlap significantly and if each of them most likely
contains an object of an action.

Finally, we are interested in finding the optimal path over
all frames. To this end, we first compute the overall score for

each path P by
∑T−1

t=1
∑

i, j∈P S(Ri
t , R

j
t+1). Computing the

score for all possible paths can be done efficiently using the
Viterbi algorithm. The optimal path Popt is then the one with
the highest score.After finding the best path, all boxes in Popt

are removed and we solve the optimization again in order to
find the second best path. This procedure is repeated until the
last feasible path (those paths whose scores are higher than
−I n f) is found.We consider each of these paths as an action
proposal.

6 Experiments on Object Proposals

To evaluate our proposals, like previous works on object pro-
posal generation,we focus on thewell-knownPASCALVOC
2007 dataset. PASCAL VOC 2007 (Everingham et al. 2010)
includes 9, 963 images divided in 20 object categories. 4952
Images are used for testing, while the remaining ones are
used for training.

We first evaluate the performance of each component of
our approach and its influence in terms of recall and local-
ization accuracy on Alexnet Architecture. We then compare
the quality of our DeepProposals with multiple state-of-the-
art methods. Detection results and run-time are reported for
PASCAL VOC 2007 (Everingham et al. 2010), integrat-
ing DeepProposals in the Fast-RCNN framework (Girshick
2015). Finally, we evaluate the generalization performance
of DeepProposals on unseen categories and some qualitative
comparisons are presented.

6.1 Evaluation Metrics

We use two different evaluation metrics; the first is Detection
Rate (or Recall) versus Number of proposals. This measure
indicates howmany objects can be recalled for a certain num-
ber of proposals. We use Intersection over Union (IoU) as
evaluation criterion for measuring the quality of an object
proposal ω. IoU is defined as |ω∩b

ω∪b | where b is the ground
truth object bounding box. Initially, an object was consid-
ered correctly recalled if at least one generated window had
an IoU of 0.5 with it, the same overlap used for evaluating
the detection performance of a method. Unfortunately, this
measure is too loose because a detector, to work properly,
also needs a good alignment with the object (Hosang et al.
2015). Thus we evaluate our method for an overlap of 0.7
as well. We also evaluate recall versus overlap for a fixed
number of proposals. As shown in Hosang et al. (2015), the
average recall obtained from this curve seems highly corre-
lated with the performance of an object detector built on top
of these proposals.

6.2 Analysis of the Components

In this section, we investigate the effect of different parame-
ters of ourmethod, namely the different convolutional layers,

123

122 Int J Comput Vis (2017) 124:115–131

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

D
et

ec
tio

n
R

at
e

layer1
layer2
layer3
layer4
layer5
selective_search

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

IoU

A
ve

ra
ge

 R
ec

al
l

layer1
layer2
layer3
layer4
layer5
selective_search
layer1−upper bound
layer2−upper bound
layer3,4,5−upper bound

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

D
et

ec
tio

n
R

at
e

nwins=1
nwins=5
nwins=20
nwins=50
nwins=150
selective_search

Fig. 4 (Left) Recall versus number of proposals for IoU=0.7. (Middle) Recall versus overlap for 1000 proposals for different layers of Alexnet.
(Right) Recall versus number of proposals at IoU=0.7 on layer 5 for different number of window sizes. All are reported on the PASCAL VOC
2007 test set

the number of used window sizes and different levels of spa-
tial pyramid pooling. We conduct this set of experiments
without any cascading. Afterwards we investigate the effec-
tiveness of different stages of DeepProposals.

6.3 Layers

Weevaluate each convolutional layer (from 1 to 5) of Alexnet
(Krizhevsky et al. 2012) using the sliding window settings
explained above. For the sake of simplicity, we do not add
spatial pyramids on top of pooled features in this set of exper-
iments. As shown in Fig. 4 (left) the top convolutional layers
of the CNN perform better than the bottom ones. Also their
computational cost is lower as their representation is coarser.
Note this simple approach already performs on par or even
better than the best proposal generator approaches from the
literature. For instance, our approach at layer 3 for 100 pro-
posals achieves a recall of 52%, whereas selective search
(Van de Sande et al. 2011) obtains only 40%. This makes
sense because the CNN features are specific for object classi-
fication and therefore can easily localize the object of interest.

However, this is only one side of the coin. If we compare
the performance of the CNN layers for high overlap [see
Fig. 4 (middle)], we see that segmentation-based methods
like Van de Sande et al. (2011) are much better. For instance
the recall of selective search for 1000 proposals at 0.8 overlap
is around 55%whereas ours at layer 3 is only 38%.This is due
to the coarseness of the CNN feature maps that do not allow
a precise bounding box alignment to the object. In contrast,
lower levels of the net have a much finer resolution that can
help to align better, but their encoding is not powerful enough
to properly recall objects. In Fig. 4 (middle) we also show
the maximum recall for different overlaps that a certain layer
can attain with our selected sliding windows. In this case, the
first layers of the net can recall many more objects with high
overlap. This shows that a problem of the higher layers of
the CNN is the lack of good spatial resolution.

In this sense we could try to change the structure of the net
in a way that the top layers still have high spatial resolution.
However, thiswould be computationally expensive and,more
importantly, it would not allow us to reuse the same features
used for detection. Instead, we use a cascade as an efficient
way to leverage the expressiveness of the top layers of the
net together with the better spatial resolution of the bottom
layers.

6.4 Number of Window Sizes

In Fig. 4 (right) we present the effect of a varying number of
window sizes in the sliding window procedure for proposal
generation. The windows are selected based on the greedy
algorithm explained in Sect. 4. As the number of used win-
dow sizes increases, we obtain a better recall at the price of
a higher cost. In the following experiments we will fix the
number of windows to 50 because that is a good trade-off
between speed and top performance. The values in the figure
refer to layer 5 of Alexnet, however, similar behavior has
been observed for the other layers as well.

6.5 Spatial Pyramid

We evaluate the effect of using a spatial pyramid pooling
in Fig. 5 (left). As expected, adding geometry improves the
quality of the proposals.Moving from a pure average pooling
representation (sp_level=0) to a 2×2 pyramid (sp_level=1)
gives a gain that varies between 2 and 4 percent in terms of
recall, depending on the number of proposals. Moving from
the 2× 2 pyramid to the 4× 4 (sp_level=2) gives a slightly
lower gain. At 4× 4 the gain does not saturate yet. However,
as we aim at a fast approach, we also need to consider the
computational cost, which is linear in the number of spatial
bins used. Thus, the representation of a window with a 2× 2
spatial pyramid is 5 times slower than a flat representation
and the 4× 4 pyramid is 21 times slower. For this reason, in

123

Int J Comput Vis (2017) 124:115–131 123

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

D
et

ec
tio

n
R

at
e

sp_level=0
sp_level=1
sp_level=2
selective_search

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

IoU

D
et

ec
tio

n
R

at
e

stage1
stage1+2
full cascade
selective_search

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

D
et

ec
tio

n
R

at
e

stage1
stage1+2
full cascade
selective_search

Fig. 5 (Left) Recall versus number of proposals in IoU=0.7 for dif-
ferent spatial pyramid levels (Middle) Recall versus IoU for 1000
proposals for different stages of the cascade. (Right) Recall versus num-

ber of proposals in IoU=0.7 for the different stages of the cascade. All
are reported on the PASCAL VOC 2007 test set

Table 1 Characteristics of the
stages of our inverse cascade
applied to AlexNet (NMS non
maximum suppression)

Stage Layer Input candidates Method Pyramid NMS Total time per image (s)

1 5 ∼80.000 Slid. window 1 Yes 0.30

2 3 4.000 Re-scoring 1 + 2 × 2 Yes 0.25

3 2 1.000 Refinement – No 0.20

our final representationwe limit the use of the spatial pyramid
to a 2 × 2 spatial pyramid.

6.6 Stages

We now discuss the performance of the inverse cascade stage
by stage in terms of both computational cost and perfor-
mance. For Alexnet architecture we use layer numbers 14,
10, 6 for stage one to three respectively. A summary of the
computational cost of each stage is given in Table 1. The
entire cascade has a computational cost of 0.75 on a 8-core
CPU of 3.50GHz, which is the composition of 0.3 , 0.25 and
0.2 for the first, second and third stage, respectively. Note
that the first stage is very fast because even if we use a dense
sliding window approach, with the integral image and with-
out any pyramid level the cost of evaluating each window is
very low.

As shown in Fig. 5 (middle and right), the second stage is
complementary to the first and employedwith a 2×2 pyramid
improves the recall of the cascade by 5%.However, this boost
is valid only up to an overlap of 0.75. After this point the
contribution of the second stage is negligible. This is due to
the coarse resolution of layer 5 and 3 that do not allow for
a precise overlap of the candidate windows with the ground
truth object bounding boxes. We found that, for our task,
layer 3 and 4 have a very similar performance (Recall@1000
is 79% in both cases) and adding the latter in the pipeline
did not help in improving performance (Recall@1000 is still
79%).

As shown in Hosang et al. (2015), for a good detection
performance, not only the recall is important, but also a good
alignment of the candidates is needed. At stage 3 we improve
the alignment without performing any further selection of
windows; instead we refine the proposals generated by the
previous stages by aligning them to the edges of the object. In
our experiments for contour detection we observed that the
first layer of the CNN did not provide as good a performance
as layer 2 [0.61 vs. 0.72 AP on BSDS dataset (Arbelaez et al.
2011)], so we choose the second layer of the network for this
task. Figure 5 (middle) shows that this indeed improves the
recall for high IoU values (above 0.7) (Table 2).

6.7 Network Architecture

So far, we evaluated DeepProposals on a pre-trained Alexnet
architecture trained on the Imagenet dataset. However, one
advantage of DeepProposals is that it can be implemented
on networks trained on different datasets or networks with
different architectures. To this end, we setup our method on
two other networks. The first is an alexnet-like architecture
trained on the Places dataset (Zhou et al. 2014). We used the
pre-trained network of Zhou et al. (2014) called placeNet for
this purpose and use exactly the same layer numbers as our
original DeepProposals (i.e. layer numbers 14, 10, 6). The
second architecture is theVGG-16 (Simonyan andZisserman
2015) network trained on Imagenet. This network is deeper
compared to Alexnet andwe use layers number 30, 24 and 12
for stage one to three, respectively. We did not change any
other hyper-parameters of the method. Figure 6 shows the

123

124 Int J Comput Vis (2017) 124:115–131

Table 2 Characteristics and performance of the CNN layers

Layer Feature map size Recall(#1000,0.5) (%) Max(0.5) (%) Recall(#1000,0.8) (%) Max(0.8) (%)

5 36 × 52 × 256 88 97 36 70

4 36 × 52 × 256 91 97 36 79

3 36 × 52 × 256 92 97 38 79

2 73 × 105 × 396 87 98 29 86

1 146 × 210 × 96 73 99 18 89

Feature map size is reported for an image of size 600 × 860. Recall (#1000,β) is the recall of 1000 proposals for the overlap threshold β. Max(β)
is the maximum recall for the overlap threshold β using our selected window sizes set

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

D
et

ec
tio

n
R

at
e

DeepProposal−70−alexNet
DeepProposal−70−placeNet
DeepProposal−70−VGG16

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

IoU

D
et

ec
tio

n
R

at
e

DeepProposal−70−alexNet
DeepProposal−70−placeNet
DeepProposal−70−VGG16

Fig. 6 Recall versus number of proposals on the Pascal 2007 evaluation set for different network architectures with (left) IoU threshold of 0.7 and
(right) recall versus IoU threshold for 1000 proposal windows

performance of DeepProposals on different networks. Sur-
prisingly, placeNet works well particularly considering that
it is trained to recognize scenes while we are using its feature
maps for discovering objects. Its slightly lower performance
compared to original DeepProposals can also be explained
due to this fact. When the VGG-16 network is used we can
observe a clear improvement in the quality of the generated
proposals. This shows that with a more powerful network
also the quality of the proposals is improved.

6.8 Comparison with State-of-the-Art

In this section we compare the quality of the proposed
DeepProposals with state-of-the-art object proposals on
PASCAL 2007 (Everingham et al. 2010) and Microsoft
COCO 2014 (Lin et al. 2014a) dataset.

Figures 7 and 9 show the recall with a varying number of
object proposals or IoU threshold, respectively, for the PAS-
CAL dataset. From Fig. 7, we can see that, even with a small
number of windows, DeepProposals can achieve a higher
recall for any IoU threshold. Methods like BING (Cheng
et al. 2014) and objectness Alexe et al. (2010) provide a high

recall only at IoU=0.5, because they are tuned for IoU of
0.5.

In Table 3 we summarize the quality of the proposals
generated by the most promising methods. Achieving 75%
recall with IoU of 0.7 would be possible with 540 propos-
als of DeepProposals, 800 of Edge boxes, 922 of RPN-ZF,
1400 of selective search proposals and 3000 of randomized
Prim’s proposals (Manen et al. 2013) on the PASCAL dataset
(Fig. 8).

Figure 9 (left) and (middle) show the curves related to
recall over IoU with 100 and 1000 proposals for PASCAL
dataset. Again, DeepProposals obtain good results. The hand
crafted segmentation basedmethods like selective search and
MCG have a good recall rate at higher IoU values. Instead
DeepProposals performbetter in the range of IoU=[0.6, 0.8]
which is desirable in practice and playing an important role
in the object detectors performance (Hosang et al. 2015).

Figure 9 (right) shows average recall (AR) versus number
of proposals for different methods for the PASCAL dataset.
For a specific number of proposals, AR measures the pro-
posal quality across IoU of [0.5, 1]. Hosang et al. (2015)
show that AR correlates well with detection performance.

123

Int J Comput Vis (2017) 124:115–131 125

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

D
et

ec
tio

n
R

at
e

edge_boxes_50
selective_search
MCG
BING
randomized_prims
objectness
DeepProposal−50
RPN−ZF

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

D
et

ec
tio

n
R

at
e

edge_boxes_70
selective_search
MCG
BING
randomized_prims
objectness
DeepProposal−70
RPN−ZF

Fig. 7 Recall versus number of proposals on the PASCAL VOC 2007 test set for (left) IoU threshold 0.5 and (right) IoU threshold 0.7

Table 3 Our method compared to other methods for IoU threshold of 0.7

AUC N@25% N@50% N@75% Recall (%) Time (s)

BING (Cheng et al. 2014) .19 292 – – 29 .2

Objectness (Alexe et al. 2010) .26 27 – – 39 3

Rand. Prim’s (Manen et al. 2013) .30 42 349 3023 71 1

Selective search (Van de Sande et al. 2011) .34 28 199 1434 79 10

Edge boxes 70 (Zitnick and Dollár 2014) .42 12 108 800 84 .3

MCG (Arbelaez et al. 2014) .42 9 81 1363 78 30

RPN-ZF (Ren et al. 2015) .42 13 83 922 78 .1a

DeepProposals70 .48 5 53 540 83 .75

Bold values indicate the best results
AUC is the area under recall versus IoU curve for 1000 proposals. N@25to achieve a recall of 25, 50 and 75%, respectively. For reporting recall,
at most 2000 boxes are used. The run-times for the other methods are obtained from Hosang et al. (2015)
a In contrast to the other methods, for RPM-ZF the run-time is evaluated on a GPU

100 101 102 103
0

5

10

15

20

25

30

35

40

45

50

55

60

65

#proposals

de
te

ct
io

n
pe

rfo
rm

an
ce

 (m
A

P
)

RPN−ZF
selective search
DeepProposal−70

Fig. 8 Detection results on PASCAL VOC 2007

Using this criteria, DeepProposals are on par or better than
other methods with 700 or fewer boxes but with more boxes,
selective search and Edgeboxes perform better.

We also evaluate DeepProposals on the COCO 2014 eval-
uation set. We train our SVM classifiers on 5000 randomly
sampled images from the COCO training set and evalu-
ate our method on the evaluation set. For this dataset, the

areas less than 32 × 32 are considered as difficult and are
ignored during evaluation. The same concept is also avail-
able for PASCAL but the definition of difficult objects is
different than that of COCO. However, our method is not
designed to localize small objects since the window sizes
and scales we chose are tuned for PASCAL. In Fig. 10 we
show the recall with a varying number of object proposals.
Figure 11 left and middle show the curves related to recall
over IoU with 100 and 1000 proposals, respectively, and
Fig. 11 (right) shows the average recall (AR) versus num-
ber of proposals. In general, the trend is the same as with the
PASCAL dataset, except that MCG performs better in some
cases.

6.9 Run-Time

The run-time tests for our proposedmethod and the others are
also available in Table 3. Since our approach uses the same
CNN features used by state-of-the-art object detectors like
RCNN (Girshick et al. 2014) and SppNet (He et al. 2015), it
does not need any extra cues and features and we can con-
sider just the running time of our algorithmwithout the CNN

123

126 Int J Comput Vis (2017) 124:115–131

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

IoU

D
et

ec
tio

n
R

at
e

edge_boxes_70
selective_search
MCG
BING
randomized_prims
objectness
DeepProposal−50
DeepProposal−70
RPN−ZF

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

IoU

D
et

ec
tio

n
R

at
e

edge_boxes_70
selective_search
MCG
BING
randomized_prims
objectness
DeepProposal−50
DeepProposal−70
RPN−ZF

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

A
ve

ra
ge

 R
ec

al
l

edge_boxes_70
selective_search
MCG
BING
randomized_prims
objectness
DeepProposal−70
RPN−ZF

Fig. 9 Recall versus IoU threshold on the PASCAL VOC 2007 test set for (left) 100 proposal windows and (middle) 1000 proposal windows.
(Right) average recall between [0.5,1] IoU on the PASCAL VOC 2007 test set

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

D
et

ec
tio

n
R

at
e

edge_boxes_70
selective_search
MCG
BING
randomized_prims
DeepProposal−50

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

D
et

ec
tio

n
R

at
e

edge_boxes_70
selective_search
MCG
BING
randomized_prims
DeepProposal−70

Fig. 10 Recall versus number of proposals on the COCO 2014 evaluation set for (left) IoU threshold 0.5 and (right) IoU threshold 0.7

extraction time.1 DeepProposals takes 0.75 s on CPU and
0.4 s to generate object proposals on a GeForce GTX 750 Ti
GPU, which is slightly slower than Edgeboxes. The fastest
method is RPN-ZF, a convolutional network based on Zeiler
and Fergus (2014) network architecture, tuned for generating
object proposals. Note that for RPN-ZF, the running-time on
aGPU is reportedwhile the others are reported on aCPU.The
remaining methods are segmentation based and take consid-
erably more time.

6.10 Qualitative Results

Figure 12 shows some qualitative results of DeepPropos-
als and another state of the art method, Edge boxes. In
general, when the image contains high-level concepts clut-
tered with many edges (e.g. Fig. 12 rows 1, first column)
our method gives better results. However, for small objects

1 If CNN features have to be (re)computed, that would add 0.15 s. extra
computation time on our GPU.

with clear boundaries edge boxes performs better since it is
completely based on contours and can easily detect smaller
objects.

6.11 Object Detection Performance

In the previous experiments we evaluated our proposal gen-
erator with different metrics and showed that it is among the
best methods for all of them. However, we believe that the
best way to evaluate the usefulness of the generated propos-
als is a direct evaluation of the detector performance. Indeed,
recently it has become clear (see Hosang et al. (2015)) that
an object proposal method with high recall at 0.5 IoU does
not automatically lead to a good detector.

Some state-of-the-art detectors at the moment are: RCNN
(Girshick et al. 2014), SppNet (He et al. 2015), fast-
RCNN (Girshick 2015). All are based on CNN features and
use object proposals to localize the object of interest. The
first uses the window proposals to crop the corresponding
regions of the image, compute the CNN features and obtain

123

Int J Comput Vis (2017) 124:115–131 127

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

IoU

D
et

ec
tio

n
R

at
e

edge_boxes_70
selective_search
MCG
BING
randomized_prims
DeepProposal−50
DeepProposal−70

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

IoU

D
et

ec
tio

n
R

at
e

edge_boxes_70
selective_search
MCG
BING
randomized_prims
DeepProposal−50
DeepProposal−70

100 101 102 103
0

0.2

0.4

0.6

0.8

1

of proposals

A
ve

ra
ge

 R
ec

al
l

edge_boxes_70
selective_search
MCG
BING
randomized_prims
DeepProposal−50
DeepProposal−70

Fig. 11 Recall versus IoU threshold on the COCO 2014 evaluation set for (left) 100 proposal windows and (middle) 1000 proposal windows.
(Right) average recall between [0.5,1] IoU on the COCO 2014 evaluation set

Fig. 12 Qualitative examples of our object proposals (1st and 3rd col-
umn) versus Edge boxes proposals (2nd and 4th column). For the first
three rows our method performs better, whereas in the last row edge
boxes is better. An object is correctly localized if its IoU with the
ground-truth bounding box is more than 0.7. We use 1000 proposals

for each method. Blue boxes are the closest proposals to each ground
truth bounding box. Red and green boxes are ground-truth boxes where
green indicates a localized object while red indicates a missed object
(Color figure online)

a classification score for each region. This approach is slow
and takes around 10 s on a high-end GPU and more than
50 s on the GPU used for our experiments (GeForce GTX

750 Ti). SppNet and fast-RCNN instead compute the CNN
features only once, on the entire image. Then, the proposals
are used to select the sub-regions of the feature maps from

123

128 Int J Comput Vis (2017) 124:115–131

where to pull the features. This allows this approach to be
much faster. With these approaches then, we can also reuse
the CNN features needed for the generation of the propos-
als so that the complete detection pipeline can be executed
without any pre-computed component, roughly in 1 second
on our GPU (GeForce GTX 750 Ti).

Concurrently to our method also the Faster-RCNN was
recently introduced (Ren et al. 2015). It uses a Region Pro-
posal Network (RPN) for generating proposals that shares
full-image convolutional features with the detection net-
work.

We compare the detection performance of our DeepPro-
posals70 with selective search and RPN proposals. For RPN
proposals the detector is trained as in the original paper (Ren
et al. 2015) with an alternating procedure, where detector
and localization sub-network update the shared parameters
alternatively. Our method and selective search are instead
evaluated using a detector fine-tuned with the correspond-
ing proposals, but without any alternating procedure, i.e. the
boxes remain the same for the entire training. The train-
ing is conducted using the faster-RCNN code on PASCAL
VOC 2007 with 2000 proposals per image. In Fig. 8 we
report the detector mean average precision on the PASCAL
VOC 2007 test data for different number of used propos-
als.

The difference of selective searchwith CNN-based appro-
aches is quite significant and it appears mostly in a regime
with low number of proposals. For instance, when using 50
proposals selective search obtains a mean average precision
(mAP) of 28.1, while RPN and our method obtain a mAP
already superior to 50. We believe that this difference in
behavior is due to the fact that our method and RPN are
supervised to select good object candidates, whereas selec-
tive search is not.

Comparing our proposals with RPN, we observe a sim-
ilar trend. DeepProposals produces superior results with a
reduced amount of proposals (<100), while RPN performs
better in the range of between 100 and 700 proposals. With
more than 700 proposals both methods perform again sim-
ilarly and better than selective search. Finally, with 2000
proposals per image, selective search, RPN andDeepPropos-
als reach the detection performance of 59.3, 59.4 and 59.8,
respectively.

Thus, from these results we can see that RPN and
our approach perform very similarly. The main difference
between the two approaches lies in the way they are trained.
Our approach assumes an already pre-trained network, and
learns to localize the object of interest by leveraging the con-
volutional activations generated for detection. RPN instead
needs to be trained together with the detector with an alter-
nating approach. In this sense, our approach is more flexible
because it can be applied to any CNN based detector without
modifying its training procedure.

0 10 20 30 40 50 60 70 80
40

45

50

55

60

65

70

75

80

number of categories

r
e
c
a
l
l

train on COCO
train on PASCAL VOC07

Fig. 13 Generalization of DeepProposals: we train models with dif-
ferent numbers of categories and evaluate them on the whole eval-set
of the COCO dataset. We set the IoU threshold to 0.5 and the number
of proposals to 1000

6.12 Generalization to Unseen Categories

We evaluate the generalization capability of our approach on
the Microsoft COCO dataset (Lin et al. 2014b). The evalua-
tion of the approach has been done by learning either from
the 20 classes from VOC07 or COCO or from 1, 5, 20, 40,
or 80 categories randomly sampled from COCO. As shown
in Fig. 13, when the DeepProposals are trained using only 5
classes, the recall at 0.5 IoU with 1000 proposals is slightly
reduced (56%). With more classes, either using VOC07 or
COCO, recall remains stable around 59–60%. This shows
that the method can generalize well over all classes. We
believe this is due to the simplicity of the classifier (average
pooling on CNN features) that avoids over-fitting to specific
classes. Note that in this case our recall is slightly lower than
the Selective Searchwith 1000 proposals (63%). This is prob-
ably due to the presence of very small objects in the COCO
dataset, that are missed by our method as it was not tuned
for this setting. These results on COCO demonstrate that our
proposed method is capable to generalize learnt objectness
beyond the training categories.

7 Experiments on Action Proposals

7.1 Evaluation

Weevaluate the performance of the inverse cascade for action
proposals on the UCF-Sports (Rodriguez et al. 2008) dataset.
We train our models on a training set that contains a total of
6604 frames. Additionally, we have 2976 frames in the test
set, spread over 47 videos.

123

Int J Comput Vis (2017) 124:115–131 129

50 100 150 200 250 300
70

75

80

85

90

95

100

number of windows per frame

ac
tio

n
pr

op
os

al
 re

ca
ll

5 10 15 20 25 30 35 40 45 50
80

85

90

95

100

number of tubes

ac
tio

n
pr

op
os

al
s

re
ca

ll

DeepProposal−70

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

IoU

ac
tio

n
pr

op
os

al
s

re
ca

ll

DeepProposal−70

Fig. 14 (Left) action proposals recall at IoU of 0.5 varying the number
of windows per frame. (Middle) recall versus number of proposals in
IoU=0.5 for the different number of action proposals. (Right) action

proposal recall at different IoUvalues for 20 action proposals.All results
are reported on the UCF-sports test set

Like van Gemert et al. (2015), we measure the overlap
between an action proposal and the ground-truth video tubes
using the average intersection-over-union score of 2D boxes
for all frames where there is either a ground-truth box or
proposal box. Formally:

Ovr(P,G) = 1

|F |
∑

t∈F

Pt ∩ Gt

Pt ∪ Gt
,

where P and G are action proposal and ground-truth action
tube, respectively. F is the set of frames where either P or G
is not empty. Gt is empty if there is no action in the frame t
of the ground-truth tube. In this case, Pt ∩ Gt is set to 0 for
that frame.

Considering each frame as an image and applying Deep-
Proposals on each frame individually, the frame-based recall
of objects/actors for an IoU of 0.7 is 78% for 10 windows
and 96% for 100windows. One possible explanation for such
a promising frame-based recall is that an action mainly con-
tains an actor performing it and hunting that actor in each
frame is relatively easier than hunting general objects in the
task of object proposal generation. However, this does not
take into account any temporal continuity. Constructing tubes
from these static windows, which results in our action pro-
posals, is our final goal.

The extension of the inverse cascade for actions introduces
an additional parameter which is the number of windows that
we select in each frame. In Fig. 14 (left) we show the recall
of the action proposals while varying the number of windows
we select per frame. As expected, selecting more windows
in each frame leads to a higher recall of the action propos-
als. However, it also leads to an increasing computational
cost, since the computational complexity of the Viterbi algo-
rithm is proportional to the square of the number of windows
per frame. For example, the Viterbi algorithm for a video
of length 240 frames takes 1.3 and 12.1s for N = 100 and
N = 300 respectively. From now on, during all the following

Table 4 Our action proposals generator compared to other methods at
a IoU threshold of 0.5

Recall # Proposals

UCF-Sports

Brox and Malik (2010) 17.02 4

Jain et al. (2014) 78.72 1642

On average Oneata et al. (2014) 68.09 3000

Gkioxari and Malik (2015) 87.23 100

APT (van Gemert et al. 2015) 89.36 1449

DeepProposals 95.7 20

UCF101

APT (van Gemert et al. 2015) 37.0 2304

DeepProposals 38.6 34

Bold values indicate best results
The number of proposals is averaged over all test videos.All the reported
numbers onUCF-sports except ours are obtained from vanGemert et al.
(2015). ForUCF101, like ours,we report theAPTperformance for split3

experiments we select N = 100 windows per frame to have
a good balance between performance and time complexity.

Figure 14 (middle) shows the action proposals recall for
different number of proposals. As it is shown even for a very
small number of proposals, DeepProposals obtains very good
performance as already observed also for object proposals.
Figure 14 (right) shows the recall of our method for 20 action
proposals (tubes) per video over different IoU values. Our
method works very well in the regime of [0.3 . . . 0.6]. Notice
that the definition of action proposals recall is different than
object proposals recall and the performance in IoU=0.5 is
already quite promising.

7.2 Comparison with the State of the Art

We evaluate our action proposals on two different datasets
namely UCF-Sports (Rodriguez et al. 2008) and UCF101

123

130 Int J Comput Vis (2017) 124:115–131

Fig. 15 Qualitative examples of our action proposals. In each row, we select 5 frames of a video for visualization purposes. Blue boxes are the
closest proposals to each ground truth box (shown in green) (Color figure online)

(Soomro et al. 2012). UCF-Sports contains 10 action cat-
egories and consists of 150 video samples, extracted from
sport broadcasts. The actions in this dataset are temporally
trimmed. For this dataset we use the train and test split
proposed in Lan et al. (2011). UCF101 is collected from
YouTube and has 101 action categories where 24 of the
annotated classes (corresponding to 3204 videos) are used
in literature for action localization. In this dataset, for evalu-
ation we report the average recall of 3 splits. Finally, for both
datasets, we select the first top 100 boxes in each frame and
find the N best paths over time for each video.

In Table 4 we compare our proposal generation method
against state-of-the-art methods in the presented datasets. As
shown, our method is competitive or improves over all other
methods with fewer proposals. In the UCF-Sports dataset,
DeepProposals have higher recall compared to the recently
published APT proposal generator (van Gemert et al. 2015)
with almost 70x fewer proposals. Notice that the method
proposed by Brox and Malik (2010) is designed for motion
segmentation and we use it here to emphasize the difficulty
of generating good video proposals. In the UCF101 dataset
we see the same trend, we outperform APT while using 67×
fewer proposals.

7.3 Run-Time

Computationally, given the optical flow images, our method
needs 1.2 s per frame to generate object proposals and on
average 1.3s for linking all the windows. Most of the other
methods are an order of magnitude more expensive mainly
because of performing super-pixel segmentation and group-
ing.

7.4 Qualitative Results

In Fig. 15 we provide examples of our action proposals
extracted from some videos of UCF-sports dataset. For each

video we show 5 cross sections of a tube. These sections are
equally distributed in the video.

8 Conclusion

DeepProposalsis a new method to produce fast proposals for
object detection and action localization. In this paper, we
have presented how DeepProposals produces proposals at a
low computational cost through the use of an efficient coarse-
to-fine cascade on multiple layers of a detection network,
reusing the features already computed for detection.We have
evaluated themethod onmost recent benchmarks and against
previous approaches, and have shown that in most cases it
is comparable to or better than state-of-the-art approaches in
terms of both accuracy and computation. The source code of
DeepProposals is available online.2

Acknowledgements This work was supported by a DBOF PhD schol-
arship, the KU Leuven CAMETRON Project and the FWO Project
“Monitoring of Abnormal Activity with Camera Systems”.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Alexe, B., Deselaers, T., & Ferrari, V. (2010). What is an object? In
CVPR

Arbelaez, P.,Maire,M., Fowlkes, C., &Malik, J. (2011). Contour detec-
tion and hierarchical image segmentation. PAMI, 33(5), 898–916.

2 https://github.com/aghodrati/deepproposal.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/aghodrati/deepproposal

Int J Comput Vis (2017) 124:115–131 131

Arbelaez, P., Pont-Tuset, J., Barron, J., Marques, F., &Malik, J. (2014).
Multiscale combinatorial grouping. In CVPR

Bergh, M., Roig, G., Boix, X., Manen, S., & Gool, L. (2013). Online
video seeds for temporal window objectness. In ICCV

Bilen, H., Pedersoli, M., & Tuytelaars, T. (2015). Weakly supervised
object detection with convex clustering. In CVPR

Brox, T., &Malik, J. (2010). Object segmentation by long term analysis
of point trajectories. In ECCV

Carreira, J., & Sminchisescu, C. (2012). Cpmc: Automatic object seg-
mentation using constrained parametric min-cuts. PAMI, 34(7),
1312–1328.

Cheng, M.M., Zhang, Z., Lin, W. Y., & Torr, P. (2014). Bing: Binarized
normed gradients for objectness estimation at 300fps. In CVPR

Cinbis, R. G., Verbeek, J., & Schmid, C. (2013). Segmentation driven
object detection with fisher vectors. In ICCV

Deselaers, T., Alexe, B., & Ferrari, V. (2010). Localizing objects while
learning their appearance. In ECCV

Dollár, P., & Zitnick, C. L. (2013). Structured forests for fast edge
detection. In ICCV

Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014). Scalable
object detection using deep neural networks. In CVPR

Everingham,M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman,
A. (2010). The pascal visual object classes (voc) challenge. IJCV,
88(2), 303–338.

Fan, R. E., Chang, K.W., Hsieh, C. J., Wang, X. R., & Lin, C. J. (2008).
Liblinear: A library for large linear classification. The Journal of
Machine Learning Research, 9, 1871–1874.

Ghodrati, A., Diba, A., Pedersoli, M., Tuytelaars, T., & Van Gool, L.
(2015). Deepproposal: Hunting objects by cascading deep convo-
lutional layers. In ICCV

Girshick, R. (2015). Fast r-cnn. In ICCV
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature

hierarchies for accurate object detection and semantic segmenta-
tion. In CVPR

Gkioxari, G., & Malik, J. (2015). Finding action tubes. In CVPR
Hariharan, B., Arbelez, P., Girshick, R., & Malik, J. (2014). Hyper-

columns for object segmentation and fine-grained localization.
arXiv preprint arXiv:1411:5752

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in
deep convolutional networks for visual recognition. PAMI, 37(9),
1904–1916.

Hosang, J., Benenson, R., Dollár, P., & Schiele, B. (2015). What makes
for effective detection proposals? PAMI, 38(4), 814–830.

Jain, M., Gemert, J., J.égou, H., Bouthemy, P., & Snoek, C. (2014).
Action localization with tubelets from motion. In CVPR

Krähenbühl, P., & Koltun, V. (2014). Geodesic object proposals. In
ECCV

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classi-
fication with deep convolutional neural networks. In NIPS

Lan, T., Wang, Y., & Mori, G. (2011). Discriminative figure-centric
models for joint action localization and recognition. In ICCV

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features:
Spatial pyramidmatching for recognizing natural scene categories.
In CVPR

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P., & Zitnick C. L. (2014a). Microsoft coco: Common
objects in context. In ECCV

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P., & Zitnick C. L. (2014b). Microsoft coco: Common
objects in context. In ECCV

Manen, S., Guillaumin, M., & Gool, L. V. (2013). Prime object propos-
als with randomized prim’s algorithm. In ICCV

Oneata, D., Revaud, J., Verbeek, J., & Schmid, C. (2014). Spatio-
temporal object detection proposals. In ECCV

Pinheiro, P. O., Collobert, R., & Dollar, P. (2015). Learning to segment
object candidates. In NIPS

Pinheiro, P. O., Lin, T. Y., Collobert, R., & Dollár, P. (2016). Learning
to refine object segments. In ECCV

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards
real-time object detection with region proposal networks. In NIPS

Rodriguez,M. D., Ahmed, J., & Shah,M. (2008). Actionmach a spatio-
temporal maximum average correlation height filter for action
recognition. In CVPR

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., &
LeCun, Y. (2013). Overfeat: Integrated recognition, localiza-
tion and detection using convolutional networks. arXiv preprint
arXiv:1312.6229

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional net-
works for large-scale image recognition. In ICLR

Song, H. O., Girshick, R., Jegelka, S., Mairal, J., Harchaoui, Z., &
Darrell, T. (2014). On learning to localize objects with minimal
supervision. In ICML

Soomro, K., Zamir, A. R., & Shah, M. (2012). Ucf101: A dataset of
101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402

Tran, D., Yuan, J., & Forsyth, D. (2014). Video event detection:
From subvolume localization to spatiotemporal path search.PAMI,
36(2), 404–416.

vanGemert, J. C., Jain,M., Gati, E., & Snoek, C. G. (2015). Apt: Action
localization proposals from dense trajectories. In BMVC

Van de Sande, K. E., Uijlings, J. R., Gevers, T., & Smeulders, A. W.
(2011). Segmentation as selective search for object recognition. In
ICCV

Viola, P., & Jones, M. J. (2004). Robust real-time face detection. IJCV,
57(2), 137–154.

Wang, X., Yang, M., Zhu, S., & Lin, Y. (2013). Regionlets for generic
object detection. In ICCV

Weinzaepfel, P., Harchaoui, Z., & Schmid, C. (2015). Learning to track
for spatio-temporal action localization. In ICCV

Xinggang,W., Yan,W., Xiang, B., &Zhijiang, Z. (2015). Deepcontour:,
A. deep convolutional feature learned by positive-sharing loss for
contour detection. In CVPR

Yu, G., &Yuan, J. (2015). Fast action proposals for human action detec-
tion and search. In CVPR

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding con-
volutional networks. In ECCV

Zhao, Q., Liu, Z., & Yin, B. (2014). Cracking bing and beyond. In
BMVC

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014).
Learningdeep features for scene recognitionusingplaces database.
In NIPS

Zitnick, C. L., & Dollár, P. (2014). Edge boxes: Locating object pro-
posals from edges. In ECCV

123

http://arxiv.org/abs/1411:5752
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1212.0402

	DeepProposals: Hunting Objects and Actions by Cascading Deep Convolutional Layers
	Abstract
	1 Introduction
	2 Related Work
	2.1 Object Proposal Methods
	2.2 Action Proposal Methods

	3 Overview of the Method
	3.1 Stage 1: Dense Sliding Window on a Coarse Layer
	3.2 Stage 2: Re-scoring Windows on an Intermediate Layer
	3.3 Stage 3: Local Refinement on a Fine Layer

	4 Components of the Inverse Coarse-To-Fine Cascade
	4.1 Sliding Window
	4.2 Multiple Scales
	4.3 Pooling
	4.4 Pyramid
	4.5 Bias on Size and Aspect Ratio
	4.6 Classifier
	4.7 Non-maximum Suppression
	4.8 Refinement

	5 Proposals in Videos
	6 Experiments on Object Proposals
	6.1 Evaluation Metrics
	6.2 Analysis of the Components
	6.3 Layers
	6.4 Number of Window Sizes
	6.5 Spatial Pyramid
	6.6 Stages
	6.7 Network Architecture
	6.8 Comparison with State-of-the-Art
	6.9 Run-Time
	6.10 Qualitative Results
	6.11 Object Detection Performance
	6.12 Generalization to Unseen Categories

	7 Experiments on Action Proposals
	7.1 Evaluation
	7.2 Comparison with the State of the Art
	7.3 Run-Time
	7.4 Qualitative Results

	8 Conclusion
	Acknowledgements
	References

